2018年江苏高考数学二轮复习练习:专题限时集训2 函数 Word版含答案
2018届高考数学理科二轮总复习高考大题滚动练二 含解

高考大题滚动练(二)1.(2017·江苏苏州大学指导卷)已知函数f (x )=(1+3tan x )cos 2x . (1)求函数f (x )的定义域和最小正周期; (2)当x ∈⎝⎛⎭⎫0,π2时,求函数f (x )的值域. 解 (1)函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,且x ≠k π+π2,k ∈Z ,因为f (x )=(1+3tan x )cos 2x =⎝⎛⎭⎫1+3sin x cos x cos 2x =cos 2x +3sin x cos x =1+cos 2x 2+32sin 2x=sin ⎝⎛⎭⎫2x +π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由x ∈⎝⎛⎭⎫0,π2,得π6<2x +π6<7π6, 所以-12<sin ⎝⎛⎭⎫2x +π6≤1, 所以当x ∈⎝⎛⎭⎫0,π2时,f (x )∈⎝⎛⎦⎤0,32, 即函数f (x )在区间⎝⎛⎭⎫0,π2的值域为⎝⎛⎦⎤0,32. 2.(2017·江苏泰州姜堰区质检)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16. (1)求数列{a n }的通项公式;(2)数列{b n }满足b 1=a 1,b n +1-b n =1a n a n +1.①求数列{b n }的通项公式;②是否存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由.解 (1)设数列{a n }的公差为d ,则d >0.由a 2a 3=15,S 4=16,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), 所以a n =2n -1.(2)①因为b 1=a 1,b n +1-b n =1a n a n +1, 所以b 1=a 1=1,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, 所以b 1=a 1=1, b 2-b 1=12⎝⎛⎭⎫1-13, b 3-b 2=12⎝⎛⎭⎫13-15, …,b n -b n -1=12⎝⎛⎭⎫12n -3-12n -1(n ≥2),累加得b n -b 1=12⎝⎛⎭⎫1-12n -1=n -12n -1, 所以b n =3n -22n -1,n ≥2.b 1=1也符合上式.故b n =3n -22n -1,n ∈N *.②假设存在正整数m ,n (m ≠n ),使得b 2,b m ,b n 成等差数列,则b 2+b n =2b m . 又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,所以43+⎝⎛⎭⎫32-14n -2=2⎝⎛⎭⎫32-14m -2,化简得2m =7n -2n +1=7-9n +1.当n +1=3,即n =2时,m =2(舍去); 当n +1=9,即n =8时,m =3,符合题意.所以存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.3.(2017·江苏新海中学质检)求曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线所围成图形的面积.解 设点(x 0,y 0)为曲线|x |+|y |=1上的任一点,在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的点为(x ′,y ′),则由⎣⎢⎢⎡⎦⎥⎥⎤1 00 13 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x ′y ′, 得⎩⎪⎨⎪⎧x ′=x 0,y ′=13y 0,即⎩⎪⎨⎪⎧x 0=x ′,y 0=3y ′, 所以曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线为|x |+3|y |=1. 所围成的图形为菱形,其面积为12×2×23=23.4.在极坐标系中,设直线θ=π3与曲线ρ2-10ρcos θ+4=0相交于A ,B 两点,求线段AB 中点的极坐标.解 方法一 将直线θ=π3化为普通方程,得y =3x ,将曲线ρ2-10ρcos θ+4=0化为普通方程,得 x 2+y 2-10x +4=0.联立⎩⎨⎧y =3x ,x 2+y 2-10x +4=0,消去y ,得2x 2-5x +2=0,解得x 1=12,x 2=2,所以AB 中点的横坐标为x 1+x 22=54,纵坐标为543,化为极坐标为⎝⎛⎭⎫52,π3.方法二 联立直线与曲线的方程组⎩⎪⎨⎪⎧θ=π3,ρ2-10ρcos θ+4=0,消去θ,得ρ2-5ρ+4=0,解得ρ1=1,ρ2=4, 所以线段AB 中点的极坐标为⎝⎛⎭⎫ρ1+ρ22,π3,即⎝⎛⎭⎫52,π3.。
2018年高考数学江苏专版三维二轮专题复习教学案:专题二 立体几何 Word版含答案

江苏 新高考高考对本专题内容的考查一般是“一小一大”,小题主要考查体积和表面积的计算问题,而大题主要证明线线、线面、面面的平行与垂直问题,其考查形式单一,难度一般.第1课时立体几何中的计算(基础课) [常考题型突破]空间几何体的几组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).(2)柱体、锥体、台体的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆).(3)球的表面积和体积公式: ①S 球=4πR 2(R 为球的半径); ②V 球=43πR 3(R 为球的半径).[题组练透]1.现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温熔化后铸成一个实心铁球(不计损耗),则该铁球的半径为________cm.解析:因为圆锥底面半径为3 cm ,母线长为5 cm ,所以圆锥的高为52-32=4 cm ,其体积为13π×32×4=12π cm 3,设铁球的半径为r ,则43πr 3=12π,所以该铁球的半径是39cm.答案:392.(2017·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为________.解析:由题意得,直四棱柱的侧棱长为(23)2-22=22,所以该直四棱柱的侧面积为S =cl =4×2×22=16 2.答案:16 23.(2017·南通、泰州一调)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为_______cm 3.解析:三棱锥D 1-A 1BD 的体积等于三棱锥B -A 1D 1D 的体积,因为三棱锥B -A 1D 1D 的高等于AB ,△A 1D 1D 的面积为矩形AA 1D 1D 的面积的12,所以三棱锥B -A 1D 1D 的体积是正四棱柱ABCD -A 1B 1C 1D 1的体积的16,所以三棱锥D 1-A 1BD 的体积等于16×32×1=32.答案:324.如图所示是一个直三棱柱(以A 1B 1C 1为底面)被一个平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=1,∠A 1B 1C 1=90°,A 1A =4,B 1B =2,C 1C =3,则此几何体的体积为________.解析:在A 1A 上取点A 2,在C 1C 上取点C 2,使A 1A 2=C 1C 2=BB 1,连结A 2B ,BC 2,A 2C 2,∴V =VA B C A BC 11122-+VB A ACC 22-=12×1×1×2+13×(1+2)2×2×22=32. 答案:325.设甲,乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且V 1V 2=32,则S 1S 2的值是________.解析:设甲,乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又V 1V 2=πr 21h 1πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32,则S 1S 2=⎝⎛⎭⎫r 1r 22=94.答案:94[方法归纳]解决球与其他几何体的切、接问题(1)解题的关键:仔细观察、分析,弄清相关元素的位置关系和数量关系.(2)选准最佳角度作出截面:要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系,达到空间问题平面化的目的.(3)认识球与正方体组合的3种特殊截面:(4)熟记2个结论:①设小圆O 1半径为r ,OO 1=d ,则d 2+r 2=R 2;②若A ,B 是圆O 1上两点,则AB =2r sin ∠AO 1B 2=2R sin ∠AOB 2.[题组练透]1.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.答案:322.(2017·全国卷Ⅲ改编)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.解析:设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34×π×1=3π4.答案:3π43.已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=3,过点D作DE垂直于平面ABCD,交球O于E,则棱锥E-ABCD的体积为________.解析:如图所示,BE过球心O,∴DE=42-32-(3)2=2,∴V E -ABCD=13×3×3×2=2 3.答案:2 34.(2017·南京、盐城一模)将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC =2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O-EFG 体积的最大值是________.解析:因为将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,所以三棱锥O-EFG的高为圆柱的高,即高为AB,所以当三棱锥O-EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,(S△EFG)max=12×4×2=4,所以三棱锥O-EFG体积的最大值(V O-EFG)max=13×(S△EFG)max×AB=13×4×3=4.答案:4[方法归纳]多面体与球的切接问题的解题技巧[必备知识]将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.[题组练透]1.(2017·南通三模)已知圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,则这个圆锥的高为________.解析:因为圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,所以圆锥的母线长l =3,设圆锥的底面半径为r ,则底面周长2πr =3×2π3,所以r =1,所以圆锥的高为32-12=2 2. 答案:2 22.(2017·南京考前模拟)如图,正△ABC 的边长为2,CD 是AB 边上的高,E ,F 分别为边AC 与BC 的中点,现将△ABC 沿CD 翻折,使平面ADC ⊥平面DCB ,则棱锥E -DFC 的体积为________.解析:S △DFC =14S △ABC =14×⎝⎛⎭⎫34×22=34,E 到平面DFC 的距离h 等于12AD =12. V E -DFC =13×S △DFC×h =324. 答案:3243.(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时, 设△ABC 的边长为a (a >0)cm , 则△ABC 的面积为34a 2,△DBC 的高为5-36a , 则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0, ∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312× 25a 4-533a 5. 令t =25a 4-533a 5,则t ′=100a 3-2533a 4, 由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG=36BC , 设OG =x ,则BC =23x ,DG =5-x ,S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52, 则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2, 则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415. 答案:415 [方法归纳][A 组——抓牢中档小题]1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 是棱B 1B 的中点,则三棱锥B 1-ADE 的体积为________.解析:VB 1-ADE =VD -AEB 1=13S △AEB 1·DA =13×12×12×1×1=112.答案:1122.若两球表面积之比是4∶9,则其体积之比为________.解析:设两球半径分别为r 1,r 2,因为4πr 21∶4πr 22=4∶9,所以r 1∶r 2=2∶3,所以两球体积之比为43πr 31∶43πr 32=⎝⎛⎭⎫r 1r 23=⎝⎛⎭⎫233=8∶27.答案:8∶273.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=4π3×278=92π.答案:92π4.已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 解析:设圆锥底面圆的半径为r ,母线长为l ,则侧面积为πrl =10πr =60π,解得r =6,则圆锥的高h =l 2-r 2=8,则此圆锥的体积为13πr 2h =13π×36×8=96π.答案:96π5.(2017·扬州期末)若正四棱锥的底面边长为2(单位:cm),侧面积为8(单位:cm 2),则它的体积为________(单位:cm 3).