2020年湖北省武汉市中考数学模拟试卷一含答案

合集下载

(汇总3份试卷)2020年武汉市中考数学一模数学试题及答案

(汇总3份试卷)2020年武汉市中考数学一模数学试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.12【答案】D【解析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.2.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°【答案】B【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°, 由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°, ∴∠ACB=∠ACF+∠BCF=46°+63°=109°, 故选B . 【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.3.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72【答案】D【解析】设第一个数为x ,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x ,看是否存在.解:设第一个数为x ,则第二个数为x+7,第三个数为x+1 故三个数的和为x+x+7+x+1=3x+21 当x=16时,3x+21=69; 当x=10时,3x+21=51; 当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3. 故选D .“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2ba>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B . 故选C .5.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤【答案】C【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0, 则①当x=1时,y=a+b+c <0,正确; ②当x=-1时,y=a-b+c >1,正确; ③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误; ⑤对称轴x=-2ba=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤. 故选C6.不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是( )A .B .C .D .【答案】C【解析】根据题意先解出12342x x +>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C 的表示符合这些条件.故应选C.7.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..8.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A.2 B.3 C.4 D.5【答案】B【解析】由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.【详解】∵数轴上的点A,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点C 对应的实数是:1+2=3.故选B.【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.9.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF 的周长是()A.5 B.7 C.9 D.11 【答案】B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=1.故选B.10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.二、填空题(本题包括8个小题)11.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.摸球的次数n 100 150 200 500 800 1000摸到白球的次数m 58 96 116 295 484 601摸到白球的频率m/n 0.58 0.64 0.58 0.59 0.605 0.601【答案】0.1【解析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右, 则P 白球=0.1. 故答案为0.1. 【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.12.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF 的面积为50cm 2, 所以25010AC cm =⨯=,因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==, 所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故答案为13.13.计算:|-3|-1=__. 【答案】2【解析】根据有理数的加减混合运算法则计算. 【详解】解:|﹣3|﹣1=3-1=2. 故答案为2. 【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键. 14.函数32xy x =-中,自变量x 的取值范围是______ 【答案】x≠1 【解析】解:∵32xy x =-有意义, ∴x-1≠0, ∴x≠1;故答案是:x≠1.15.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2019a =___________ .【答案】34. 【解析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题. 【详解】∵a 1=4 a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环,∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.16.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

武汉市2020年中考数学模拟试题及答案

武汉市2020年中考数学模拟试题及答案

武汉市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.2020相反数的绝对值是( )A .-20201B .﹣2020C .20201D .20202.下列计算正确的是( )A .4a ﹣2a =2B .2x 2+2x 2=4x 4C .﹣2x 2y ﹣3yx 2=﹣5x 2yD .2a 2b ﹣3a 2b =a 2b3. 第二届山西文博会刚刚落下帷幕,本届文博会共推出招商项目356个,涉及金额688亿元.数据688亿元用科学记数法表示正确的是( )A .6.88×108元 B .68.8×108元 C .6.88×1010元 D .0.688×1011元4.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( ) A .95B .90C .85D .805.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( ) A .6个 B .7个C .8个D .9个6. 如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC=130°,则∠D 等于( )A.25°B.30°C.35°D.50°7.如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( ) A .4.5 B .5C .6D .98.已知直线y =mx ﹣1上有一点B (1,n ),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为( )A .B .或C .或D .或9.如图,由下列条件不能判定△ABC 与△ADE 相似的是( )A .=B .∠B =∠ADEC .=D .∠C =∠AED10. 如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,幻灯片中的图形的高度为6cm ,屏幕上图形的高度为( ) A .6cm B .12cmC .18cmD .24cm11.如图,半径为3的⊙A 经过原点O 和点 C (1 , 2 ),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A.31B. 22C.322 D. 4212.二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y =与一次函数y =ax +b 在同一平面直角坐标系中的大致图象为( )A. B. C. D.二、填空题(本题共6小题,满分18分。

湖北省2020年中考数学模拟试题(含答案)

湖北省2020年中考数学模拟试题(含答案)

今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录, 这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A. 18.1 X 105B . 1.81 X 106C .1.81 X 107D__4.181X104、 卜列运算正确的是( A. a 2+a 2=a 4B . (- b 2) 3b 6C. 2x?2x 2=2x 3D. (mi- n) 2=n2- n 25、 卜列几何体的三视图相同的是(长方体6、 卜列命题是真命题的是( A. 必然事件发生的概率等于0.5B. 5名同学的数学成绩是 92, 95, 95, 98, 110,则他们的平均分是 98,众数是95C. 射击运动员甲、乙分别射击10次且击中环数的方差分别是5和 18,则乙较甲稳定D. 要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法7、 如图,点D, E 分别在线段 AB, AC 上,CD 与BE 相交于。

点,已知AB=AC 现添加以下的哪个条件仍不能判定△ AB® AAC[)()A. / B=Z CB. AD=AE C . BD=CE D . BE=CD8、如图,从一张腰长为 60 cm,顶角为120。

