电流互感器
高中物理电流互感器_概述及解释说明

高中物理电流互感器概述及解释说明1. 引言1.1 概述电流互感器是一种广泛应用于电力系统和工业领域的重要电气设备,用于测量和监测电路中的电流。
它通过基本原理、分类、性能指标等方面的介绍来提供一个全面的了解。
本文将对电流互感器进行概述及详细解释说明,以增加读者对该设备的认识。
1.2 文章结构本文共分为五个部分,每个部分都有特定的主题内容。
首先,在引言部分,我们对整篇文章进行了概述和简要介绍。
接下来,在第二部分,我们将探讨电流互感器的基本原理,包括互感器的定义、磁场与电流之间的关系以及其工作原理。
在第三部分,我们将深入讨论电流互感器的分类及其在能源领域和工业领域中的应用。
然后,在第四部分,我们将重点介绍该设备的性能指标和参数测量方法,包括精度、负载误差、频率响应等方面的内容。
最后,在结论部分,我们将总结回顾所研究内容,并展望未来对电流互感器发展趋势提出展望,并提出可能的问题和可进一步探讨的方向。
1.3 目的本文旨在为读者提供关于高中物理电流互感器的全面概述和详细解释说明。
通过对电流互感器的基本原理、分类及应用领域、性能指标和参数测量方法等方面进行阐述,希望读者能够对该设备有更深入的了解和认识。
此外,通过对未来发展趋势的展望和提出问题以及可进一步探讨的方向,鼓励读者进行更多深入研究和思考,促进该领域的发展。
2. 电流互感器的基本原理:2.1 互感器的定义:电流互感器是一种用于测量或检测电流的装置,它能够根据远离其所测量的电路的线圈中通过的电流来产生相应的输出信号。
互感器通过相邻线圈的磁场耦合来实现这一转化过程。
2.2 磁场与电流的关系:根据安培定律,通过一条导体所产生的磁场与通过该导体中传送的电流成正比。
当电流变化时,其周围产生一个可检测到变化的磁场。
这就是基本原理:通过检测由待测电路产生的磁场,可以推断出该电路中正在流动的电流。
2.3 电流互感器的工作原理:电流互感器通常由两个线圈组成:主线圈和副线圈。
电流互感器基础知识

RWL
LC
S
式中,γ为导线的导电率,铜线γ=53m/ (Ω·mm2),铝线γ=32m/(Ω·mm2);S为导 线截面(mm2);Lc为导线的计算长度(m)。 设互感器到仪表单向长度为l1,则:
Lc
l1 3l1
Hale Waihona Puke 2l1星形接线 两相V形接线 一相式接线
18
保护用互感器的准确度选10P级,其复合误差限 值为10%。为了正确反映一次侧短路电流的大小, 二次电流与一次电流成线性关系,也需要校验二次 负荷。
荷; (4)比较实际二次负荷与允许二次负荷。如实际二次负荷小于允许二次负荷,表示
电流互感器的误差不超过10%,如实际二次负荷大于允许二次负荷,则应采取下述措施, 使其满足10%误差:
① ①增大连接导线截面或缩短连接导线长度,以减小实际二次负荷; ②选择变比较大的电流互感器,减小一次电流倍数,增大允许二次负荷。
I1N >I30
S2N
一般: I1N =(1.2~1.5)I30
4). 电流互感器准确度选择及校验
准确度选择的原则:计量用的电流互感器的准确度选0.2~0.5级,测量用的电流互感 器的准确度选1.0~3.0级。为了保证准确度误差不超过规定值,互感器二次侧负荷S2 应不大于二次侧额定负荷S2N ,所选准确度才能得到保证。
(3) 变流比与二次额定负荷 电流互感器的一次额定电流有多种规格可供用户选择。 电流互感器的每个二次绕组都规定了额定负荷,二次绕组回路所带负荷不应超过额定负 荷值,否则会影响精确度。
14
电流互感器的选择与校验
1). 电流互感器型号的选择
根据安装地点和工作要求选择电流互感器的型号。 2).电流互感器额定电压的选择
电流互感器

电流互感器基本介绍作用电流互感器(Current transformer 简称CT)[1]的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。
如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。
使用1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载电流互感器串联2)按被测电流大小,选择合适的变化,否则误差将增大。