解析:因为正四棱锥的底面边长为2,侧面积为8,所以底面周长c =8,12ch ′=8,所以斜高h ′=2,正四棱锥的高为h =3,所以正四棱锥的体积为13×22×3=433.答案:4336.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1S 2的值为________. 解析:由题意知,V 1=a 3,S 1=6a 2,V 2=13πr 3,S 2=2πr 2,由V 1V 2=3π得,a 313πr 3=3π,得a=r ,从而S 1S 2=62π=32π.答案:32π7.(2017·苏北三市三模)如图,在正三棱柱ABC -A1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1的体积为________.解析:三棱锥的底面积S △ABA 1=12×3×3=92,点P 到底面的距离为△ABC 的高h =32-⎝⎛⎭⎫322=332,故三棱锥的体积VP -ABA 1=13S △ABA 1×h =934. 答案:9348.(2017·无锡期末)已知圆锥的侧面展开图为一个圆心角为2π3,且面积为3π的扇形,则该圆锥的体积等于________.解析:设圆锥的母线为l ,底面半径为r , 因为3π=13πl 2,所以l =3,所以πr ×3=3π,所以r =1,所以圆锥的高是32-12=22,所以圆锥的体积是13×π×12×22=22π3.答案:22π39.(2017·徐州古邳中学摸底)表面积为24π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为________.解析:设圆柱的高为h ,底面半径为r , 则圆柱的表面积S =2πr 2+2πrh =24π, 即r 2+rh =12,得rh =12-r 2, ∴V =πr 2h =πr (12-r 2)=π(12r -r 3), 令V ′=π(12-3r 2)=0,得r =2,∴函数V =πr 2h 在区间(0,2]上单调递增,在区间[2,+∞)上单调递减,∴r =2时,V 最大,此时2h =12-4=8,即h =4,r h =12.答案:1210.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为________.解析:把三棱锥P -ABC 看作由平面截一个长、宽、高分别为1、1、3的长方体所得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 答案:5π11.已知正三棱锥P -ABC 的体积为223,底面边长为2,则侧棱PA 的长为________.解析:设底面正三角形ABC 的中心为O ,又底面边长为2,故OA =233,由V P -ABC =13PO ·S △ABC ,得223=13PO ×34×22,PO =263,所以PA =PO 2+AO 2=2. 答案:212.(2017·苏州期末)一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.解析:圆柱两底面积等于圆柱的侧面积.孔的打法有三种,所以有三种情况:①孔高为3,则2πr 2=2πr ×3,解得r =3;②孔高为8,则r =8;③孔高为9,则r =9.而实际情况是,当r =8,r =9时,因为长方体有个棱长为3,所以受限制不能打,所以只有①符合.答案:313.如图所示,在体积为9的长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于点E ,则四棱锥E -A 1B 1C 1D 1的体积V =________.解析:连结B 1D 1交A 1C 1于点F ,连结BD ,BF ,则平面A 1BC 1∩平面BDD 1B 1=BF ,因为E ∈平面A 1BC 1,E ∈平面BDD 1B 1,所以E ∈BF .因为F 是A 1C 1的中点,所以BF 是中线,又B 1F 綊12BD ,所以FE EB =12,故点E 到平面A 1B 1C 1D 1的距离是BB 1的13,所以四棱锥E -A 1B 1C 1D 1的体积V =13×S 四边形A 1B 1C 1D 1×13BB 1=19V 长方体ABCD -A 1B 1C 1D 1=1.答案:114.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面).当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是________.解析:依题意,设球的内接正四棱柱的底面边长为a 、高为h ,则有16=2a 2+h 2≥22ah ,即4ah ≤162,该正四棱柱的侧面积S =4ah ≤162,当且仅当h =2a =22时取等号.因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4π×22-162=16(π-2).答案:16(π-2)[B 组——力争难度小题]1.已知三棱锥S -ABC 所在顶点都在球O 的球面上,且SC ⊥平面ABC ,若SC =AB =AC =1,∠BAC =120°,则球O 的表面积为________.解析:∵AB =AC =1,∠BAC =120°, ∴BC =12+12-2×1×1×⎝⎛⎭⎫-12=3, ∴三角形ABC 的外接圆直径2r =3sin 120°=2,∴r =1.∵SC ⊥平面ABC ,SC =1, ∴该三棱锥的外接球半径R =r 2+⎝⎛⎭⎫SC 22=52,∴球O 的表面积S =4πR 2=5π. 答案:5π2.(2017·南京三模)如图,在直三棱柱ABC -A1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为________.解析:在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,所以BB 1⊥AB ,又因为∠ABC =90°,即BC ⊥AB ,又BC ∩BB 1=B ,所以AB ⊥平面BB 1C 1C, 因为AB =1,BC =2,点D 为侧棱BB 1上的动点,所以侧面展开,当AD +DC 1最小时,BD =1,所以S △BDC 1=12×BD ×B 1C 1=1,所以三棱锥D -ABC 1的体积为13×S △BDC 1×AB =13.答案:133.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是________.解析:如图所示,AB =2,CD =a ,设点E 为AB 的中点,则ED ⊥AB,EC⊥AB,则ED=AD2-AE2=22,同理EC=22.由构成三角形的条件知0<a<ED+EC=2,所以0<a< 2.答案:(0,2)4.如图,已知AB为圆O的直径,C为圆上一动点,PA⊥圆O所在的平面,且PA=AB=2,过点A作平面α⊥PB,分别交PB,PC于E,F,当三棱锥P-AEF的体积最大时,tan∠BAC=________.解析:∵PB⊥平面AEF,∴AF⊥PB.又AC⊥BC,AP⊥BC,∴BC⊥平面PAC,∴AF⊥BC,∴AF⊥平面PBC,∴∠AFE=90°.设∠BAC=θ,在Rt△PAC中,AF=AP·ACPC=2×2cos θ21+cos2θ=2cos θ1+cos2θ,在Rt△PAB中,AE=PE=2,∴EF=AE2-AF2,∴V P-AEF=16AF·EF·PE=16AF·2-AF2·2=26·2AF2-AF4=26·-(AF2-1)2+1≤26,∴当AF=1时,V P-AEF取得最大值26,此时AF=2cos θ1+cos2θ=1,∴cos θ=13,sin θ=23,∴tan θ= 2.答案: 2第2课时平行与垂直(能力课) [常考题型突破][例1](2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .[方法归纳]1.(2017·苏锡常镇一模)如图,在斜三棱柱ABC -A1B 1C 1中,侧面AA 1C 1C是菱形,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE ∥平面BCC 1B 1.(1)求证:E 是AB 的中点;(2)若AC 1⊥A 1B ,求证:AC 1⊥BC .证明:(1)连结BC1,因为OE ∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE ∥BC 1 .因为侧面AA 1C 1C 是菱形,AC 1∩A 1C =O ,所以O 是AC 1中点,所以AE EB =AO OC 1=1,E 是AB 的中点. (2)因为侧面AA 1C 1C 是菱形,所以AC 1⊥A 1C,又AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.2.(2017·苏州模拟)在如图所示的空间几何体ABCDPE中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=AD=4,EB=2.(1)若点Q是PD的中点,求证:AQ⊥平面PCD;(2)证明:BD∥平面PEC.证明:(1)因为PA=AD,Q是PD的中点,所以AQ⊥PD.又PA⊥平面ABCD,所以CD⊥PA.又CD⊥DA,PA∩DA=A,所以CD⊥平面ADP.又因为AQ⊂平面ADP,所以CD⊥AQ,又PD∩CD=D,所以AQ⊥平面PCD.(2)取PC的中点M,连结AC交BD于点N,连结MN,ME,在△PAC中,易知MN=12PA,MN∥PA,又PA∥EB,EB=12PA,所以MN=EB,MN∥EB,所以四边形BEMN是平行四边形,所以EM∥BN.又EM⊂平面PEC,BN⊄平面PEC,所以BN∥平面PEC,即BD∥平面PEC.[例2]ABC内接于圆O,且AB为圆O的直径,M为线段PB的中点,N为线段BC的中点.求证:(1)平面MON∥平面PAC;(2)平面PBC⊥平面MON.[证明](1)因为M,O,N分别是PB,AB,BC的中点,所以MO∥PA,NO∥AC,又MO∩NO=O,PA∩AC=A,所以平面MON∥平面PAC.(2)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.由(1)知,MO∥PA,所以MO⊥BC.连结OC,则OC=OB,因为N为BC的中点,所以ON⊥BC.又MO∩ON=O,MO⊂平面MON,ON⊂平面MON,所以BC⊥平面MON.又BC⊂平面PBC,所以平面PBC⊥平面MON.[方法归纳]1.(2017·无锡期末)在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.证明:(1)因为AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD,因为四边形ABCD为矩形,所以AD⊥CD,又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD,因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.(2)连结AC,BD交于点O,连结OE,OF,因为四边形ABCD为矩形,所以O点为AC的中点,因为E为PC的中点,所以OE∥PA,因为OE⊄平面PAD,PA⊂平面PAD,所以OE∥平面PAD,同理可得:OF∥平面PAD,又因为OE∩OF=O,所以平面OEF∥平面PAD,因为EF⊂平面OEF,所以EF∥平面PAD.2.(2016·江苏高考)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D ⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.[例3]圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直.(1)求证:平面AFC⊥平面CBF.(2)在线段CF上是否存在一点M,使得OM∥平面ADF?并说明理由.[解](1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF ⊂平面ABEF ,∴AF ⊥CB .又AB 为圆O 的直径,∴AF ⊥BF .又BF ∩CB =B ,∴AF ⊥平面CBF .∵AF ⊂平面AFC ,∴平面AFC ⊥平面CBF .(2)当M 为CF 的中点时,OM ∥平面ADF .证明如下:取CF 中点M ,设DF 的中点为N ,连结AN ,MN ,则MN 綊12CD ,又AO 綊12CD ,则MN 綊AO , ∴四边形MNAO 为平行四边形,∴OM ∥AN ,又AN ⊂平面DAF ,OM ⊄平面DAF ,∴OM ∥平面DAF .[方法归纳]与平行、垂直有关的存在性问题的解题步骤[变式训练]1.如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC .(1)求证:平面AEC ⊥平面ABE ;(2)点F 在BE 上,若DE ∥平面ACF ,求BF BE的值. 解:(1)证明:∵四边形ABCD 为矩形,∴AB ⊥BC ,∵平面ABCD ⊥平面BCE ,∴AB ⊥平面BCE ,∴CE ⊥AB .又∵CE ⊥BE ,AB ∩BE =B ,∴CE ⊥平面ABE ,又∵CE ⊂平面AEC ,∴平面AEC ⊥平面ABE .(2)连结BD 交AC 于点O ,连结OF .∵DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDE =OF .∴DE ∥OF ,又在矩形ABCD 中,O 为BD 中点,∴F 为BE 中点,即BF BE =12. 2.如图,在矩形ABCD 中,E ,F 分别为BC ,DA 的中点.将矩形ABCD 沿线段EF 折起,使得∠DFA =60°.设G 为AF 上的点.(1)试确定点G 的位置,使得CF ∥平面BDG ;(2)在(1)的条件下,证明:DG ⊥AE .解:(1)当点G 为AF 的中点时,CF ∥平面BDG .证明如下:因为E ,F 分别为BC ,DA 的中点,所以EF ∥AB ∥CD .连结AC 交BD 于点O ,连结OG ,则AO =CO .又G 为AF 的中点,所以CF ∥OG .因为CF ⊄平面BDG ,OG ⊂平面BDG .所以CF ∥平面BDG .(2)因为E ,F 分别为BC ,DA 的中点,所以EF ⊥FD ,EF ⊥FA .又FD ∩FA =F ,所以EF ⊥平面ADF ,因为DG ⊂平面ADF ,所以EF ⊥DG .因为FD =FA ,∠DFA =60°,所以△ADF 是等边三角形,DG ⊥AF ,又AF ∩EF =F ,所以DG ⊥平面ABEF .因为AE ⊂平面ABEF ,所以DG ⊥AE .[课时达标训练]1.