的等腰三角形铁皮 OAB 中剪出一个最大扇形 OCD 用剪下的扇形铁皮围成一个圆锥的侧面 (不计损耗),则该圆锥的高为()A. 10 cmC. 15 cm C . 10" cmD . 20v2 cm湖北省2020年中考数学模拟试题含答案、选择题(每题 3分,共30分)1、在实数一22 o 0, -1.5, 1中,最小的数是( )A. — 22B. 0 C . -1.5 D . 12、下列图案中,既是轴对称图形又是中心对称图形的是()3、D .A.圆柱 B .球 C9、已知二次函数的图象如图,则下列结论中正确的有( )①a+b+c> 0;②a — b+cv0;③b> 0;④b= 2a ;⑤abcv 0. A. 5个 B .4个 C .3个 D .2个 P 是菱形ABCD 勺对角线AC 上一动点,过P 垂直于AC 的直线交菱形 ABCM12、若Jx-2y 9与x-y-3互为相反数,则 x+y 的值为。

2020年中考模拟卷 数学(湖北武汉A卷)(考试版)

2020年中考模拟卷  数学(湖北武汉A卷)(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前|2020年中考模拟卷【湖北A 卷】数 学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若向东记为正,向西记为负,那么向东走3米,再向西走-3米,结果是 A .回到原地B .向西走3米C .向东走6米D .向西走6米2.若代数式3xx 在实数范围内有意义,则实数x 的取值范围是A .x >-3B .x =-3C .x ≠0D .x ≠-33.下列运算中,正确的是A .(-12)-1=-2B .a 3·a 6=a 18C .6a 6÷3a 2=2a 3D .(-2ab 2)2=2a 2b 44.某校在“爱护地球,绿化祖国”的创建活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:植树棵树(单位:棵)4 5 6 8 10 人数(人)302225158则这100名学生所植树棵树的中位数为 A .4B .5C .5.5D .65.计算(x -2)(x +5)的结果是A .x 2+3x +7B .x 2+3x +10C .x 2+3x -10D .x 2-3x -106.如图,边长均为1个单位长度的正方形组成的方格纸内有一张笑脸图案,已知左眼的坐标是(-1,0),那么右眼关于鼻子所在的水平线对称的点的坐标是A .(1,-2)B .(1,-1)C .(-1,0)D .(-1,-2)7.如图,表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为A .B .C .D .8.不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是A .112B .16C .14D .129.如图,数轴上A 、B 、C 三点所表示的数分别是a 、6、c .已知AB =8,a +c =0,且c 是关于x 的方程(m -4)x +16=0的一个解,则m 的值为A .-4B .2C .4D .610.如图,矩形ABCD 的边AB =1,BC =2,以点B 为圆心,BC 为半径画弧,交AD 于点E ,则图中阴影部分的面积是数学试题 第3页(共6页) 数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .4π33--B .2π33--C .4π36--D .2-36π-第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.计算25463-的结果为__________.12.袋中装有6个黑球和n 个白球,经过若干次试验,发现若从袋中任摸一个球,恰好是白球的概率为0.25,则这个袋子中白球大约有__________个. 13.计算111x x x ---的结果是__________. 14.如图,在菱形ABCD 中,∠BAD =120°,CE ⊥AD ,且CE =BC ,连接BE 交对角线AC 于点F ,则∠EFC =__________°.15.若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有__________人.16.如图,AOB △中,90AOB ∠=︒,3AO =,6BO =,AOB △绕顶点O 逆时针旋转到A'OB'△处,此时线段A'B'与BO 的交点E 为BO 的中点,则线段B'E 的长度为__________.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:431642x y x y -=⎧⎨-=-⎩.18.(本小题满分8分)如图,点D 是AB 上一点,DF 交AC 于点E ,DE =FE ,FC ∥AB .求证:AE =CE .19.(本小题满分8分)某公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题: (1)表中a =__________,b =__________,c =__________; (2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.组别 分数段/分 频数/人数频率 150.5~60.5 2 a 2 60.5~70.5 6 0.15 3 70.5~80.5 b c 4 80.5~90.5 12 0.30 590.5~100.5 6 0.15 合计401.0020.(本小题满分8分)现有A 、B 两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A30 120 0.20 B603200.25数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________设上网时间为x 分钟,(1)若按方式A 和方式B 的收费金额相等,求x 的值; (2)若上网时间x 超过320分钟,选择哪一种方式更省钱?21.(本小题满分8分)如图,在平面直角坐标系中,一次函数11(0)y k x b k =+≠的图象与反比例函数222(0)k y k x=≠在第一象限内的图象交于点A ,与x 轴交于点(10)B -,,线段5OA =,C 为x 轴正半轴上一点,且4sin 5AOC ∠=.(1)求一次函数和反比例函数的解析式; (2)求点O 到直线AB 的距离;(3)若把AOB 向下平移n 个单位,使B 点落在反比例函数图象上,则n =__________.22.(本小题满分10分)如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD于点D ,交⊙O 于点E ,连接AC 、AE ,且AE 与BC 交于点F . (1)连接BD ,求证:BD 是⊙O 的切线; (2)若AF ∶EF =2∶1,求tan ∠CAF 的值.23.(本小题满分10分)如图1,△ABC 中,∠BAC =90°,∠ABC =45°,点D 为AB 延长线上一点,连接CD ,∠AMC =90°,AM 交BC 于点N ,∠APB =90°,AP 的延长线交CD 于点Q . (1)求证:AN =CQ ;(2)如图2,点E 在BA 的延长线上,且AD =BE ,连接EN 并延长交CD 于点F ,求证:DQ =EN ; (3)在(2)的条件下,当3AE =2AB 时,请直接写出EN ∶FN 的值为__________.24.(本小题满分12分)抛物线y =x 2+bx +c 经过点A 、B 、C ,已知A (-1,0),C (0,-3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E ,EF ⊥x 轴于F 点,M (m ,0)是x 轴上一动点,N 是线段EF 上一点,若∠MNC =90°,请指出实数m 的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E 与原点O 重合,直线y =kx +2(k >0)与抛物线相交于点P 、Q (点P 在左边),过点P 作x 轴平行线交抛物线于点H ,当k 发生改变时,请说明直线QH 过定点,并求定点坐标.。