同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故3)二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。
电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危及工作人员的安全及仪表的绝缘性能。
另外,二次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。
因此,电流互感器二次侧都备有短路开关,防止二次侧开路。
在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停电处理。
一切处理好后方可再用。
4)为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。
对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。
例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中6)为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧7)为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。
电流互感器的计算公式

电流互感器的计算公式
(原创实用版)
目录
1.电流互感器的概念与作用
2.电流互感器的计算公式
3.计算公式的应用举例
4.电流互感器与电压变压器的区别
正文
电流互感器是一种用于测量电流的设备,它可以将大电流转换为小电流,以便于测量和保护电路。
电流互感器的工作原理是基于电磁感应,当一次导线穿过互感器的铁心时,会在二次侧产生电流。
电流互感器的变流比是固定的,通常为 60/5,即一次电流为 60A 时,二次电流为 5A。
电流互感器的计算公式如下:
二次电流(I2)= 一次电流(I1)×变流比(N)
其中,一次电流是指通过互感器的主线电流,二次电流是指通过互感器的副线电流,变流比是指一次电流与二次电流的比值。
举例来说,如果一次电流为 15A,变流比为 60/5,那么可以通过以下公式计算出二次电流:
I2 = I1 × N
I2 = 15A × (60/5)
I2 = 180A
因此,当一次电流为 15A 时,互感器产生的二次电流为 180A。
需要注意的是,电流互感器的二次电流不能直接用于测量,因为其数值较大。
通常需要通过电流表进行测量,而电流表的满偏转电流为 15A。
因此,在实际应用中,需要根据电流互感器的变流比和一次电流,计算出二次电流,以便于通过电流表进行测量。
电流互感器与电压变压器的区别在于,电流互感器试图把电流从原边变换到副边,而电压变压器试图把电压从原边变换到副边。
电流互感器的电压大小由负载决定,而电压变压器的电压大小由原边电压决定。
电流互感器

2.1 额定容量:额定二次电流通过二次额定负荷时所消耗的视在功率。额定容量可以用视在功率V.A表示,也可以用二次额定负荷阻抗Ω表示。
2.2 一次额定电流:允许通过电流互感器一次绕组的用电负荷电流。用于电力系统的电流互感器一次额定电流为5~25000A,用于试验设备的精密电流互感器为 0.1~50000A。电流互感器可在一次额定电流下长期运行,负荷电流超过额定电流值时叫做过负荷,电流互感器长期过负荷运行,会烧坏绕组或减少使用寿命。
2.6 10%倍数:在指定的二次负荷和任意功率因数下,电流互感器的电流误差为-10%时,一次电流对其额定值的倍数。10%倍数是与继电保护有关的技术指标。
2.7 准确度等级:表示互感器本身误差(比差和角差)的等级。电流互感器的准确度等级分为0.001~1多种级别,与原来相比准确度提高很大。用于发电厂、变电站、用电单位配电控制盘上的电气仪表一般采用0.5级或0.2级;用于设备、线路的继电保护一般不低于1级;用于电能计量时,视被测负荷容量或用电量多少依据规程要求来选择(见第一讲)。
2使用介绍编辑使用原则