如图,在三棱锥V -ABC 中,O ,M 分别为AB ,VA 的中点,平面VAB ⊥平面ABC ,△VAB 是边长为2的等边三角形,AC ⊥BC 且AC =BC .(1)求证:VB ∥平面MOC ;(2)求线段VC的长.解:(1)证明:因为点O,M分别为AB,VA的中点,所以MO∥VB.又MO⊂平面MOC,VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,O为AB的中点,AC⊥BC,AB=2,所以OC⊥AB,且CO=1.连结VO,因为△VAB是边长为2的等边三角形,所以VO= 3.又平面VAB⊥平面ABC,OC⊥AB,平面VAB∩平面ABC=AB,OC⊂平面ABC,所以OC⊥平面VAB,所以OC⊥VO,所以VC=OC2+VO2=2.B1C1中,AC⊥BC,A1B2.(2017·南通二调)如图,在直三棱柱ABC-A与AB1交于点D,A1C与AC1交于点E.求证:(1)DE∥平面B1BCC1;(2)平面A1BC⊥平面A1ACC1.证明:(1)在直三棱柱ABC-A1B1C1中,四边形A1ACC1为平行四边形.又E为A1C与AC1的交点,所以E为A1C的中点.同理,D为A1B的中点,所以DE∥BC.又BC⊂平面B1BCC1,DE⊄平面B1BCC1,所以DE∥平面B1BCC1.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,又BC⊂平面ABC,所以AA1⊥BC.又AC⊥BC,AC∩AA1=A,AC⊂平面A1ACC1,AA1⊂平面A1ACC1,所以BC⊥平面A1ACC1.因为BC⊂平面A1BC,所以平面A1BC⊥平面A1ACC1.3.(2017·南京三模)如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若BD⊥CD,AE⊥平面BCD,求证:平面AEF⊥平面ACD.证明:(1)因为BD∥平面AEF,BD⊂平面BCD,平面AEF∩平面BCD=EF,所以BD∥EF.因为BD⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.(2)因为AE⊥平面BCD,CD⊂平面BCD,所以AE⊥CD.因为BD⊥CD,BD∥EF,所以CD⊥EF,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,所以CD⊥平面AEF.又CD⊂平面ACD,所以平面AEF⊥平面ACD.4.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.(1)求证:平面AEC⊥平面PAD;(2)当PD∥平面AEC时,求PE∶EB的值.解:(1)证明:在平面ABCD中,过A作AF⊥DC于F,则CF=DF=AF=1,∴∠DAC=∠DAF+∠FAC=45°+45°=90°,即AC⊥DA.又PA⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PA.∵PA⊂平面PAD,AD⊂平面PAD,且PA∩AD=A,∴AC⊥平面PAD.又AC⊂平面AEC,∴平面AEC⊥平面PAD.(2)连结BD交AC于O,连结EO.∵PD∥平面AEC,PD⊂平面PBD,平面PBD∩平面AEC=EO,∴PD∥EO,则PE∶EB=DO∶OB.又△DOC∽△BOA,∴DO∶OB=DC∶AB=2∶1,∴PE∶EB的值为2.5.(2017·扬州考前调研)如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1)PA∥平面QBD;(2)BD⊥AD.证明:(1)连结OQ,因为AB∥CD,AB=2CD,所以AO =2OC ,又PQ =2QC ,所以PA ∥OQ ,因为OQ ⊂平面QBD ,PA ⊄平面QBD ,所以PA ∥平面QBD .(2)在平面PAD 内过P 作PH ⊥AD 于H ,因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD , 所以PH ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PH ⊥BD .又PA ⊥BD ,且PA ∩PH =P ,PA ⊂平面PAD ,PH ⊂平面PAD ,所以BD ⊥平面PAD ,又AD ⊂平面PAD ,所以BD ⊥AD .6.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,四边形ABEF为等腰梯形,且AB ∥EF ,AF =2,EF =2AB =42,平面ABCD ⊥平面ABEF .(1)求证:BE ⊥DF ;(2)若P 为BD 的中点,试问:在线段AE 上是否存在点Q ,使得PQ ∥平面BCE ?若存在,找出点Q 的位置;若不存在,请说明理由.解:(1)证明:如图,取EF 的中点G ,连结AG ,因为EF =2AB ,所以AB =EG ,又AB ∥EG ,所以四边形ABEG 为平行四边形,所以AG ∥BE ,且AG =BE =AF =2.在△AGF 中,GF =12EF =22,AG =AF =2, 所以AG 2+AF 2=GF 2,所以AG ⊥AF .因为四边形ABCD 为矩形,所以AD ⊥AB ,又平面ABCD ⊥平面ABEF ,且平面ABCD ∩平面ABEF =AB ,AD ⊂平面ABCD , 所以AD ⊥平面ABEF ,又AG ⊂平面ABEF ,所以AD ⊥AG .因为AD ∩AF =A ,所以AG ⊥平面ADF .因为AG ∥BE ,所以BE ⊥平面ADF .因为DF ⊂平面ADF ,所以BE ⊥DF .(2)存在点Q ,且点Q 为AE 的中点,使得PQ ∥平面BCE .证明如下:连结AC ,因为四边形ABCD 为矩形,所以P 为AC 的中点.在△ACE中,因为点P,Q分别为AC,AE的中点,所以PQ∥CE.又PQ⊄平面BCE,CE⊂平面BCE,所以PQ∥平面BCE.。
专题02 函数与导数练-2018年高考数学二轮复习讲练测江

2018高三二轮复习之讲练测之练案【苏教版数学】专题二 函数与导数1.练高考1. 【2017课标1,理5 改编】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是______【答案】[1,3] 【解析】【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要重视利用奇、偶函数与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 2. 【2017山东,理10 改编】已知当[]0,1x ∈时,函数()21y mx =-的图象与y m 的图象有且只有一个交点,则正实数m 的取值范围是______ 【答案】(][)0,13,+∞【解析】试题分析:当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m =单调递增,且[,1]y m m m =∈+ ,此时有且仅有一个交点;当1m >时,101m<< ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B.【考点】函数的图象、函数与方程及函数性质的综合应用. 【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 3.【2016年高考新课标Ⅲ卷文 16】)已知()f x 为偶函数,当0x ≤ 时,1()x f x ex --=-,则曲线()y f x=在点(1,2)处的切线方程式_____________________________. 【答案】2y x =考点:1、函数的奇偶性;2、解析式;3、导数的几何意义.【名师点睛】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.4.【2015高考福建,理14】若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a > 且1a ≠ )的值域是[)4,+∞ ,则实数a 的取值范围是 . 【答案】(1,2]【解析】当2x ≤,故64x -+≥,要使得函数()f x 的值域为[)4,+∞,只需1()3log a f x x =+(2x >)的值域包含于[)4,+∞,故1a >,所以1()3log 2a f x >+,所以3log 24a +≥,解得12a <≤,所以实数a 的取值范围是(1,2].【考点定位】分段函数求值域.【名师点睛】本题考查分段函数的值域问题,分段函数是一个函数,其值域是各段函数值取值范围的并集,将分段函数的值域问题转化为集合之间的包含关系,是本题的一个亮点,要注意分类讨论思想的运用,属于中档题.5. 【2017 江苏 20】已知函数()()3210,f x x ax bx a b R =+++>∈有极值,且导函数()'f x 的极值点是()f x 的零点。
2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题二 函数与导数 第4讲 精品

(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大. 解 因为 V(r)=π5(300r-4r3), 故 V′(r)=π5(300-12r2), 令V′(r)=0,解得r1=5,r2=-5(因为r2=-5不在定义域内,舍去). 当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;
解析答案
(2)若函数 g(x)=f(x)-ax+m 在1e,e上有两个零点,求实数 m 的取值范围.
解析答案
热点三 利用导数解决生活中的优化问题 生活中的实际问题受某些主要变量的制约,解决生活中的优化问题就 是把制约问题的主要变量找出来,建立目标问题即关于这个变量的函 数,然后通过研究这个函数的性质,从而找到变量在什么情况下可以 达到目标最优.
所以ff614≤>00,, 解得 0<a≤17.
即7a2+10a-171≤0, 27a2+13a>0,
解析答案
返回
高考押题精练
已知函数 f(x)=12x2-(2a+2)x+(2a+1)ln x. (1)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求f(x)的单调区间; (3)对任意的 a∈32,52,x1,x2∈[1,2],恒有|f(x1)-f(x2)|≤λ|x11-x12|,求正 实数 λ 的取值范围. 押题依据 有关导数的综合应用试题多考查导数的几何意义、导数与函
当 r∈(5,5 3)时,V′(r)<0,故 V(r)在(5,5 3)上为减函数.
由此可知,V(r)在r=5处取得最大值,此时h=8. 即当r=5,h=8时,该蓄水池的体积最大.
思维升华
解析答案
跟踪演练 3 经市场调查,某商品每吨的价格为 x(1<x<14)百元时,该商品的 月供给量为 y1 万吨,y1=ax+72a2-a(a>0);月需求量为 y2 万吨,y2=-2124x2 -1112x+1. 当该商品的需求量大于供给量时,销售量等于供给量;当该商品 的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销 售量与价格的乘积. (1)若 a=17,问商品的价格为多少时,该商品的月销售额最大?
2018届江苏高考数学二轮专题复习 函数的综合应用

(0,1) 实根,则实数 k 的取值范围是_____.
1
2
解析
答案
[1,+∞),单调减区间为_________. _________ (-∞,1]
解析
答案
(2)(2017· 江苏扬州期中 ) 已知函数 f(x) = x(1- a|x|) + 1(a>0) ,若 f(x
+ a)≤f(x) 对 任 意 x∈R 恒 成 立 , 则 实 数 a 的 取 值 范 围 是
[ 2,+∞) ______________.
Ⅱ
热点分类突破
热点一 分段函数
例 1 (1)设函数 y=f(x)在(-∞,+∞)内有定义.对于给定的正数 k,定义函数
fx,fx≤k, 1 |x| - fk(x)= 取函数 f(x)=2 .当 k=2时, 函数 fk(x)的单调增区间为 k,fx>k,
(-∞,-1) ______________.
a ∴-2=3,∴a=-6.
解析
答案
热点三 二次函数 例3 已知函数f(x)=ax2-2x+1. (1)试讨论函数f(x)的单调性;
解答
1 (2) 若 ≤a≤1 ,且 f(x) 在 [1,3] 上的最大值为 M(a) ,最小值为 3
N(a),令g(a)=M(a)-N(a),求g(a)的表达式;
解答
1 0, 则实数a的取值范围是________. 3
解析 ∵当x<0时,函数f(x)=x2-ax+1是减函数,
∴a≥0.
∵当x≥0时,函数f(x)=-x+3a是减函数,
1 又分段点 0 处的值应满足 1≥3a,∴a≤3,
1 ∴0≤a≤3.
解析 答案
热点二 绝对值函数 例2 (1) 已知函数 f(x) = 2|x - 1| - x + 1 ,则 f(x) 的单调增区间为
2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题二 函数与导数 第2讲 精品

解析
答案
(2)已知函数 f(x)=efxx,-x1≤,1,x>1, g(x)=kx+1,若方程 f(x)-g(x)=0 有 两个不同的实根,则实数 k 的取值范围是_(_e_-2__1_,__1_)∪__(_1_,__e_-__1_]_.
思维升华
解析
答案
跟踪演练2 (1)已知函数f(x)=ex-2x+a有零点,则a的取值范围是 _(_-__∞_,__2_l_n_2_-__2_]___.
专题二 函数与导数
第2讲 函数的应用
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
1 23 4
1.(2016·天津改编)已知函数 f(x)=sin2ω2x+12sin ωx-12 (ω>0,x∈R).若 f(x) 在区间(π,2π)内没有零点,则 ω 的取值范围是__0_,__18__∪__14_,__58____.
返回
热点分类突破
热点一 函数的零点 1.零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有 f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b) 使得f(c)=0,这个c也就是方程f(x)=0的根. 2.函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图 象与函数y=g(x)的图象交点的横坐标.