2020年湖北省武汉市中考数学试卷(附答案详解)

2020年湖北省武汉市中考数学试卷(附答案详解)

2020年湖北省武汉市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·湖北省武汉市·模拟题)实数−2的相反数是()A. 2B. −2C. 12D. −122.(2021·天津市市辖区·月考试卷)式子√x−2在实数范围内有意义,则x的取值范围是()A. x≥0B. x≤2C. x≥−2D. x≥23.(2021·山东省淄博市·模拟题)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A. 两个小球的标号之和等于1B. 两个小球的标号之和等于6C. 两个小球的标号之和大于1D. 两个小球的标号之和大于64.(2021·全国·单元测试)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.5.(2021·黑龙江省哈尔滨市·期末考试)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(2021·安徽省芜湖市·单元测试)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 13B. 14C. 16D. 187.(2021·福建省厦门市·月考试卷)若点A(a−1,y1),B(a+1,y2)在反比例函数y=k(k<0)的图象上,且y1>y2,则a的取值范围是()xA. a<−1B. −1<a<1C. a>1D. a<−1或a>18.(2021·黑龙江省·其他类型)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A. 32B. 34C. 36D. 389.(2021·安徽省芜湖市·期末考试)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是AC⏜的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A. 5√32B. 3√3C. 3√2D. 4√210.(2020·湖北省武汉市·历年真题)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 48二、填空题(本大题共6小题,共18.0分)11.(2020·浙江省宁波市·期末考试)化简√(−3)2的结果是______.12.(2021·湖北省·其他类型)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:ℎ),分别为:4,3,3,5,5,6.这组数据的中位数是______.13.(2021·湖南省·单元测试)计算2m+n −m−3nm2−n2的结果是______.14.(2021·四川省成都市·模拟题)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是______.15.(2021·贵州省贵阳市·单元测试)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).16.(2021·湖北省·其他类型)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.三、解答题(本大题共8小题,共72.0分)17.(2021·全国·单元测试)计算:[a3⋅a5+(3a4)2]÷a2.18.(2021·山东省枣庄市·月考试卷)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM//FN.求证:AB//CD.19.(2021·江苏省徐州市·模拟题)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了______名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是______;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(2020·湖北省武汉市·历年真题)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(2020·湖北省武汉市·历年真题)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(2020·湖北省武汉市·历年真题)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D 地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m 的式子表示).23.(2021·陕西省咸阳市·期末考试)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,ADBD =√3,求DFCF的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2√3,直接写出AD的长.24.(2020·福建省泉州市·单元测试)将抛物线C:y=(x−2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4kx与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.答案和解析1.【答案】A【知识点】实数的性质、相反数【解析】解:实数−2的相反数是2,故选:A.由相反数的定义可知:−2的相反数是2.本题考查相反数的定义;熟练掌握相反数的定义是解题的关键.2.【答案】D【知识点】二次根式有意义的条件【解析】解:由题意得:x−2≥0,解得:x≥2,故选:D.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3.【答案】B【知识点】随机事件【解析】【分析】本题考查了随机事件、必然事件、不可能事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.【解答】解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.【答案】C【知识点】轴对称图形【解析】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.【答案】A【知识点】简单组合体的三视图【解析】解:从左边看上下各一个小正方形.故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】C【知识点】用列举法求概率(列表法与树状图法)【解析】解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212=16;故选:C.根据题意画出树状图得出所有等情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】B【知识点】反比例函数图象上点的坐标特征、反比例函数的性质、分类讨论思想【解析】【分析】此题主要考查了反比例函数的性质,关键是掌握当k<0时,在图象的每一支上,y随x 的增大而增大.根据反比例函数的性质分两种情况进行讨论,①当点(a−1,y1)、(a+1,y2)在图象的同一支上时,②当点(a−1,y1)、(a+1,y2)在图象的两支上时,分别列不等式求解即可.