1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载电流互感器 电流互感器
串联
2)按被测电流大小,选择合适的变比,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故
3)二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。电流互感器在正常工作时,二次侧与测量仪表和继电器等电流线圈串联使用,测量仪表和继电器等电流线圈阻抗很小,二次侧近似于短路。CT二次电流的大小由一次电流决定,二次电流产生的磁势,是平衡一次电流的磁势的。若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危及工作人员的安全及仪表的绝缘性能。
电流互感器

3、电流互感器的极性
电流互感器的极性一般采用减极性原则标注,即:一、二次绕组中 的电流在铁芯中产生的磁通方向相反。如图所示,则L1与K1为一对同极 性端子。
电流互感器在电路中的符号如下图所示,用“TA”来表示,一次绕 组 一般用一根直线表示,一次绕组和二次绕组分别标记 “●”的两个端子 为 同名端或同极性端。极性端子关系到二次电流的方向,非常重要。
(3)按安装方式,可分为支持式、装入式和 按安装方式,可分为支持式、 按安装方式 穿墙式等。 穿墙式等。 支持式安装在平面和支柱上,装入式(套管 支持式安装在平面和支柱上,装入式 套管 式)可以节省套管绝缘子而套装在变压器导 可以节省套管绝缘子而套装在变压器导 体引出线穿出外壳处的油箱上; 体引出线穿出外壳处的油箱上;穿墙式主 要用于室外的墙体上, 要用于室外的墙体上,可兼作导体绝缘和 固定设施。 固定设施。
如图(a)所示。两相星形接线又称不完全星形接线,这种接线只 用两只电流互感器,统一装设在A、C相上。一般测量两相的电流,但通过 公共导线,也可测第三相的电流。主要适用于小接地电流的三相三线制系 统,在发电厂、变电所6~10kv馈线回路中,也常用来测量和监视三相系统 的运行状况。
3.三相星形接线
如图(c)所示。三相星形接线又称完全星形接线,它是由三只完 全相同的电流互感器构成。由于每相都有电流流过,当三相负载不平衡 时,公共线中就有电流流过,此时,公共线是不能断开的,否则就会产生 计量误差。该种接线方式适用于高压大接地电流系统、发电机和变压器二 次回路、低压三相四线制电路 .
五、电流互感器的选择
1、额定电压的选择 电流互感器的额定电压UN应略高于或等于其安装 处的工作电压UX UN ≥ UX 2、额定电流的选择 电流互感器的一次额定电流I1N应大于或等于长期 通过电流互感器的最大工作电流Im,力求使电流互感 器运行于额定电流附近,以保证测量的准确性。 3、准确度等级的选择 测量时应根据被测对象对测量准确度的要求合理选 择准确度等级。一、二类电能计量应选0.2级电流 互感器。 4、额定容量的选择 选择时互感器二次侧容量S应满足0.25SN≤ S≤ SN
电流互感器

2、互感器的作用: 广泛应用于电压等级的交流电路中,是一、二 次设备 之间的重要联络元件,其作用: (1)变压或变流,正确反应一次系统的运行状态; (2)隔离高压,保证工作人员安全; (3)使二次元件标准化、小型化,方便遥测; (4)安装方便,便于实现集中管理和远方监控测量。
3、 工作特点: 1)一次绕组串联在电路中,并且匝数很少;故一次 绕组中的电流完全取决于被测电路的负荷电流, 而与二次电流大小无关; 2)电流互感器二次绕组所接仪表的电流线圈阻抗很小, 所以正常情况下,电流互感器在近于短路的状态下运行。 3)运行中的电流互感器二次回路不允许开路 , 否则会在开路的两端产生高电压危及人身安全 或使电流互感器发热损坏。 (开路的危害:∵ ,∴ =0时危害: (1)φ↑↑→dφ/dt↑↑→e2↑↑103~104V, 将危及二次元件和人身安全; (2)φ↑↑→铁芯饱和→磁滞涡流↑↑→热烧毁; (3)剩磁→测量不准确。 )
高压电流互感器多制成两个铁芯和两 个副绕组的型式,分别接测量仪表和继 电器,满足测量仪表和继电保护的不同 要求。 电流互感器供测量用的铁芯在一次侧 短路时应该容易饱和,以限制二次侧电 流增长的倍数; 供继电保护用的铁芯,在一次侧短路 时不应饱和,使二次侧的电流与一次侧 的电流成正比例增加。