解析答案
1 23 4
4.某项研究表明:在考虑行车安全的情况下,某路段车流量 F(单位时间内经 过测量点的车辆数,单位:辆/时)与车流速度 v (假设车辆以相同速度 v 行驶, 单位:米/秒),平均车长 l(单位:米)的值有关,其公式为 F=v2+76180v0+0v20l. (1)如果不限定车型,l=6.05,则最大车流量为_1__9_0_0___辆/时;
2018届江苏高考数学专题练习---函数
2018届江苏高考数学专题练习——函数1. 已知函数2()||2x f x x +=+,x R ∈,则2(2)(34)f x x f x -<-的解集是 .2. 设函数⎩⎨⎧≥<-=1,21,13)(2x x x x x f ,则满足2))((2))((a f a f f =的的取值范围为 .3. 已知函数2()()()(0)f x x a x b b =--≠,不等式()()f x mxf x '≥对x R ∀∈恒成立,则2m a b +-= .*4. 已知函数f (x )=e x -1-tx ,∃x 0∈R ,f (x 0)≤0,则实数t 的取值范围 . 5. 已知函数f (x )=2x 3+7x 2+6xx 2+4x +3,x ∈0,4],则f (x )最大值是 .*6. 已知函数222101,()2 1,x mx x f x mx x ⎧+-=⎨+>⎩,,≤≤,若()f x 在区间[)0,+∞上有且只有2个零点,则实数m 的取值范围是 .7. 已知函数2()12f x x x =-的定义域为[]0m ,,值域为20am ⎡⎤⎣⎦,,则实数a 的取值范围是 . *8. 若存在实数,使不等式2e 2e 10x x a +≥-成立,则实数的取值范围为 .9. 设函数()33,2,x x x a f x x x a ⎧-<=⎨-≥⎩,,若关于的不等式()4f x a >在实数集R 上有解,则实数的取值范围是 .*10. 已知函数f (x )=⎩⎨⎧x 2-1,x ≥0,-x +1,x <0.若函数y =f (f (x ))-k 有3个不同的零点,则实数k 的取值范围是 .11. 设a 为实数,记函数f (x )=ax -ax 3(x ∈12,1])的图象为C .如果任何斜率不小于1的直线与C 都至多有一个公共点,则a 的取值范围是 .12. 若函数f (x )=x 2-m cos x +m 2+3m -8有唯一零点,则满足条件的实数m 组成的集合为 . 13. 已知实数x ,y 满足约束条件若不等式m (x 2+y 2)≤(x+y )2恒成立,则实数m 的最大值是 . 14.函数f (x )=1lg x+2-x 的定义域为________.15.函数f (x )=⎝ ⎛⎭⎪⎫122x -x 2的值域为________. 16.设函数f (x )=x 2+(a -2)x -1在区间(-∞,2]上是减函数,则实数a 的最大值为________.17.设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,⎝ ⎛⎭⎪⎫12x ,x <0,若f (a )+f (-1)=3,则a =________.18.已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围是________.19.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t 满足f (ln t )+f ⎝ ⎛⎭⎪⎫ln 1t ≤2f (1),那么t 的取值范围是________.20.已知奇函数f (x )是R 上的单调函数,若函数y =f (x 2)+f (k -x )只有一个零点,则实数k 的值是________. 21.设函数,则满足的a 的取值范围_______.(类2)(注:“*”为难题)2018届江苏高考数学专题练习——函数参考答案1. 【答案】(1,2).【解析】1()4102x f x x x ≥⎧⎪=⎨--<⎪-⎩,由2220234x x x x x ⎧-<⎪⎨-<-⎪⎩得1<x<2. 2.3.4. 【答案】(-∞,0)∪1,+∞).5.6. 【答案】102m -≤<.【解析】法一:由题意得:当0m ≥时,函数2()222f x x mx =+-的对称轴02m-≤,且(0)1f =-, 所以,此时()f x 在[]0,1上至多有一个零点,而()2f x mx =+在()1,+∞没有零点.所以,0m ≥不符合 题意.当0m <时,函数2()221f x x mx =+-的对称轴02m->,且(0)1f =-,所以,此时()f x 在[]0,1 上至多有一个零点,而()2f x mx =+在()1,+∞至多有一个零点,若()f x 在[)0,+∞有且只有2个零点,则要求012221020m m m ⎧<-≤⎪⎪+-≥⎨⎪+>⎪⎩,解之可得102m -≤<.综上:102m -≤<7.8. 【答案】[1,)-+∞【解析】2e 2e 10x x a +≥-2221212,(0),21 1.xx xe a t t t t t a e e-⇒≥=-=>-≥-∴≥- 9. 【答案】()1,72⎛⎫-∞+∞⎪⎝⎭.【解析】当1a ≤-,函数()f x 有最大值2a -,此时24a a ->, 解得0a <,又因为1a ≤-,所以1a ≤-;当12a -<≤,函数()f x 有最大值2,此时24a >解得12a <,又12a -<≤,所以112a -<< 当2a >,函数()f x 无最大值,因为取不到33a a -,所以334a a a ->即370a a ->解得0,a <<或a>又因为2a >,所以a >;综上所述,的取值范围是()1,72⎛⎫-∞+∞⎪⎝⎭.10. 【答案】(1,2].【解析】f (f (x ))=⎩⎨⎧x 2-2x ,x <0,2-x 2,0≤x <1,x 4-2x 2,x ≥1.作出函数f (f (x ))的图像可知,当1<k ≤2时,函数y =f (f (x ))-k 有3个不同的零点. 11. 【答案】1,42⎡⎤-⎢⎥⎣⎦.12. 【答案】{2}13. 【答案】2513【解析】作出线性约束条件下的可行域如图中阴影部分所示,显然,A (2,3),B (3,3),令目标函数z=y x ,它表示经过点(0,0)及可行域内的点(x ,y )的直线的斜率,从而1≤z ≤32.不等式m (x 2+y 2)≤(x+y )2恒成立,也就是m ≤222()x y x y ++恒成立,令u=222()x y x y ++,则u=1+222xyx y +=1+2x y y x+=1+21z z +1≤z ≤32,当1≤z ≤32时,2≤1z +z ≤136,从而1213≤21z z+≤1,所以2513≤1+21z z+≤2,于是m ≤2513,即实数m 的最大值为2513.14.(0,1)∪(1,2]15. ⎣⎢⎡⎭⎪⎫12,+∞.16.解析 函数f (x )图象的对称轴x =-a -22,则函数f (x )在⎝ ⎛⎦⎥⎤-∞,-a -22上单调递减, 在区间⎣⎢⎡⎭⎪⎫-a -22,+∞上单调递增,所以2≤-a -22,解得a ≤-2. 17. e 或1e18. 画出函数f (x )的图象如图所示,观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有3个不同的交点,此时需满足0<a <1. 答案 (0,1)19. 依题意,不等式f (ln t )+f ⎝ ⎛⎭⎪⎫ln 1t =f (ln t )+f (-ln t )=2f (|ln t |)≤2f (1),即f (|ln t |)≤f (1),又|ln t |≥0,函数f (x )在[0,+∞)上是增函数,因此有|ln t |≤1,-1≤ln t ≤1,1e ≤t ≤e ,即实数t 的取值范围是⎣⎢⎡⎦⎥⎤1e ,e .20.解析 利用等价转化思想求解.函数y =f (x 2)+f (k -x )只有一个零点,即方程f (x 2)+f (k -x )=0只有一解.又f (x )是R 上的奇函数,且是单调函数,所以f (x 2)=-f (k -x )=f (x -k ),即x 2-x +k =0只有一解,所以Δ=1-4k =0,解得k =14.21.。
2018年高考数学文科江苏专版二轮专题复习与策略专题限
专题限时集训(二) 函数的图象与性质(建议用时:45分钟)1.函数f (x )=1(log 2x )2-1的定义域为________. ⎝ ⎛⎦⎥⎤0,12∪(2,+∞) [要使函数f (x )有意义,需使(log 2x )2-1>0,即(log 2x )2>1,∴log 2x >1或log 2x <-1,解得x >2或0<x <12.故f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞).]2.(2016·苏州期中)定义在R 上的奇函数f (x ),当x >0时,f (x )=2x -x 2,则f (-1)+f (0)+f (3)=________.-2 [∵f (x )为R 上的奇函数,∴f (-1)=-f (1),f (0)=0. 又f (1)=2-1=1,f (0)=0,f (3)=23-9=-1, ∴f (-1)+f (0)+f (3)=-1+0-1=-2.]3.(2016·无锡期中)若函数y =4x +a2x 的图象关于原点对称,则实数a 等于________.-1 [由题意可知函数y =4x +a 2x 为奇函数,故由40+a20=1+a =0得a =-1.] 4.f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=________.x 3-ln(1-x ) [当x <0时,-x >0,又f (x )是R 上的奇函数,所以f (x )=-f (-x )=-[(-x )3+ln(1-x )]=x 3-ln(1-x ).]5.已知f (x )是定义在R 上的奇函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=e x -1,则f (2 015)+f (-2 016)=________.e -1 [由f (x +2)=f (x )可知当x ≥0时函数的周期是2.所以f (2 015)=f (1)=e -1,f (-2 016)=-f (2 016)=-f (0)=0,所以f (2 015)+f (-2 016)=e -1.]6.(2016·苏州模拟)设函数f (x )=⎩⎨⎧2x-4,x >0,-x -3,x <0,若f (a )>f (1),则实数a的取值范围是________.a <-1或a >1 [当a >0时,由f (a )>f (1)得2a -4>21-4,解得a >1. 当a <0时,由f (a )>f (1)得-a -3>21-4,即a <-1.综上可知a <-1或a >1.]7.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.【导学号:91632006】3 [∵f (x )的图象关于直线x =2对称, ∴f (4-x )=f (x ),∴f (4-1)=f (1)=f (3)=3, 即f (1)=3. ∵f (x )是偶函数, ∴f (-x )=f (x ), ∴f (-1)=f (1)=3.]8.(2016·南通调研)若函数f (x )=⎩⎨⎧x (x -b ),x ≥0,ax (x +2),x <0(a >0,b >0)为奇函数,则f (a +b )的值为________.-1 [由于f (x )为奇函数,∴⎩⎨⎧f (-1)=-f (1),f (-2)=-f (2),∴⎩⎨⎧-a (-1+2)=-(1-b ),2(2-b )=0, ∴⎩⎨⎧a +b =1,b =2,解得a =-1,b =2, ∴f (a +b )=f (1)=1-b =1-2=-1.]9.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.(1,2] [由题意得f (x )的图象如图,则⎩⎨⎧a >1,3+log a 2≥4,∴1<a ≤2.]10.已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(1,3) [∵f (x )是偶函数, ∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示, 由f (x -1)>0,得-2<x -1<2, 即-1<x <3.]11.定义在R 上的函数f (x )满足f (x )=f (x +4).当-2≤x <0时,f (x )=log 2(-x );当0≤x <2时,f (x )=2x -1,则f (1)+f (2)+f (3)+…+f (2 016)的值为_____.1 260 [因为f (x )=f (x +4), 所以函数f (x )的周期为4.当-2≤x <0时,f (x )=log 2(-x ); 当0≤x <2时,f (x )=2x -1.所以f (1)=20=1, f (2)=f (-2)=log 22=1, f (3)=f (-1)=log 21=0, f (4)=f (0)=2-1=12.所以在一个周期内有f (1)+f (2)+f (3)+f (4)=1+1+0+12=52, 所以f (1)+f (2)+…+f (2 016)=504×52=1 260.]12.已知函数h (x )(x ≠0)为偶函数,且当x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4,若h (t )>h (2),则实数t 的取值范围为________.(-2,0)∪(0,2) [因为x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4.易知函数h (x )在(0,+∞)上单调递减. 因为函数h (x )(x ≠0)为偶函数, 且h (t )>h (2), 所以h (|t |)>h (2), 所以0<|t |<2,所以⎩⎨⎧ t ≠0,|t |<2,即⎩⎨⎧t ≠0,-2<t <2,解得-2<t <0或0<t <2.综上,所求实数t 的取值范围为(-2,0)∪(0,2).]13.(2016·盐城期中)设函数f (x )=lg(x +1+mx 2)是奇函数,则实数m 的值为________.1 [由f (x )为奇函数可知, f (-x )+f (x )=0对∀x ∈R 恒成立,∴lg(-x +1+mx 2)+lg(x +1+mx 2)=0对∀x ∈R 恒成立, ∴lg(1+mx 2-x 2)=0对∀x ∈R 恒成立,∴m =1.]14.已知f (x )=x 2,g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对任意x 1∈[-1,3],总存在x 2∈[0,2],使得f (x 1)≥g (x 2)成立,则实数m 的取值范围是________.⎣⎢⎡⎭⎪⎫14,+∞ [∵x 1∈[-1,3]时,f (x 1)∈[0,9]; x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m .故只需0≥14-m ,解得m ≥14.]15.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,则f (2 015),f (2 016),f (2 017),f (2 018)从大到小的顺序为________.f (2 017)>f (2 016)=f (2 018)>f (2 015) [由f (x +2)=-f (x )得f (x +4)=f (x ),所以f (x )的周期是4,所以f (2 015)=f (3),f (2 016)=f (0),f (2 017)=f (1),f (2 018)=f (2).因为直线x =1是函数f (x )的一条对称轴,所以f (2 016)=f (0)=f (2).由1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,可知当1≤x ≤3时,函数单调递减,所以f (2 017)>f (2 016)=f (2 018)>f (2 015).]16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝ ⎛⎭⎪⎫121-x,给出下列命题:①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0. 其中所有正确命题的序号是________.①② [在f (x +1)=f (x -1)中,令x -1=t ,则有 f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确. 由于f (x )是偶函数,所以f (x -1)=f (1-x ), 结合f (x +1)=f (x -1)得f (1+x )=f (1-x ), 故f (x )的图象关于x =1对称.当x ∈[0,1]时,f (x )=⎝ ⎛⎭⎪⎫121-x =2x -1单调递增,所以f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确.由②知,f (x )在一个周期区间[0,2]上的最大值为f (1)=1,最小值为f (0)=f (2)=12,故③不正确.]。