【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a−1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a−1>a+1,此不等式无解;②当点(a−1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a−1<0,a+1>0,解得:−1<a<1,故选:B.8.【答案】C【知识点】函数的图象【解析】【分析】此题考查了函数图象的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.【解答】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5−(35−20)÷(16−4)=3.75(L/min),第24分钟时的水量为:20+(5−3.75)×(24−4)=45(L),a=24+45÷3.75=36.故选C.9.【答案】D【知识点】勾股定理、垂径定理、圆心角、弧、弦的关系、全等三角形的判定与性质【解析】【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=12BC=12DF,从而求得BC=DF=2,利用勾股定理即可求得AC.本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.【解答】解:连接OD,交AC于F,∵D是AC⏜的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF =12BC ,∵AB 是直径,∴∠ACB =90°,在△EFD 和△ECB 中{∠DFE =∠ACB =90°∠DEF =∠BEC DE =BE∴△EFD≌△ECB(AAS),∴DF =BC ,∴OF =12DF ,∵OD =3,∴OF =1,∴BC =2,在Rt △ABC 中,AC 2=AB 2−BC 2,∴AC =√AB 2−BC 2=√62−22=4√2,故选D . 10.【答案】A【知识点】图形规律问题【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n 的值是40×4=160.故选:A .对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.11.【答案】3【知识点】二次根式的性质【解析】解:√(−3)2=√9=3.故答案为:3.根据二次根式的性质化简即可解答.本题考查了二次根式的性质与化简.12.【答案】4.5【知识点】中位数【解析】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为4+52=4.5,故答案为:4.5.根据中位数的定义求解可得.本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】1m−n【知识点】分式的加减【解析】解:原式=2(m−n)(m+n)(m−n)−m−3n(m+n)(m−n)=2m−2n−m+3n(m+n)(m−n) =m+n(m+n)(m−n)=1m−n.故答案为:1m−n.原式通分并利用同分母分式的减法法则计算,约分即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.【答案】26°【知识点】平行四边形的性质【解析】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°−∠ABC=180°−102°,∴∠BAC=26°,故答案为:26°.根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.15.【答案】①③【知识点】二次函数与一元二次方程、二次函数图象上点的坐标特征、一元二次方程的根与系数的关系*、根的判别式【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)该抛物线的对称轴为直线x=2+(−4)2在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】14t2−14t+1【知识点】翻折变换(折叠问题)、矩形的性质、三角形的面积【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.17.【答案】解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.【知识点】整式的除法、同底数幂的乘法、幂的乘方与积的乘方【解析】此题考查了同底数幂的乘除法,属于基础题.原式中括号中利用同底数幂的乘法,积的乘方计算,合并后利用单项式除以单项式法则计算即可求出值.18.【答案】证明:∵EM//FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB//CD.【知识点】平行线的判定与性质【解析】本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的性质和平行线的性质.根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB//CD.19.【答案】解:(1)60;6°;(2)A类别人数为60−(36+9+1)=14(名),补全条形图如下:=1200(名).(3)估计该社区表示“支持”的B类居民大约有2000×3660【知识点】扇形统计图、用样本估计总体、条形统计图【解析】解:(1)这次抽取的居民数量为9÷15%=60(名),=6°,扇形统计图中,D类所对应的扇形圆心角的大小是360°×160故答案为:60;6°;(2)见答案;(3)见答案.(1)由C类别的人数及其所占百分比可得被调查的总人数,用360°乘以样本中D类别人数占被调查人数的比例即可得出答案;(2)根据A、B、C、D四个类别人数之和等于被调查的总人数求出A的人数,从而补全图形;(3)用总人数乘以样本中B类别人数所占比例可得答案.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【答案】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接AC并延长,点G关于AC的对称点为(0,5),连接(0,5),(5,0)与OA交点即为点F,如图所示:【知识点】作图-轴对称变换、作图-旋转变换、正方形的性质【解析】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等.也考查了轴对称变换.(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出G点关于直线AC的对称点(0,5),连接(0,5),(5,0)与OA的交点即为所求.21.【答案】(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD//AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=DEAD ,sin∠3=DCBC,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x 2+xy −y 2=0,解得x =−1+√52y 或x =−1−√52y(舍去),∴sin∠3=DC BC =√5−12, 即sin∠BAC 的值为√5−12.