5.5.2 电流互感器的选择
(3)两相接差动式接线反映
两相差电流。 该接线特点是U、W相电流互感 器接成电流差式,通过继电器的 电流是U、W相电流互感器二次侧 电流差。 该接线方式应用在6~ 10kV中性点不接地的小电流接地 系统中,保护线路的三相短路、 两相短路、小容量电动机保护、 小容量变压器保护。 两相差接线:用于励磁或自动装置中。 两相差接线 适用于中性点不接地的 三相三线制线路。供接过电流保护装置之用。
电流互感器的作用

电流互感器的作用
电流互感器(Current Transformer,简称CT)是一种常用的电力测量和保护装置,主要用于测量和监测电路中的电流,并将其转化为绝缘可靠、标准化的小电流输出。
电流互感器的主要作用有以下几个方面:
1. 电流测量:电流互感器可用于精确测量电路中的电流大小,通过对电流信号的变换和放大,将高电流转化为安全的小电流输出,便于进行电能计量和负荷控制。
2. 电流保护:在变电站和电力系统中,电流互感器用于检测和保护电路中的过电流和短路故障。
当电路中的电流超过设定值或突然增大时,电流互感器会立即产生告警信号,并触发保护装置进行断电操作,保护电力设备的安全运行。
3. 系统监测:电流互感器的输出信号可以用于系统监测和数据采集。
通过连接到电流采集监控设备,可以实时监测电力系统中的电流大小和负荷变化,对电力系统的状态进行实时分析和评估,提高系统的稳定性和可靠性。
4. 负荷控制:电流互感器可以用于实现电力系统的负荷控制和调节。
通过监测电路中的电流变化,可以及时调整负荷分配和供电方式,以提高电能利用效率和功率因数。
5. 泄漏电流检测:电流互感器还可用于检测和测量电路中的泄漏电流。
泄漏电流是指由于设备绝缘损坏或接地故障引起的异
常电流,通常是非常小的电流值。
借助电流互感器,可以对泄漏电流进行快速准确的测量和检测,及时发现和处理潜在的安全隐患。
在电力系统中,电流互感器是一项非常重要的设备,广泛应用于各种场合。
它的作用不仅限于电流测量和保护,还涉及到电能计量、负荷控制、故障检测等方面,对于确保电力系统的安全稳定运行和提高能源利用效率具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器与电压互感器的区别:电流互感器是测量电流的.电压互感器是测量电压的.英文中一个叫CT,一个叫PT电流互感器的一次绕组串接在供,配电系统一次电路中,而二次绕组分别串接在仪表,仪器,继电器等的电流线圈中电压互感器原理其实就是变压器原理,只是容量大小的区别互感器在安装现场要注意的事项。
1、电流互感器一次有电流通过时,二次绕组不得开路,否则二次产生高压,对产品性能和人身安全有影响。
当电流互感器有绕阻不用时要短路。
2、电压互感器二次绕组不得短路,否则互感器将被烧毁。
3、一次绕组重复工频耐压试验应在规定电压值的80%下进行。
电流传感器的工作原理依据的工作原理主要是霍尔效应原理。
(本文下面多以以零磁通闭环产品原理为例)当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS* NS= IP*NP其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。
电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS一般很小,只有10~400mA。
如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。
传感器供电电压VAVA指电流传感器的供电电压,它必须在传感器所规定的范围内。
超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。
要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要相供高于双电的传感器。
测量范围Ipmax测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值IPN电压传感器原理:概述电压传感器相当于一个通用型电压表。