2018年高考数学江苏专版二轮专题复习附加题高分练全套含解析
2018年高考数学江苏专版二轮专题复习附加题高分练1.矩阵与变换1.(2017²常州期末)已知矩阵A =⎣⎡⎦⎤2 13 2,列向量X =⎣⎡⎦⎤x y ,B =⎣⎡⎦⎤47,若AX =B ,直接写出A -1,并求出X . 解 由A =⎣⎡⎦⎤2 13 2,得到A -1=⎣⎡⎦⎤ 2 -1-3 2.由AX =B ,得到X =A -1B =⎣⎡⎦⎤ 2 -1-3 2⎣⎡⎦⎤47=⎣⎡⎦⎤12.也可由AX =B 得到⎣⎡⎦⎤2 13 2⎣⎡⎦⎤x y =⎣⎡⎦⎤47,即⎩⎪⎨⎪⎧2x +y =4,3x +2y =7,解得⎩⎪⎨⎪⎧x =1,y =2,所以X =⎣⎡⎦⎤12.2.(2017²江苏淮阴中学调研)已知矩阵A =⎣⎡⎦⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎡⎦⎤11,属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2.求矩阵A ,并写出A 的逆矩阵.解 由矩阵A 属于特征值6的一个特征向量α1=⎣⎡⎦⎤11可得,⎣⎡⎦⎤33cd ⎣⎡⎦⎤11=6⎣⎡⎦⎤11,即c +d =6;由矩阵A 属于特征值1的一个特征向量α2=⎣⎡⎦⎤ 3-2,可得⎣⎡⎦⎤3 3c d ⎣⎡⎦⎤ 3-2=⎣⎡⎦⎤3-2,即3c -2d =-2,解得⎩⎪⎨⎪⎧c =2,d =4.即A =⎣⎡⎦⎤3 32 4,A 的逆矩阵是⎣⎢⎡⎦⎥⎤23 -12-13 123.(2017²江苏建湖中学月考)曲线x 2+4xy +2y 2=1在二阶矩阵M =⎣⎡⎦⎤1 a b 1的作用下变换为曲线x 2-2y 2=1. (1)求实数a ,b 的值; (2)求M 的逆矩阵M -1.解 (1)设P(x ,y)为曲线x 2-2y 2=1上任意一点,P ′(x ′,y ′)为曲线x 2+4xy +2y 2=1上与P 对应的点,则⎣⎡⎦⎤1 a b 1⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤x y ,即⎩⎪⎨⎪⎧x =x ′+ay ′,y =bx ′+y ′,代入x 2-2y 2=1得(x ′+ay ′)2-2(bx ′+y ′)2=1得(1-2b 2)x ′2+(2a -4b)x ′y ′+(a 2-2)y ′2=1,及方程x 2+4xy +2y 2=1,从而⎩⎪⎨⎪⎧1-2b 2=1,2a -4b =4,a 2-2=2,解得a =2,b =0. (2)因为M =⎪⎪⎪⎪1 20 1=1≠0,故M-1=⎣⎢⎡⎦⎥⎤11 -210111=⎣⎡⎦⎤1 -20 1. 4.已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P(x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P(x ,y),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x.又点P(x ′,y ′)在曲线C :y 2=12x 上,∴⎝ ⎛⎭⎪⎫-12x 2=12y ,即x 2=2y. 2.坐标系与参数方程1.(2017²南通一模)在极坐标系中,求直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长.解 方法一 在ρ=4sin θ中,令θ=π4,得ρ=4sin π4=22,即弦长为2 2.方法二 以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线θ=π4(ρ∈R )的直角坐标方程为y =x ,①曲线ρ=4sin θ的直角坐标方程为x 2+y 2-4y =0.②由①②得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2,所以直线θ=π4(ρ∈R )被曲线ρ=4sin θ所截得的弦长为(2-0)2+(2-0)2=2 2.2.(2017²江苏六市联考)平面直角坐标系xOy 中,已知直线⎩⎪⎨⎪⎧x =-32+22l ,y =22l (l 为参数)与曲线⎩⎪⎨⎪⎧x =18t 2,y =t(t 为参数)相交于A ,B 两点,求线段AB 的长.解 直线的普通方程为2x -2y +3=0,曲线的普通方程为y 2=8x.解方程组⎩⎪⎨⎪⎧2x -2y +3=0,y 2=8x ,得⎩⎪⎨⎪⎧x =12,y =2或⎩⎪⎨⎪⎧x =92,y =6.取A ⎝ ⎛⎭⎪⎫12,2,B ⎝ ⎛⎭⎪⎫92,6,得AB =4 2.3.(2017²江苏滨海中学质检)已知直线的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=22,圆M 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =-2+2sin θ,(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值. 解 (1)极点为直角坐标原点O ,ρsin ⎝ ⎛⎭⎪⎫θ+π4=ρ⎝⎛⎭⎪⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,其直角坐标方程为x +y -1=0.(2)将圆的参数方程化为普通方程为x 2+(y +2)2=4,圆心为M(0,-2), ∴点M 到直线的距离为d =|0-2-1|2=32=322,∴圆上的点到直线距离的最小值为32-42.4.(2017²常州期末)在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.已知圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6被射线θ=θ0⎝ ⎛⎭⎪⎫ρ≥0,θ0为常数,且θ0∈⎝⎛⎭⎪⎫0,π2所截得的弦长为23,求θ0的值.解 圆ρ=4sin ⎝ ⎛⎭⎪⎫θ+π6的直角坐标方程为(x -1)2+(y -3)2=4,射线θ=θ0的直角坐标方程可以设为y =kx(x ≥0,k >0).圆心(1,3)到直线y =kx 的距离d =|k -3|1+k 2. 根据题意,得24-(k -3)21+k 2=23,解得k =33. 即tan θ0=33,又θ0∈⎝⎛⎭⎪⎫0,π2,所以θ0=π6.3.曲线与方程、抛物线1.(2017²江苏南通天星湖中学质检)已知点A(1,2)在抛物线F :y 2=2px 上.(1)若△ABC 的三个顶点都在抛物线F 上,记三边AB ,BC ,CA 所在直线的斜率分别为k 1,k 2,k 3, 求1k 1-1k 2+1k 3的值;(2)若四边形ABCD 的四个顶点都在抛物线F 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为k 1,k 2,k 3,k 4,求1k 1-1k 2+1k 3-1k 4的值.解 (1)由点A(1,2)在抛物线F 上,得p =2,∴抛物线F :y 2=4x ,设B ⎝ ⎛⎭⎪⎫y 214,y 1,C ⎝ ⎛⎭⎪⎫y 224,y 2,∴1k 1-1k 2+1k 3=y 214-1y 1-2-y 224-y 214y 2-y 1+1-y 2242-y 2=y 1+24-y 2+y 14+2+y 24=1. (2)另设D ⎝ ⎛⎭⎪⎫y 234,y 3,则1k 1-1k 2+1k 3-1k 4=y 1+24-y 2+y 14+y 3+y 24-2+y 34=0.2.(2017²江苏赣榆中学月考)抛物线关于x 轴对称,它的顶点在坐标原点,点P(1,2),A(x 1,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解 (1)由已知条件,可设抛物线的方程为y 2=2px. ∵点P(1,2)在抛物线上, ∴22=2p ³1,得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1).∵PA 与PB 的斜率存在且倾斜角互补, ∴k PA =-k PB ,由A(x 1,y 1),B(x 2,y 2)在抛物线上,得 y 21=4x 1,① y 22=4x 2,② ∴y 1-214y 21-1=-y 2-214y 22-1, ∴y 1+2=-(y 2+2), ∴y 1+y 2=-4,由①-②得直线AB 的斜率k AB =y 2-y 1x 2-x 1=4y 1+y 2=-44=-1(x 1≠x 2).3.(2017²江苏常州中学质检)已知点A(-1,0),F(1,0),动点P 满足AP →²AF →=2||FP →. (1)求动点P 的轨迹C 的方程;(2)在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M ,N.问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由. 解 (1)设P(x ,y),则AP →=(x +1,y),FP →=(x -1,y),AF →=(2,0), 由AP →²AF →=2|FP →|,得2(x +1)=2(x -1)2+y 2,化简得y 2=4x. 故动点P 的轨迹C 的方程为y 2=4x.(2)直线l 方程为y =2(x +1),设Q(x 0,y 0),M(x 1,y 1),N(x 2,y 2).设过点M 的切线方程为x -x 1=m(y -y 1),代入y 2=4x ,得y 2-4my +4my 1-y 21=0, 由Δ=16m 2-16my 1+4y 21=0,得m =y 12,所以过点M 的切线方程为y 1y =2(x +x 1),同理过点N 的切线方程为y 2y =2(x +x 2).所以直线MN 的方程为y 0y =2(x 0+x), 又MN ∥l ,所以2y 0=2,得y 0=1,而y 0=2(x 0+1),故点Q 的坐标为⎝ ⎛⎭⎪⎫-12,1. 4.(2017²江苏宝应中学质检)如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A(x 1,y 1)(y 1>0),B(x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA →²TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解 (1)因为抛物线y 2=4x 焦点为F(1,0),T(-1,0).当l ⊥x 轴时,A(1,2),B(1,-2),此时TA →²TB →=0,与TA →²TB →=1矛盾, 所以设直线l 的方程为y =k(x -1),代入y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 则x 1+x 2=2k 2+4k2,x 1x 2=1,①所以y 21y 22=16x 1x 2=16,所以y 1y 2=-4,② 因为TA →²TB →=1,所以(x 1+1)(x 2+1)+y 1y 2=1, 将①②代入并整理得,k 2=4,所以k =±2.(2)因为y 1>0,所以tan ∠ATF =y 1x 1+1=y 1y 214+1=1y 14+1y 1≤1,当且仅当y 14=1y 1,即y 1=2时,取等号,所以∠ATF ≤π4,所以∠ATF 的最大值为π4.4.空间向量与立体几何1.(2017²苏锡常镇调研)如图,已知正四棱锥P -ABCD 中,PA =AB =2,点M ,N 分别在PA ,BD 上,且PM PA =BN BD =13.(1)求异面直线MN 与PC 所成角的大小; (2)求二面角N -PC -B 的余弦值.解 (1)设AC ,BD 交于点O ,在正四棱锥P -ABCD 中,OP ⊥平面ABCD ,又PA =AB =2,所以OP = 2.以O 为坐标原点,DA →,AB →,OP →方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -xyz ,如图.则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,0,2),AP →=(-1,1,2).故OM →=OA →+AM →=OA →+23AP →=⎝ ⎛⎭⎪⎫13,-13,223,ON →=13OB →=⎝ ⎛⎭⎪⎫13,13,0,所以MN →=⎝ ⎛⎭⎪⎫0,23,-223,PC →=(-1,1,-2),所以cos 〈MN →,PC →〉=MN →²PC →|MN →||PC →|=32,所以异面直线MN 与PC 所成角的大小为π6.(2)由(1)知PC →=(-1,1,-2),CB →=(2,0,0),NC →=⎝ ⎛⎭⎪⎫-43,23,0.设m =(x ,y ,z)是平面PCB 的法向量,则m ²PC →=0,m ²CB →=0,可得⎩⎨⎧-x +y -2z =0,x =0,令y =2,则z =1,即m =(0,2,1).设n =(x 1,y 1,z 1)是平面PCN 的法向量,则n ²PC →=0,n ²CN →=0,可得⎩⎨⎧-x 1+y 1-2z 1=0,-2x 1+y 1=0,令x 1=2,则y 1=4,z 1=2,即n =(2,4,2),所以cos 〈m ,n 〉=m²n |m||n|=523³22=53333,则二面角N -PC -B 的余弦值为53333.2.(2017²常州期末)如图,以正四棱锥V -ABCD 的底面中心O 为坐标原点建立空间直角坐标系O -xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点.正四棱锥的底面边长为2a ,高为h ,且有cos 〈BE →,DE →〉=-1549.(1)求ha的值;(2)求二面角B -VC -D 的余弦值.解 (1)根据条件,可得B(a ,a,0),C(-a ,a,0),D(-a ,-a,0),V(0,0,h),E ⎝ ⎛⎭⎪⎫-a 2,a 2,h 2,所以BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,h 2,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,h 2,故cos 〈BE →,DE →〉=h 2-6a 2h 2+10a2.又cos 〈BE →,DE →〉=-1549,则h 2-6a 2h 2+10a 2=-1549, 解得h a =32.(2)由h a =32,得BE →=⎝ ⎛⎭⎪⎫-32a ,-a 2,34a ,DE →=⎝ ⎛⎭⎪⎫a 2,32a ,34a ,且容易得到,CB →=(2a,0,0),DC →=(0,2a,0). 设平面BVC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1²BE →=0,n 1²CB →=0.即⎩⎪⎨⎪⎧-32ax 1-a 2y 1+34az 1=0,2ax 1=0,则⎩⎪⎨⎪⎧x 1=0,2y 1=3z 1,取y 1=3,z 1=2,则n 1=(0,3,2).同理可得平面DVC 的一个法向量为n 2=(-3,0,2). cos 〈n 1,n 2〉=n 1²n 2|n 1||n 2|=0³(-3)+3³0+2³213³13=413,结合图形,可以知道二面角B -VC -D 的余弦值为-413.3.(2017²南京学情调研)如图,在底面为正方形的四棱锥P -ABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,E 是线段PC 的中点.(1)求异面直线AP 与BE 所成角的大小;(2)若点F 在线段PB 上,且使得二面角F -DE -B 的正弦值为33,求PFPB的值.解 (1)在四棱锥P -ABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,所以DA ,DC ,DP 两两垂直,故以{DA →,DC →,DP →}为正交基底,建立空间直角坐标系D -xyz.