【知识点】锐角三角函数的定义、圆周角定理、切线的性质【解析】(1)连接OD ,如图,根据切线的性质得到OD ⊥DE ,则可判断OD//AE ,从而得到∠1=∠ODA ,然后利用∠2=∠ODA 得到∠1=∠2;(2)连接BD ,如图,利用圆周角定理得到∠ADB =90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=DE AD ,sin∠3=DC BC ,则AD =BC ,设CD =x ,BC =AD =y ,证明△CDB∽△CBA ,利用相似比得到x :y =y :(x +y),然后求出x 、y 的关系可得到sin∠BAC 的值.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和锐角三角函数的定义.22.【答案】解:(1)由题意得:当产品的数量为0时,总成本也为0,即当x =0时,y =0,则有:{c =0100a +10b +c =400400a +20b +c =1000,解得:{a =1b =30c =0.∴a =1,b =30;(2)由(1)得:y =x 2+30x ,设A ,B 两城生产这批产品的总成本为w ,则w =x 2+30x +70(100−x)=x 2−40x +7000,=(x −20)2+6600,由二次函数的性质可知,当x =20时,w 取得最小值,最小值为6600万元,此时100−20=80.答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20−n)件,从B 城运往C 地的产品数量为(90−n)件,从B 城运往D 地的产品数量为(10−20+n)件,由题意得:{20−n ≥010−20+n ≥0, 解得10≤n ≤20,∴P =mn +3(20−n)+(90−n)+2(10−20+n),整理得:P =(m −2)n +130,根据一次函数的性质分以下两种情况:①当0<m ≤2,10≤n ≤20时,P 随n 的增大而减小,则n =20时,P 取最小值,最小值为20(m −2)+130=20m +90;②当m >2,10≤n ≤20时,P 随n 的增大而增大,则n =10时,P 取最小值,最小值为10(m −2)+130=10m +110.答:0<m ≤2时,A ,B 两城总运费的和为(20m +90)万元;当m >2时,A ,B 两城总运费的和为(10m +110)万元.【知识点】二次函数的应用、一元二次方程的应用【解析】(1)先根据题意得出产品的数量为0时,总成本也为0,再利用待定系数法即可求出a ,b 的值;(2)先根据(1)的结论得出y 与x 之间的函数关系,从而可得出A ,B 两城生产这批产品的总成本的和,再根据二次函数的性质即可得出答案;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20−n)件,从B 城运往C 地的产品数量为(90−n)件,从B 城运往D 地的产品数量为(10−20+n)件,从而可得关于n 的不等式组,解得n 的范围,然后根据运费信息可得P 关于n 的一次函数,最后根据一次函数的性质可得答案.本题考查了待定系数法求二次函数的解析式、二次函数及一次函数在实际问题中的应用,理清题中的数量关系并明确一次函数和二次函数的相关性质是解题的关键.23.【答案】问题背景证明:∵△ABC∽△ADE ,∴AB AD =AC AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE ,AB AC =AD AE ,∴△ABD∽△ACE ;尝试应用解:如图1,连接EC ,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴AEEC =ADBD=√3,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴ADAE=√3,∴ADEC =ADAE×AECE=√3×√3=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴DFCF =ADCE=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴BDMD =DCDA,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,∴△BDM∽△CDA,∴BMCA =DMAD=√3,∵AC=2√3,∴BM=2√3×√3=6,∴AM=√BM2−AB2=√62−42=2√5,∴AD=12AM=√5.【知识点】相似形综合【解析】问题背景由题意得出ABAD =ACAE,∠BAC=∠DAE,则∠BAD=∠CAE,可证得结论;尝试应用连接EC,证明△ABC∽△ADE,由(1)知△ABD∽△ACE,由相似三角形的性质得出AEEC=AD BD =√3,∠ACE=∠ABD=∠ADE,可证明△ADF∽△ECF,得出DFCF=ADCE=3,则可求出答案.拓展创新过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,证明△BDC∽△MDA,由相似三角形的性质得出BDMD =DCDA,证明△BDM∽△CDA,得出BMCA=DMAD=√3,求出BM=6,由勾股定理求出AM,最后由直角三角形的性质可求出AD的长.此题是相似形综合题,考查了直角三角形的性质,勾股定理,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.24.【答案】解:(1)∵抛物线C:y=(x−2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x−2)2−6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x−2+2)2−6,即y=x2−6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a−2)2−6),则BD=a−2,AC=|(a−2)2−6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∵AB =OA ,∠ADB =∠OCA ,∴△ABD≌△OAC(AAS),∴BD =AC ,∴a −2=|(a −2)2−6|,解得,a =4,或a =−1(舍),或a =0(舍),或a =5,∴A(4,−2)或(5,3);(3)把y =kx 代入y =x 2−6中得,x 2−kx −6=0,∴x E +x F =k ,∴M(k 2,k 22),把y =−4k x 代入y =x 2−6中得,x 2+4k x −6=0,∴x G +x H =−4k ,∴N(−2k ,8k 2),设MN 的解析式为y =mx +n(m ≠0),则{k 2m +n =k 22−2k m +n =8k 2,解得,{m =k 2−4k n =2, ∴直线MN 的解析式为:y =k 2−4k x +2, 当x =0时,y =2,∴直线MN :y =k 2−4k x +2x 经过定点(0,2),即直线MN 经过一个定点.【知识点】二次函数综合【解析】(1)根据平移规律:上加下减,左加右减,直接写出平移后的解析式;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,设A(a,(a−2)2−6),则BD= a−2,AC=|(a−2)2−6|,再证明△ABD≌△OAC,由全等三角形的性质得a的方程求得a便可得A的坐标;(3)由两直线解析式分别与抛物线的解析式联立方程组,求出M、N点的坐标,进而求得MN的解析式,再根据解析式的特征得出MN经过一个定点.本题是一个二次函数综合题,主要考查了平移的性质,二次函数的性质,等腰直角三角形的性质,全等三角形的性质与判定,待定系数法,求函数图象的交点问题,第(2)小题关键是证明三角形全等,第(3)题关键是求出M、N点的坐标及直线MN的解析式.。