可以用于多种电学实验中,测量直流或交流电的电压。
规格量程:直流/交流电流输入0 ~±0.2V、0 ~±2V、0 ~±20V三个量程,用数字显示时最多为4位有效数字。
软件控制量程转换。
误差:不大于满量程值的3% 。
输入电阻:>1MΩ。
带宽:>1kHz工作原理被测量的电压通过传感器中的分压电路,取得与被测电压成正比的0-5V的信号电压,经过A/D转换由采集器接受,然后采集器以适当的形式把结果传送给计算机。
使用A.传感器在使用时应与待测电路并联。
B.先要用软件调节零点。
C.测量正弦交流电压时,计算机界面上的“数字表”显示的是所测交流电压的有效值。
D.对的测量脉动直流电压时,不可以用“数字表”方式显示。
电压互感器和电流互感器的区别互感器在供配电系统中主要分为两种:电压互感器和电流互感器。
在供配电系统中,大电流、高电压有时不能直接用电流表和电压表来测量,必须通过互感器按比例减小后测量。
互感器的内部结构就是变压器。
按照变压器的原理运行。
电压互感器的工作原理相当于2次侧开路的变压器,用来变压,在二次侧接入电压表测量电压(可以并联多个电压表)。
电压互感器的二次侧不能短路。
电流互感器的工作原理相当于2次侧短路的变压器,用来变流,在二次侧接入电流表测量电流(可以串联多个电流表)。
电流互感器的二次侧不能开路。
电压表相当于电压互感器大负载(阻抗大)测量装置。
电流表相当于电流互感器小负载(阻抗小)测量装置。
电压互感器在正常运行中,二次负载阻抗很大,电压互感器是恒压源,内阻抗很小,容量很小,一次绕组导线很细,当互感器二次发生短路时,一次电流很大,若二次熔丝选择不当,保险丝不能熔断时,电压互感器极易被烧坏。
当运行中电流互感器二次侧开路后,一次侧电流仍然不变,二次侧电流等于零,则二次电流产生的去磁磁通也消失了。
这时,一次电流全部变成励磁电流,使互感器铁芯饱和,磁通也很高,将产生以下后果:(1)由于磁通饱和,其二次侧将产生数千伏高压,且波形改变,对人身和设备造成危害。
(2)由于铁芯磁通饱和,使铁芯损耗增加,产生高热,会损坏绝缘。
(3)将在铁芯中产生剩磁,使互感器比差和角差增大,失去准确性,所以电流互感器二次侧是不允许开路的。
互感器和变压器的工作原理相同,都是运用电磁感应原理来工作的.变压器的作用是将一种等级的电压变换成另一种等级的同频率的电压,它只能实现电压的变换,不能实现功率的变换.互感器分为电压互感器和电流互感器.电压互感器的作用是供给测量仪表,继电器等电压,从而正确的反映一次电气系统的各种运行情况.使测量仪表,继电器等二次电气系统与一次电气系统隔离,以保证人员和二次设备的安全,将一次电气系统的高电压变换成同意标准的低电压值(100伏,100/1.732伏,100/3伏). 电力互感器的作用与电压互感器的作用基本相同,不同的就是电流互感器是将一次电气系统的大电流变换成标准的5安或1安供给继续电器,测量仪表的电流线圈.采用互感器的一个原因是,因为在电力系统中,一次电压和电流的相差很大.例如,电网的一次电压从220V到500KV,相差几千倍;电网的一次电流也是相差几千倍几万倍;从几安到几万安.为了对电力系统中的电气设备进行测量和监督,面对各种各样电压和电流等级的设备如果没有:电流互感器和电压互感器,我们就需要好多的电压表和电流表制造和维护很不方便,也不安全电流互感器和电压互感器的使用,使二次的电压和电流等级能够统一,简化了二次表的规格,使得同一种电压表和电流表在各种电流互感器和电压互感器的配合下,适用于各种各样电压和电流等级的设备更为重要的是,人员也安全了电流互感器是一个变流器,把很大的一次电流变成统一的二次电流,0--5A量程电压互感器是一个变压器,把很高的一次电压变成统一的二次电压0--110V量程电流互感器的简称CT,也就是在图上用CT表示;电压互感器的简称PT,也就是在图上用PT表示.电流互感器、电压互感器作用及区别1.电压互感器电压互感器的作用是:把高电压按比例关系变换成100V或更低等级的标准二次电压,供保护、计量、仪表装置使用。
同时,使用电压互感器可以将高电压与电气工作人员隔离。
电压互感器虽然也是按照电磁感应原理工作的设备,但它的电磁结构关系与电流互感器相比正好相反。