因为PD =DC ,所以DA =DC =DP , 不妨设DA =DC =DP =2,则D(0,0,0),A(2,0,0),C(0,2,0),P(0,0,2),B(2,2,0). 因为E 是PC 的中点,所以E(0,1,1), 所以AP →=(-2,0,2),BE →=(-2,-1,1), 所以cos 〈AP →,BE →〉=AP →²BE →|AP →||BE →|=32,从而〈AP →,BE →〉=π6.因此异面直线AP 与BE 所成角的大小为π6.(2)由(1)可知,DE →=(0,1,1),DB →=(2,2,0),PB →=(2,2,-2). 设PF →=λPB →,则PF →=(2λ,2λ,-2λ), 从而DF →=DP →+PF →=(2λ,2λ,2-2λ). 设m =(x 1,y 1,z 1)为平面DEF 的法向量, 则⎩⎪⎨⎪⎧m ²DF →=0,m ²DE →=0,即⎩⎪⎨⎪⎧λx 1+λy 1+(1-λ)z 1=0,y 1+z 1=0,取z 1=λ,则y 1=-λ,x 1=2λ-1.故m =(2λ-1,-λ,λ)为平面DEF 的一个法向量, 设n =(x 2,y 2,z 2)为平面DEB 的法向量.则⎩⎪⎨⎪⎧n ²DB →=0,n ²DE →=0,即⎩⎪⎨⎪⎧2x 2+2y 2=0,y 2+z 2=0,取x 2=1,则y 2=-1,z 2=1.所以n =(1,-1,1)为平面BDE 的一个法向量. 因为二面角F -DE -B 的余弦值的绝对值为63, 即|cos 〈m ,n 〉|=|m²n ||m||n|=|4λ-1|3²(2λ-1)2+2λ2=63, 化简得4λ2=1.因为点F 在线段PB 上,所以0≤λ≤1, 所以λ=12,即PF PB =12.4.(2017²苏北四市一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值;(2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为45,求λ的值.解 (1)因为PA ⊥平面ABCD ,且AB ,AD ⊂平面ABCD ,所以PA ⊥AB ,PA ⊥AD. 又因为∠BAD =90°,所以PA ,AB ,AD 两两互相垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则由AD =2AB =2BC =4,PA =4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4). 又因为M 为PC 的中点,所以M(1,1,2). 所以BM →=(-1,1,2),AP →=(0,0,4), 所以cos 〈AP →,BM →〉=AP →²BM →|AP →||BM →|=0³(-1)+0³1+4³24³6=63,所以异面直线AP ,BM 所成角的余弦值为63. (2)因为AN =λ,所以N(0,λ,0)(0≤λ≤4),则MN →=(-1,λ-1,-2),BC →=(0,2,0),PB →=(2,0,-4).设平面PBC 的法向量为m =(x ,y ,z), 则⎩⎪⎨⎪⎧m ²BC →=0,m ²PB →=0,即⎩⎪⎨⎪⎧2y =0,2x -4z =0.令x =2,解得y =0,z =1,所以m =(2,0,1)是平面PBC 的一个法向量.因为直线MN 与平面PBC 所成角的正弦值为45,所以|cos 〈MN →,m 〉|=|MN →²m ||MN →||m |=|-2-2|5+(λ-1)2²5=45,解得λ=1∈[0,4],所以λ的值为1.5.离散型随机变量的概率分布1.(2017²南京、盐城一模)某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E(X). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33³3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13,P(X =k)=C k 5⎝ ⎛⎭⎪⎫13k²⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5.所以X 的概率分布为所以X 的数学期望为E(X)=5³13=53.2.一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望. 解 (1)该网民恰好购买2种商品的概率为P(AB C )+P(A B C)+P(A BC)=34³23³12+34³13³12+14³23³12=1124;该网民恰好购买3种商品的概率为P(ABC)=34³23³12=14,所以P =1124+14=1724.故该网民至少购买2种商品的概率为1724.(2)随机变量η的可能取值为0,1,2,3,由(1)知,P(η=2)=1124,P(η=3)=14,而P(η=0)=P(A B C )=14³13³12=124,所以P(η=1)=1-P(η=0)-P(η=2)-P(η=3)=14.随机变量η的概率分布为所以随机变量η的数学期望E(η)=0³124+1³14+2³1124+3³14=2312.3.(2017²南京学情调研)甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X 的概率分布与数学期望.解 (1)设甲第i 次投中获胜的事件为A 1(i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的事件为A 1+A 2+A 3.P(A 1)=25,P(A 2)=35³13³25=225,P(A 3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³25=2125.所以P(A 1+A 2+A 3)=P(A 1)+P(A 2)+P(A 3)=25+225+2125=62125.(2)X 的所有可能取值为1,2,3. 则P(X =1)=25+35³23=45,P(X =2)=225+35³13³35³23=425,P(X =3)=⎝ ⎛⎭⎪⎫352³⎝ ⎛⎭⎪⎫132³1=125.即X 的概率分布为所以数学期望E(X)=1³45+2³425+3³125=3125.4.为了提高学生学习数学的兴趣,某校决定在每周的同一时间开设《数学史》、《生活中的数学》、《数学与哲学》、《数学建模》四门校本选修课程,甲、乙、丙三位同学每人均在四门校本课程中随机选一门进行学习,假设三人选择课程时互不影响,且每人选择每一课程都是等可能的.(1)求甲、乙、丙三人选择的课程互不相同的概率;(2)设X 为甲、乙、丙三人中选修《数学史》的人数,求X 的概率分布和数学期望E(X). 解 (1)甲、乙、丙三人从四门课程中各任选一门,共有43=64种不同的选法,记“甲、乙、丙三人选择的课程互不相同”为事件M ,事件M 共包含A 34=24个基本事件,则P(M)=2464=38,所以甲、乙、丙三人选择的课程互不相同的概率为38.(2)方法一 X 可能的取值为0,1,2,3. P(X =0)=3343=2764,P(X =1)=C 13³3243=2764,P(X =2)=C 23³343=964,P(X =3)=C 3343=164.所以X 的概率分布为所以E(X)=0³2764+1³2764+2³964+3³164=34.方法二 甲、乙、丙三人从四门课程中任选一门,可以看成三次独立重复试验,X 为甲、乙、丙三人中选修《数学史》的人数,则X ~B ⎝ ⎛⎭⎪⎫3,14,所以P(X =k)=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3,所以X 的概率分布为所以X 的数学期望E(X)=3³14=34.6.计数原理、二项式定理和数学归纳法1.已知等式(1+x)2n -1=(1+x)n -1(1+x)n.(1)求(1+x)2n -1的展开式中含x n的项的系数,并化简:C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1. (1)解 (1+x)2n -1的展开式中含x n 的项的系数为C n2n -1,由(1+x)n -1(1+x)n=(C 0n -1+C 1n -1x +…+C n -1n -1xn -1)(C 0n +C 1n x +…+C n n x n )可知,(1+x)n -1(1+x)n的展开式中含x n的项的系数为C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1. (2)证明 当k ∈N *时,kC kn =k²n !k !(n -k )!=n !(k -1)!(n -k )!=n²(n -1)!(k -1)!(n -k )!=nC k -1n -1,所以(C 1n)2+2(C 2n)2+…+n(C n n)2=∑k =1n[k(C k n )2]=k =1n (kC k n C kn )=k =1n (nC k -1n -1C kn )=n k =1n (C k -1n -1C kn )=n k =1n (C n -k n -1C kn ).由(1)知C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1,即k =1n (C n -k n -1C k n )=C n2n -1,所以(C 1n )2+2(C 2n )2+…+n(C n n )2=nC n2n -1.2.(2017²江苏泰州中学调研)在平面直角坐标系xOy 中,点P(x 0,y 0)在曲线y =x 2(x >0)上.已知点A(0,-1),P n (x n0,y n0),n ∈N *.记直线AP n 的斜率为k n . (1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数. (1)解 因为k 1=2,所以y 0+1x 0=x 20+1x 0=2,解得x 0=1,y 0=1,所以P 1的坐标为(1,1).(2)证明 方法一 设k 1=2p(p ∈N *),即y 0+1x 0=x 20+1x 0=2p.所以x 20-2px 0+1=0,所以x 0=p±p 2-1. 因为y 0=x 2,所以k n =y n0+1x n 0=x 2n0+1x n 0=x n 0+1x n 0,所以当x 0=p +p 2-1时,k n =(p +p 2-1)n+⎝ ⎛⎭⎪⎫1p +p 2-1n =(p +p 2-1)n +(p -p 2-1)n. 同理,当x 0=p -p 2-1时,k n =(p +p 2-1)n +(p -p 2-1)n.①当n =2m(m ∈N *)时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.②当n =2m +1(m ∈N )时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.综上,k n 为偶数.方法二 因为⎝ ⎛⎭⎪⎫x 0+1x 0⎝ ⎛⎭⎪⎫x n +10+1x n +10=x n +20+1x n +20+x n0+1x n 0,所以k n +2=k 1k n +1-k n .k 2=x 20+1x 20=⎝ ⎛⎭⎪⎫x 0+1x 02-2=k 21-2.设命题p(n):k n ,k n +1均为偶数.以下用数学归纳法证明“命题p(n)是真命题”.①因为k 1是偶数,所以k 2=k 21-2也是偶数.当n =1时,p(n)是真命题;②假设当n =m(m ∈N *)时,p(n)是真命题,即k m ,k m +1均为偶数,则k m +2=k 1k m +1-k m 也是偶数,即当n =m +1时,p(n)也是真命题.由①②可知,对n ∈N *,p(n)均是真命题,从而k n 是偶数.3.(2017²江苏扬州中学模拟)在数列{a n }中,a n =cos π3³2(n ∈N *)(1)试将a n +1表示为a n 的函数关系式; (2)若数列{b n }满足b n =1-2n²n!(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论. 解 (1)a n =cos π3³2n -2=cos 2π3³2n -1=2⎝⎛⎭⎪⎫cosπ3³2n -12-1, ∴a n =2a 2n +1-1, ∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0, ∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1,当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2, 当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3, 猜想:当n ≥3时,a n <b n ,下面用数学归纳法证明. ①当n =3时,由上知,a 3<b 3,结论成立. ②假设当n =k ,k ≥3,n ∈N *时,a k <b k 成立, 即a k <1-2k²k!,则当n =k +1时,a k +1=a k +12<2-2k²k!2=1-1k²k!, b k +1=1-2(k +1)²(k +1)!,要证a k +1<b k +1,即证明⎝ ⎛⎭⎪⎫1-1k²k!2<⎝ ⎛⎭⎪⎫1-2(k +1)²(k +1)!2,即证明1-1k²k!<1-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2,即证明1k²k!-4(k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,即证明(k -1)2k (k +1)²(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)²(k +1)!2>0,显然成立.∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1>b 1;当n =2时,a 2=b 2, 当n ≥3,n ∈N *时,a n <b n .4.已知f n (x)=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k)n +…+(-1)n C n n (x -n)n,其中x ∈R ,n ∈N *,k ∈N ,k ≤n.(1)试求f 1(x),f 2(x),f 3(x)的值;(2)试猜测f n (x)关于n 的表达式,并证明你的结论. 解 (1)f 1(x)=C 01x -C 11(x -1)=1,f 2(x)=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x)=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测f n (x)=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x)=1,等式成立. ②假设当n =m 时,等式成立,即 f m (x)=k =0m (-1)k C k m (x -k)m=m !.当n =m +1时,则f m +1(x)=k =0m +1(-1)k C k m +1²(x-k)m +1.因为C k m +1=C k m +C k -1m ,kC k m +1=(m +1)²C k -1m ,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C mm ,所以f m +1(x)=k =0m +1(-1)k C k m +1(x -k)m +1=x k =0m +1(-1)k C k m +1(x -k)m -k =0m +1(-1)k kC km +1(x -k)m=x k =0m (-1)k C k m(x -k)m+x ∑k =1m +1²(-1)k Ck -1m(x -k)m-(m +1)∑k =1m +1²(-1)k C k -1m (x -k)m=x²m!+(-x +m +1)k =0m (-1)k C km ²[(x-1)-k]m=x²m!+(-x +m +1)²m!=(m+1)²m!=(m+1)!.即n=m+1时,等式也成立.由①②可知,对n∈N*,均有f n(x)=n!.。
2018年高考数学文科江苏专版二轮专题复习与策略课件:专题二 函数的图象与性质 精品
且 a≠1),则实数 a 的取值范围是________.