2020年湖北省武汉市中考数学模拟试卷(3)

2020年湖北省武汉市中考数学模拟试卷(3)

2020年湖北省武汉市中考数学模拟试卷(3)一.选择题(共10小题,满分30分,每小题3分) 1.(3分)﹣2019的相反数等于( ) A .﹣2019B .12019C .−12019D .20192.(3分)若代数式√a −5+|b ﹣1|+c 2+a 在实数范围内有意义,则此代数式的最小值为( ) A .0B .5C .4D .﹣53.(3分)下列事件属于确定事件的是( ) A .今天武汉新冠肺炎新增零人 B .明天太阳从西边升起 C .数学老师长得最好看D .掷一枚质地均匀的硬币正面朝上4.(3分)下列图形中,是轴对称图形的是( )A .B .C .D .5.(3分)如图所示几何体的左视图正确的是( )A .B .C .D .6.(3分)足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =127.(3分)一次函数y =kx +b ,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k ,乙口袋的卡片上的数字作b ,则该一次函数的图象经过一、二、四象限的概率是( ) A .12B .14C .15D .138.(3分)如图,在平面直角坐标系中,点P (2,5)、Q (a ,b )(a >2)在“函数y =k x(x >0)的图象上,过点P 分别作x 轴、y 轴的垂线,垂足为A 、B ;过点Q 分别作x 轴、y 轴的垂线,垂足为C 、D .QD 交P A 于点E ,随着a 的增大,四边形ACQE 的面积( )A .增大B .减小C .先减小后增大D .先增大后减小9.(3分)如图,已知:∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=1,则B 2018B 2019的长为( )A .2017√3B .2018√3C .22017√3D .22018√310.(3分)已知:如图,点P 是等边△ABC 内的一点,连接P A 、PB 、PC ,以PB 为边作等边△BPD ,连接CD ,若∠APB =150°,BD =6,CD =8,△APB 的面积为( )A.48B.24C.12D.10二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算:√−83+√25.12.(3分)学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是.13.(3分)计算:2a+1−1−aa+1=.14.(3分)四边形ABCD中,AB=BC=CD,∠ABC=60°,点E在AB上,∠AED=∠CEB,AD=5,DE+CE=√74,则BD的长为.15.(3分)如图,⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠P的值是.16.(3分)已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).三.解答题(共8小题,满分72分)17.(6分)计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.18.(8分)如图,直线EF分别与直线AB、CD交于M,N两点,∠1=55°,∠2=125°,求证:AB∥CD【要求写出每一步的理论依据】.19.(8分)我校九年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(Ⅰ)本次抽取到的学生人数为,图2中m的值为;(Ⅱ)求出本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计我校九年级模拟模拟体测中得12分的学生约有多少人?20.(10分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=1 3;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.21.(10分)如图,AC为⊙O的直径,D,G为⊙O上的两点,∠GAC=2∠ACD,过点C 作⊙O的切线交AG的延长线于M.(1)求证:DĜ=DĈ;(2)连接DM,若tan∠ACD=12,求,tan∠CMD的值.22.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?23.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2√3,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;24.(10分)如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.(1)求这条抛物线的解析式,并写出顶点坐标;(2)求∠ACB的正切值;(3)当△AOE与△ABC相似时,求点D的坐标.2020年湖北省武汉市中考数学模拟试卷(3)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2019的相反数等于()A.﹣2019B.12019C.−12019D.2019【解答】解:﹣2019的相反数等于2019,故选:D.2.(3分)若代数式√a−5+|b﹣1|+c2+a在实数范围内有意义,则此代数式的最小值为()A.0B.5C.4D.﹣5【解答】解:代数式,√a−5+|b﹣1|+c2+a在实数范围内有意义,则a﹣5≥0,|b﹣1|≥0,c2≥0,所以代数式,√a−5+|b﹣1|+c2+a的最小值是a,a=5,故选:B.3.(3分)下列事件属于确定事件的是()A.今天武汉新冠肺炎新增零人B.明天太阳从西边升起C.数学老师长得最好看D.掷一枚质地均匀的硬币正面朝上【解答】解:A、今天武汉新冠肺炎新增零人,是随机事件;B、明天太阳从西边升起,是不可能事件,是确定事件;C、数学老师长得最好看,是随机事件;D、掷一枚质地均匀的硬币正面朝上,是随机事件;故选:B.4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A 、不是轴对称图形,故此选项错误; B 、不是轴对称图形,故此选项错误; C 、是轴对称图形,故此选项正确; D 、不是轴对称图形,故此选项错误; 故选:C .5.