电压互感器二次回路是高阻抗回路,二次电流的大小由回路的阻抗决定。
当二次负载阻抗减小时,二次电流增大,使得一次电流自动增大一个分量来满足一、二次侧之间的电磁平衡关系。
可以说,电压互感器是一个被限定结构和使用形式的特殊变压器。
电压互感器是发电厂、变电所等输电和供电系统不可缺少的一种电器。
精密电压互感器是电测实验室中用来扩大量限,测量电压、功率和电能的一种仪器。
电压互感器和变压器很相象,都是用来变换线路上的电压。
但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况线路上的电压大小不一,而且相差悬殊,有的是低压220V和380V,有的是高压几万伏甚至几十万伏。
要直接测量这些低压和高压电压,就需要根据线路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。
这样不仅会给仪表制作带来很大的困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压。
那是不可能的,而且也是绝对不允许的。
如果在线路上接入电压互感器变换电压,那么就可以把线路上的低压和高压电压,按相应的比例,统一变换为一种或几种低压电压,只要用一种或几种电压规格的仪表和继电器,例如通用的电压为100V的仪表,就可以通过电压互感器,测量和监视线路上的电压。
2.电流互感器电流互感器的作用就是用于测量比较大的电流。
电流互感器把大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。
它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。
(1、将很大的一次电流转变为标准的5安培;2、为测量装置和继电保护的线圈提供电流;3、对一次设备和二次设备进行隔离。
)输入电流时次级会产生一个与变比相应的输出电流。
通过运算放大器将电流信号转换成电压信号,调节反馈电阻Rf的值在输出端得到所要求的电压输出。
电容C及可调电阻r用来补偿相移。
3.电路中加电流互感器和电压互感器的作用(通俗说法)电流互感器和电压互感器在电路中的作用就是“检测元件”。
我们对大电流和高电压直接测量起来不方便,也不安全,就开发了这二种电器当做人们的“眼睛”,随时监测着电路的电流和电压。
电流互感器就是将大电流或高电压下的电流变换成低电压标准电流(5A或1A)的电器;电压互感器就是将高电压变换成标准电压(100V)的电器;通过检测电流互感器二次变换出来的电流,就可知道电路中有无电流流过,电流大小是多少,是否在正常情况下运行。
通过检测电压互感器二次变换出来的电压,就可知道电路中是否有电压,电压是否正常,在保护中还能“闭锁”电流保护的误动作,提高保护装置动作的灵敏度。
4.电压互感器和电流互感器在作用原理上有什么区别主要区别是正常运行时工作状态很不相同,表现为:1)电流互感器二次可以短路,但不得开路;电压互感器二次可以开路,但不得短路;2)相对于二次侧的负荷来说,电压互感器的一次内阻抗较小以至可以忽略,可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。
3)电压互感器正常工作时的磁通密度接近饱和值,故障时磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值.电流互感器和电压互感器原理差不多,在构造上也基本一样,都是两个绕组:一个匝数多、线径细,另外一个匝数少、线径粗。
电压互感器:若匝数多、线径细的绕组是作为一次绕组与被测量的电路并联连接,而匝数少、线径粗的绕组接测量仪表(电压表),则该变压器就是一个电压互感器。
电压互感器实际上是一台工作在空载状态下的降压变压器(因为电压表是高阻表,电流很小,所以是空载。
又因为一次绕组匝数多、二次绕组匝数少,所以是降压)。
电压互感器二次侧不允许短路运行。
电流互感器:若匝数少、线径粗的绕组作为一次绕组与被测量的电路串联连接,而匝数多、线径细的绕组接测量仪表(电流表),则该变压器就是一个电流互感器。
电流互感器实际上是一台工作在短路状态下的升压变压器(因为电流表是低阻表,电流很大,所以相当于短路。