【导学号:91632004】
[解题指导]
(1)f
-52
=
f
9 2
―f―x―在―周[-―期1―,为―12,―上―已―知→
建立a的等量关系 ―→ 求a ―→ 求f5a
(2)
fx=x3+2x
奇――偶→性
fx为奇函数
f1+flog13>0 ――――――a ――→
1.已知函数 f(x)=e1x--kk,x+x≤k,0,x>0 是 R 上的增函数,则实数 k 的取值范 围是________.
12,1 [由 f(x)为 R 上的增函数,则 f(x)在(0,+∞)上为增函数,1-k>0, k<1.同时,k≥e0-k=1-k,即 k≥21,从而 k∈12,1.]
2.(2016·南京三模)已知 f(x)是定义在 R 上的偶函数,当 x≥0 时,f(x)=2x -2,则不等式 f(x-1)≤2 的解集是________.
【名师点评】 1.应用函数周期性和奇偶性求值的关键是借助函数的性质将 待求函数值的自变量向已知函数的定义域进行转化.
2.关于周期性的常用结论,若对于函数 fx的定义域内任意一个自变量的值 x 都有 fx+a=-fx或 fx+a=f1x 或 fx+a=-f1x a 是常数且 a≠0,则 fx 是以 2a 为一个周期的周期函数.
(2)∵f(x)=x3+2x,∴f(-x)=-x3-2x=-f(x), ∴f(x)为 R 上的奇函数,∴f(1)+f(loga13)>0 等价于 f(1)>f(loga3). 又 f′(x)=3x2+2>0,∴f(x)在 R 上单调递增, ∴loga3<1, 当 a>1 时,由 loga3<1 得 a>3, 当 0<a<1 时,由 loga3<1 得 0<a<1. 综上可知,a∈(0,1)∪(3,+∞).]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题限时集训(二) 函 数(对应学生用书第80页) (限时:120分钟)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上.)1.(河南省豫北名校联盟2017届高三年级精英对抗赛)已知函数f (x )=⎩⎪⎨⎪⎧log 5x ,x >0,2x,x ≤0,则f⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫125=________.14 [f ⎝ ⎛⎭⎪⎫125=log 5125=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫125=f (-2)=2-2=14.] 2.(江苏省苏州市2017届高三上学期期中)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=8x.则f ⎝ ⎛⎭⎪⎫-193=________.-2 [函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=8x,则f ⎝ ⎛⎭⎪⎫-193=f ⎝ ⎛⎭⎪⎫-13=-f ⎝ ⎛⎭⎪⎫13=-813=-2.] 3.(2017·江苏省淮安市高考数学二模)函数f (x )=-x2的定义域是________.[-2,2] [由lg(5-x 2)≥0,得5-x 2≥1, 即x 2≤4,解得-2≤x ≤2. ∴函数f (x )=-x2的定义域是[-2,2].故答案为:[-2,2].]4.(广西柳州市2017届高三10月模拟)设a ,b ,c 均为正数,且2a=log 12a ,⎝ ⎛⎭⎪⎫12b =log 12b ,⎝ ⎛⎭⎪⎫12c =log 2c ,则a ,b ,c 的大小关系为________.a <b <c [画图可得0<a <b <1<c .]5.(广东2017届高三上学期阶段测评(一))定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (37.5)等于________.0.5 [∵f (x +2)=-f (x ),∴f (x +4)=f (x )且f (-x )=-f (x ),0≤x ≤1时,f (x )=x ,∴f (37.5)=f (1.5)=-f ()-0.5=f ()0.5=0.5.]6.(广东省佛山市2017届高三教学质量检测(一))函数f (x )=1x -log 21+ax1-x 为奇函数,则实数a=________.±1 [因为函数f (x )为奇函数,所以f (-x )=1-x -log 21-ax 1+x =-1x +log 21+ax 1-x ,即1+x1-ax =1+ax1-x,所以a =±1.] 7.(天津六校2017届高三上学期期中联考)已知定义在R 上的偶函数f (x )满足f (x +2)·f (x )=1对于x ∈R 恒成立,且f (x )>0,则f (2 015)=________. 1 [因为f (x +2)·f (x )=1⇒f (x +4)=1fx +=f (x )⇒T =4,因此f (2 015)=f (3)=f (-1)=f (1);而f (x +2)·f (x )=1⇒f (-1+2)·f (-1)=1⇒f 2(1)=1,f (x )>0⇒f (1)=1,所以f (2 015)=1.]8.(河南省豫北名校联盟2017届高三年级精英对抗赛)已知函数f (x )是R 上的单调函数,且对任意实数x ,都有f ⎝⎛⎭⎪⎫fx +22x+1=13,则f (log 23)=________. 12 [因为函数f (x )是R 上的单调函数,且f ⎝⎛⎭⎪⎫fx +22x+1=13,所以可设f (x )+22x +1=t (t 为常数),即f (x )=t -22x +1,又因为f (t )=13,所以t -22t +1=13,令g (x )=x -22x +1,显然g (x )在R 上单调递增,且g (1)=13,所以t =1,f (x )=1-22x +1,f (log 23)=1-22log 23+1=12.]9.(湖北省荆州市2017届高三上学期第一次质量检测)已知函数f (x )=|ln x |-1,g (x )=-x2+2x +3,用min{m ,n }表示m ,n 中最小值,设h (x )=min{f (x ),g (x )},则函数h (x )的零点个数为________.3 [作出函数f (x )和g (x )的图象(两个图象的下面部分图象)如图,由g (x )=-x 2+2x +3=0,得x =-1或x =3,由f (x )=|ln x |-1=0,得x =e 或x =1e .∵g (e)>0,∴当x >0时,函数h (x )的零点个数为3个.]10.(江苏省南京市2017届高三上学期学情调研)已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )+g (x )=⎝ ⎛⎭⎪⎫12x .若存在x 0∈⎣⎢⎡⎦⎥⎤12,1,使得等式af (x 0)+g (2x 0)=0成立,则实数a 的取值范围是________.【导学号:56394011】⎣⎢⎡⎦⎥⎤22,522 [由f (x )+g (x )=⎝ ⎛⎭⎪⎫12x 得f (-x )+g (-x )=⎝ ⎛⎭⎪⎫12-x ,即-f (x )+g (x )=⎝ ⎛⎭⎪⎫12-x,所以f (x )=12(2-x -2x ),g (x )=12(2-x +2x ).存在x 0∈⎣⎢⎡⎦⎥⎤12,1,使得等式af (x 0)+g (2x 0)=0成立,即x 0∈⎣⎢⎡⎦⎥⎤12,1,a =-g x 0f x 0,设h (x )=-g x f x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1,则h (x)=-12-2x+22x12-x -2x=22x +2-2x 2x -2-x =(2x -2-x )+22x -2-x ,x ∈⎣⎢⎡⎦⎥⎤12,1时,2x -2-x ∈⎣⎢⎡⎦⎥⎤22,32,设t =2x -2-x,则t ∈⎣⎢⎡⎦⎥⎤22,32,而h (x )=t +2t ,易知y =t +2t 在⎣⎢⎡⎦⎥⎤22,2上递减,在⎣⎢⎡⎦⎥⎤2,32上递增,因此y min =2+22=22,y max =22+222=522,所以h (x )∈⎣⎢⎡⎦⎥⎤22,522,即a ∈⎣⎢⎡⎦⎥⎤22,522.] 11.(江苏省苏州市2017届高三上学期期中)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,x 2+x ,x ≤0,若函数g (x )=f(x )-m 有三个零点,则实数m 的取值范围是________.⎝ ⎛⎦⎥⎤-14,0 [由g (x )=f (x )-m =0得f (x )=m ,若函数g (x )=f (x )-m 有三个零点, 等价为函数f (x )与y =m 有三个不同的交点,作出函数f (x )的图象如图:当x ≤0时,f (x )=x 2+x =⎝ ⎛⎭⎪⎫x +122-14≥-14,若函数f (x )与y =m 有三个不同的交点, 则-14<m ≤0,即实数m 的取值范围是⎝ ⎛⎦⎥⎤-14,0,故答案为:⎝ ⎛⎦⎥⎤-14,0.] 12.(2017·江苏省苏、锡、常、镇四市高考数学二模)已知函数f (x )=⎩⎪⎨⎪⎧4x -x 2,x ≥0,3x ,x <0,若函数g (x )=|f (x )|-3x +b 有三个零点,则实数b 的取值范围为________. (-∞,-6)∪⎝ ⎛⎦⎥⎤-14,0 [函数f (x )=⎩⎪⎨⎪⎧4x -x 2,x ≥0,3x,x <0,若函数g (x )=|f (x )|-3x+b 有三个零点,就是h (x )=|f (x )|-3x 与y =-b 有3个交点,h (x )=⎩⎪⎨⎪⎧x -x 2,0≤x ≤4,x 2-7x ,x >4,-3x-3x ,x <0,画出两个函数的图象如图:当x <0时,-3x-3x ≥6,当且仅当x =-1时取等号,此时-b >6,可得b <-6;当0≤x ≤4时,x -x 2≤14,当x =12时取得最大值,满足条件的b ∈⎝ ⎛⎦⎥⎤-14,0 .综上,b ∈(-∞,-6)∪⎝ ⎛⎦⎥⎤-14,0. 故答案为:(-∞,-6)∪⎝ ⎛⎦⎥⎤-14,0.] 13.(2017·江苏省淮安市高考数学二模)已知函数f (x )=⎩⎪⎨⎪⎧-x +m ,x <0,x 2-1,x ≥0,其中m >0,若函数y =f (f (x ))-1有3个不同的零点,则m 的取值范围是________.(0,1) [①当x <0时,f (f (x ))=(-x +m )2-1,图象为开口向上的抛物线在y 轴左侧的部分,顶点为(0,m 2-1);②当0≤x <1时,f (f (x ))=-x 2+1+m ,图象为开口向下的抛物线在0≤x <1之间的部分,顶点为(0,m +1).根据题意m >0,所以m +1>1;③当x ≥1时,f (f (x ))=(x 2-1)2-1,图象为开口向上的抛物线在x =1右侧的部分,顶点为(1,-1).根据题意,函数y =f (f (x ))-1有3个不同的零点,即f (f (x ))的图象与y =1有3个不同的交点.根据以上三种分析的情况:第③种情况x =1时,f (f (x ))=-1,右侧为增函数,所以与y =1有一个交点;第②种情况,当x →1时,f (f (x ))→m ,所以与y =1有交点,需m <1;第①种情况,当x →0时,f (f (x ))→m 2-1,只要m 2-1<1即可,又m >0,∴0<m <2, 综上m 的取值范围为(0,1).]14.(2017·江苏省无锡市高考数学一模)若函数f (x )=⎩⎪⎨⎪⎧12x -1,x <1,ln xx 2,x ≥1,则函数y =|f (x )|-18的零点个数为________. 