(3分)如图所示几何体的左视图正确的是( )A .B .C .D .【解答】解:从几何体的左面看所得到的图形是:故选:A .6.(3分)足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =12【解答】解:设这个队胜x 场,负y 场, 根据题意,得{x +y =83x −y =12.故选:A .7.(3分)一次函数y =kx +b ,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k ,乙口袋的卡片上的数字作b ,则该一次函数的图象经过一、二、四象限的概率是( ) A .12B .14C .15D .13【解答】解:画树状图共有6种情况,因为一次函数y =kx +b 经过第一、二、四象限, 则k <0,b >0,又因为k <0,b >0的情况有k =﹣1,b =2或k =﹣1,b =3两种情况, 所以一次函数y =kx +b 经过第一、二、四象限的概率为26=13;故选:D .8.(3分)如图,在平面直角坐标系中,点P (2,5)、Q (a ,b )(a >2)在“函数y =kx(x >0)的图象上,过点P 分别作x 轴、y 轴的垂线,垂足为A 、B ;过点Q 分别作x 轴、y 轴的垂线,垂足为C 、D .QD 交P A 于点E ,随着a 的增大,四边形ACQE 的面积( )A .增大B .减小C .先减小后增大D .先增大后减小【解答】解:∵点P (2,5)、Q (a ,b )(a >2) ∴AC =a ﹣2,CQ =b ,则S 四边形ACQE =AC •CQ =(a ﹣2)b =ab ﹣b∵点P (2,5)、Q (a ,b )(a >2)在“函数y =kx (x >0)的图象上, ∴ab =k =10(常数) ∴S 四边形ACQE =10﹣n ,∴当a >2时,b 随a 的增大而减小, ∴S 四边形ACQE =10﹣b 随m 的增大而增大 故选:A .9.(3分)如图,已知:∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则B2018B2019的长为()A.2017√3B.2018√3C.22017√3D.22018√3【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2=√3,∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴B2B3=2√3,∵A4B4=8B1A2=8,∴B3B4=4√3,以此类推,B n B n+1的长为2n﹣1√3,∴B2018B2019的长为22017√3,故选:C.10.(3分)已知:如图,点P是等边△ABC内的一点,连接P A、PB、PC,以PB为边作等边△BPD,连接CD,若∠APB=150°,BD=6,CD=8,△APB的面积为()A.48B.24C.12D.10【解答】解:作CM⊥BD交BD的延长线于M.∵△ABC,△PBD都是等边三角形,∴BA=BC,BP=BD,∠ABC=∠PBD,∴∠ABP=∠CBD,∴△ABP≌△CBD(SAS),∴∠APB=∠BDC=150°,∴∠CDM=30°,∠M=90°,∴CM=12CD=4,∴S△APB=S△BCD=12•BD•CM=12×6×4=12,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算:√−83+√25=3.【解答】解:√−83+√25=﹣2+5=3故答案为:=3.12.(3分)学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是88.【解答】解:这组数据按从小到大的顺序排列为:86,87,88,89,89,则这5个数据的中位数是88.故答案为:88.13.(3分)计算:2a+1−1−aa+1=1.【解答】解:原式=2−(1−a)a+1=a+1a+1=1,故答案为:114.(3分)四边形ABCD中,AB=BC=CD,∠ABC=60°,点E在AB上,∠AED=∠CEB,AD=5,DE+CE=√74,则BD的长为7.【解答】解:连接AC,延长DE至F,使EF=CE,作正三角形ADG,使B、G分别在AD两侧,连接AF、BF、BG,如图所示:∵∠AED=∠CEB,∠BEF=∠AED,∴∠BEF=∠AED=∠CEB,在△BEF和△BEC中,{EF=EC∠BEF=∠BECBE=BE,∴△BEF≌△BEC(SAS),∴∠ABF=∠ABC=60°,BF=BC=AB,∴△ABF 是等边三角形,∴AF =AB ,∠BAF =60°,∵△ADG 是等边三角形,∴∠ADG =∠DAG =60°=∠BAF ,AG =AD =5,∴∠DAF =∠DAB +∠BAF =∠DAB +∠DAG =∠GAB ,在△DAF 和△GAB 中,{AD =AG ∠DAF =∠GAB AF =AB,∴△DAF ≌△GAB (SAS ),∴BG =DF =DE +EF =DE +CE =√74,∵AB =BC ,∠ABC =60°,∴△ABC 是等边三角形,∴AC =BC =DC ,∠ACB =60°,∴点C 是△ABD 的外心,∴∠ADB =12∠ACB =30°,∴∠BDG =∠ADB +∠ADG =90°,∴BD =√BG 2−DG 2=√74−25=7;故答案为:7.15.(3分)如图,⊙O 的半径为5cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP =2cm ,则tan ∠P 的值是 12 .【解答】解:作OC ⊥AB 于C 点.根据垂径定理,AC =BC =4.在Rt △OCP 中,有CP =4+2=6,OC =√52−42=3.故tan ∠OP A =OC PC =12.故答案为12 16.(3分)已知点(﹣1,m )、(2,n )在二次函数y =ax 2﹣2ax ﹣1的图象上,如果m >n ,那么a > 0(用“>”或“<”连接).