4 [当x ≥1时,ln x x 2=18,即ln x =18x 2,令g (x )=ln x -18x 2,x ≥1时函数是连续函数,g (1)=-18<0,g (2)=ln 2-12=ln2e>0,g (4)=ln 4-2<0,由函数的零点判定定理可知g (x )=ln x -18x 2有2个零点.(结合函数y =ln x x 2与y =18可知函数的图象有2个交点.)当x <1时,y =⎩⎪⎨⎪⎧12x-1,x <0,1-12x,x ∈[0,,函数的图象与y =18的图象如图,考查两个函数有2个交点,综上函数y =|f (x )|-18的零点个数为4个.故答案为4.]二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)(2016-2017学年度江苏苏州市高三期中调研考试)已知函数f (x )=3x+λ·3-x(λ∈R ).(1)若f (x )为奇函数,求λ的值和此时不等式f (x )>1的解集; (2)若不等式f (x )≤6对x ∈[0,2]恒成立,求实数λ的取值范围.【导学号:56394012】[解] (1)函数f (x )=3x +λ·3-x的定义域为R ,∵f (x )为奇函数,∴f (-x )+f (x )=0对∀x ∈R 恒成立,即3-x+λ·3x +3x +λ·3-x=(λ+1)(3x +3-x)=0对∀x ∈R 恒成立,∴λ=-1. 3分此时f (x )=3x-3-x>1,即3x -3-x-1>0, 解得3x >1+52或3x<1-52(舍去),6分∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >log 31+52. 7分(2)由f (x )≤6得3x +λ·3-x ≤6,即3x+λ3x ≤6,令t =3x ∈[1,9],原问题等价于t +λt≤6对t ∈[1,9]恒成立,亦即λ≤-t 2+6t 对t ∈[1,9]恒成立,10分令g (t )=-t 2+6t ,t ∈[1,9],∵g (t )在[1,3]上单调递增,在[3,9]上单调递减. ∴当t =9时,g (t )有最小值g (9)=-27, ∴λ≤-27.14分16.(本小题满分14分)(泰州中学2016-2017年度第一学期第一次质量检测)设函数y =lg(-x 2+4x -3)的定义域为A ,函数y =2x +1,x ∈(0,m )的值域为B . (1)当m =2时,求A ∩B ;(2)若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围. [解] (1)由-x 2+4x -3>0, 解得1<x <3,所以A =(1,3), 2分又函数y =2x +1在区间(0,m )上单调递减, 所以y ∈⎝ ⎛⎭⎪⎫2m +1,2,即B =⎝⎛⎭⎪⎫2m +1,2,5分当m =2时,B =⎝ ⎛⎭⎪⎫23,2,所以A ∩B =(1,2).7分 (2)首先要求m >0,9分而“x ∈A ”是“x ∈B ”的必要不充分条件,所以B 是A 的真子集, 从而2m +1≥1,解得0<m ≤1.12分 所以实数m 的取值范围为(0,1].14分17.(本小题满分14分)(江苏省泰州中学2017届高三上学期第二次月考)无锡市政府决定规划地铁三号线:该线起于惠山区惠山城铁站,止于无锡新区硕放空港产业园内的无锡机场站,全长28公里,目前惠山城铁站和无锡机场站两个站点已经建好,余下的工程是在已经建好的站点之间铺设轨道和等距离修建停靠站.经有关部门预算,修建一个停靠站的费用为6 400万元,铺设距离为x 公里的相邻两个停靠站之间的轨道费用为400x 3+20x 万元.设余下工程的总费用为f (x )万元.(停靠站位于轨道两侧,不影响轨道总长度).(1)试将f (x )表示成x 的函数;(2)需要建多少个停靠站才能使工程费用最小,并求最小值.[解] (1)设需要修建k 个停靠站,则k 个停靠站将28公里的轨道分成相等的k +1段, ∴(k +1)x =28⇒k =28x-1,3分∴f (x )=6 400k +(k +1)(400x 3+20x )=6 400⎝ ⎛⎭⎪⎫28x -1+28x (400x 3+20x ),化简得f (x )=28×400x 2+28×6 400x-5 840,7分(2)f (x )=28×400x 2+28×3 200x +28×3 200x-5 840≥3328×400x 2·28×3 200x ·28×3 200x-5 840=128 560(万元),当且仅当28×400x 2=28×3 200x ,即x =2,k =28x-1=13时取“=”.13分故需要建13个停靠站才能使工程费用最小,最小值费用为128 560万元.14分18.(本小题满分16分)(泰州中学2017届高三上学期期中考试)已知函数f (x )=|x 2-1|+x 2+kx ,且定义域为(0,2).(1)求关于x 的方程f (x )=kx +3在(0,2)上的解;(2)若关于x 的方程f (x )=0在(0,2)上有两个的解x 1,x 2,求k 的取值范围.[解] (1)∵f (x )=|x 2-1|+x 2+kx ,f (x )=kx +3,即|x 2-1|+x 2=3.当0<x ≤1时, |x 2-1|+x 2=1-x 2+x 2=1,此时该方程无解.当1<x <2时,|x 2-1|+x 2=2x 2-1,原方程等价于:x 2=2,此时该方程的解为 2.综上可知:方程f (x )=kx +3在(0,2)上的解为 2.6分(2)当0<x ≤1时,kx =-1,① 当1<x <2时,2x 2+kx -1=0,② 若k =0,则①无解,②的解为x =±22∉(1,2),故k =0不合题意.若k ≠0,则①的解为x =-1k.8分(ⅰ)当-1k∈(0,1]时,k ≤-1时,方程②中Δ=k 2+8>0,故方程②中一 根在(1,2)内,一根不在(1,2)内.设g (x )=2x 2+kx -1,而x 1x 2=-12<0,则⎩⎪⎨⎪⎧g <0,g>0,⎩⎪⎨⎪⎧k <-1,k >-72,又k ≤-1,故-72<k <-1.12分(ⅱ)当-1k∉(0,1]时,即-1<k <0或k >0时,方程②在(1,2)需有两个不同解,而x 1x 2=-12<0,知道方程②必有负根,不合题意. 综上所述,故-72<k <-1. 19.(本小题满分16分)(江苏省南通市如东县、 徐州市丰县2017届高三10月联考)已知函数f (x )=-3x+a 3x +1+b. (1)当a =b =1时,求满足f (x )=3x的x 的值; (2)若函数f (x )是定义在R 上的奇函数.①存在t ∈R ,不等式f (t 2-2t )<f (2t 2-k )有解,求k 的取值范围;②若函数g (x )满足f (x )·[g (x )+2]=13(3-x -3x),若对任意x ∈R ,不等式g (2x )≥m ·g (x )-11恒成立,求实数m 的最大值 .[解] (1) 由题意,-3x+13x +1+1=3x ,化简得3·(3x )2+2·3x-1=0,解得3x =-1(舍)或3x=13,2分 所以x =-1.4分(2) 因为f (x )是奇函数,所以f (-x )+f (x )=0, 所以-3-x+a 3-x +1+b +-3x+a 3x +1+b=0,化简并变形得: (3a -b )(32x+1)+(2ab -6)·3x=0, 要使上式对任意的x 成立,则3a -b =0且2ab -6=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =-1,b =-3,因为f (x )的定义域是R ,所以⎩⎪⎨⎪⎧a =-1b =-3(舍去),所以a =1,b =3, 所以f (x )=-3x+13x +1+3.6分①f (x )=-3x+13x +1+3=13⎝⎛⎭⎪⎫-1+23x +1,对任意x 1,x 2∈R ,x 1<x 2有: f (x 1)-f (x 2)=13⎝ ⎛⎭⎪⎫23x 1+1-23x 2+1=23⎝⎛⎭⎪⎫3x 2-3x 1x 1+x 2+,因为x 1<x 2,所以3x 2-3x 1>0,所以f (x 1)>f (x 2), 因此f (x )在R 上递减.8分因为f (t 2-2t )<f (2t 2-k ),所以t 2-2t >2t 2-k , 即t 2+2t -k <0在t ∈R 上有解 , 所以Δ=4+4k >0,解得k >-1, 所以k 的取值范围为(-1,+∞). 10分②因为f (x )·[g (x )+2]=13(3-x -3x),所以g (x )=3-x-3x3f x -2,即g (x )=3x +3-x. 12分所以g (2x )=32x+3-2x=(3x+3-x )2-2.不等式g (2x )≥m ·g (x )-11恒成立, 即(3x+3-x )2-2≥m ·(3x +3-x)-11,即m ≤3x +3-x+93x +3-x 恒成立.14分令t =3x +3-x,t ≥2,则m ≤t +9t在t ≥2时恒成立,令h (t )=t +9t ,h ′(t )=1-9t2,t ∈(2,3)时,h ′(t )<0,所以h (t )在(2,3)上单调递减, t ∈(3,+∞)时,h ′(t )>0,所以h (t )在(3,+∞)上单调递增,所以h (t )min =h (3)=6,所以m ≤6, 所以实数m 的最大值为6 .16分20.(本小题满分16 分)(江苏省南通市如东县、徐州市丰县2017届高三10月联考)给出定义在(0,+∞)上的两个函数f (x )=x 2-a ln x ,g (x )=x -a x . (1)若f (x )在x =1处取最值,求a 的值;(2)若函数h (x )=f (x )+g (x 2)在区间(0,1]上单调递减 ,求实数a 的取值范围; (3)在(1)的条件下,试确定函数m (x )=f (x )-g (x )-6的零点个数,并说明理由.【导学号:56394013】[解] (1)f ′(x )=2x -a x,由已知f ′(1)=0,即2-a =0, 解得a =2,经检验a =2满足题意, 所以a =2.4分(2)h (x )=f (x )+g (x 2)=x 2-a ln x +x 2-ax =2x 2-a (x +ln x ),h ′(x )=4x -a ⎝ ⎛⎭⎪⎫1+1x ,要使得h (x )=2x 2-a (x +ln x )在区间(0,1]上单调递减,则h ′(x )≤0,即4x -a ⎝ ⎛⎭⎪⎫1+1x ≤0在区间(0,1]上恒成立, 6分因为x ∈(0,1],所以a ≥4x2x +1,设函数F (x )=4x2x +1,则a ≥F (x )max ,8分F (x )=4x 2x +1=4⎝ ⎛⎭⎪⎫1x 2+1x,因为x ∈(0,1],所以1x∈[1,+∞),所以⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1x2+1x min =2, 所以F (x )max =2,所以a ≥2.10分- 11 - (3)函数m (x )=f (x )-g (x )-6有两个零点.因为m (x )=x 2-2ln x -x +2x -6,所以m ′(x )=2x -2x -1+1x =2x 2-2-x +x x =x -x x +2x +x +x.当x ∈(0,1)时,m ′(x )<0,当x ∈(1,+∞)时, m ′(x )>0,所以m (x )min =m (1)=-4<0, 14分m (e -2)=-+e +2e 3e <0,m (e -4)=1+2e 8+e 42-e >0,m (e 4)=e 4(e 4-1)+2(e 2-7)>0,故由零点存在定理可知:函数m (x )在(e -4,1)上存在一个零点,函数m (x )在(1,e 4)上存在一个零点, 所以函数m (x )=f (x )-g (x )-6有两个零点. 16分。