【解答】解:∵二次函数的解析式为y =ax 2﹣2ax ﹣1,∴该抛物线对称轴为x =1,∵|﹣1﹣1|>|2﹣1|,且m >n ,∴a >0.故答案为:>.三.解答题(共8小题,满分72分)17.(6分)计算:(1)(﹣t 4)3+(﹣t 2)6;(2)(m 4)2+(m 3)2﹣m (m 2)2•m 3.【解答】解:(1)原式=﹣t 12+t 12=0;(2)原式=m 8+m 6﹣m 8=m 6.18.(8分)如图,直线EF 分别与直线AB 、CD 交于M ,N 两点,∠1=55°,∠2=125°,求证:AB ∥CD 【要求写出每一步的理论依据】.【解答】证明:∵∠1=55°(已知),∴∠CNM =55°(对顶角相等),∵∠2=125°(已知),∴∠CNM +∠2=180°(等式的性质),∴AB ∥CD (同旁内角互补,两直线平行).19.(8分)我校九年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题: (Ⅰ)本次抽取到的学生人数为 50 ,图2中m 的值为 28 ;(Ⅱ)求出本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计我校九年级模拟模拟体测中得12分的学生约有多少人?【解答】解:(Ⅰ)本次抽取到的学生人数为:4÷8%=50,m %=1﹣8%﹣10%﹣22%﹣32%=28%,故答案为:50,28;(Ⅱ)本次调查获取的样本数据的平均数是:8×4+9×5+10×11+11×14+12×1650=10.66(分),众数是12分,中位数是11分;(Ⅲ)800×32%=256(人),答:我校九年级模拟模拟体测中得12分的学生约有256人.20.(10分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C ,使∠BAC 是锐角,且tan ∠BAC =13;(2)在图②中找到两个格点D ,使∠ADB 是锐角,且tan ∠ADB =1.【解答】解:(1)如图①点C即为所求作的点;(2)如图②,点D即为所求作的点.21.(10分)如图,AC为⊙O的直径,D,G为⊙O上的两点,∠GAC=2∠ACD,过点C 作⊙O的切线交AG的延长线于M.(1)求证:DĜ=DĈ;(2)连接DM,若tan∠ACD=12,求,tan∠CMD的值.【解答】(1)证明:连接DG、OD,DO的延长线交⊙O于E,如图1所示:∵OC=OD,∴∠ACD=∠ODC,∵∠GAC=∠CDG,∠GAC=2∠ACD,∴∠GDO=∠CDO,∴GÊ=CÊ,∵DE是⊙O的直径,∴DĜ=DĈ;(2)解:作DH⊥AC于H,AC交DM于N,如图2所示:∵CM是⊙O的切线,∴CM⊥AC,∠ACM=90°,设DH=a,∵tan∠ACD=12=DHCH,∴CH=2a,设⊙O的半径为R,在Rt△ODH中,由勾股定理得:a2+(2a﹣R)2=R2,解得:R=54a,∴OH=2a−54a=34a,tan∠AOD=DHOH=a34a=43,∵OC=OD,∴∠ACD=∠ODC,∵∠AOD=∠ACD+∠ODC,∠GAC=2∠ACD,∴∠GAC=∠AOD,∴tan∠AOD=tan∠MAC=CMAC=CM2R=43,∴CM=83R=103a,∵CM⊥AC,DH⊥AC,∴DH∥CM,∴△MCN∽△DHN,∴CNHN =CMDH=103aa=103,∴CN=1013CH=2013a,∴tan∠CMD=CNCM=2013a103a=613.22.(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【解答】解:(1)根据题意得,y=−12x+50;(2)根据题意得,(40+x)(−12x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(−12x+50)=−12x2+30x+2000=−12(x﹣30)2+2450,∵a=−12<0,∴当x<30时,w随x的增大而增大,∵40+x≤60,x≤20,∴当x=20时,w最大=2400,答:当x为20时w最大,最大值是2400元.23.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2√3,点D是AB边上的中点,在BC 的下方作射线BE ,使得∠CBE =30°,点P 是射线BE 上一个动点,当∠DPC =60°时,求BP 的长;【解答】(1)证明:∵△ABC 是等边三角形,∠A =∠B =∠C =60°,∴∠BDF +∠BFD =180°﹣∠B =120°,由折叠知,∠DFE =∠A =60°,∴∠CFE +∠BFD =120°,∴∠BDF =∠CFE ,∵∠B =∠C =60°,∴△BDF ∽△CFE ,∴BF CE =BD CF ,∴BF •CF =BD •CE ;(2)解:如图2,设BD =3x (x >0),则AD =AB ﹣BD =4﹣3x ,由折叠知,DF =AD =4﹣3x ,过点D 作DH ⊥BC 于H ,∴∠DHB =∠DHF =90°,∵∠B =60°,∴BH =32x ,DH =3√32x ,由(1)知,△BDF ∽△CFE ,∴BD CF =DF EF ,∵DF :EF =3:2,∴BD CF =32, ∴CF =2x ,∴BF =BC ﹣CF =4﹣2x ,∴HF =BF ﹣BH =4﹣2x −32x =4−72x , 在Rt △DHF 中,DH 2+HF 2=DF 2, ∴(3√32x )2+(4−72x )2=(4﹣3x )2, ∴x =0(舍)或x =25,∴DH =3√35,DF =4﹣3×25=145,∴sin ∠DFB =DH DF =3√35145=3√314;(3)如图3,在Rt △ABC 中,AC =2√3,∠ABC =30°, ∴BC =2AC =4√3,AB =√3AC =6, ∵点D 是AB 的中点,∴BD =12AB =3,过点C 作BC 的垂线交BP 的延长线于Q , ∴∠BCQ =90°,在Rt △BCQ 中,∠CBE =30°,∴CQ =BC 3=4, ∴BQ =2CQ =8,∴∠BCQ =90°,∵∠CBE =30°,∴∠Q =90°﹣∠CBE =60°,∴∠DBP =∠ABC +∠CBE =60°=∠Q , ∴∠CPQ +∠PCQ =120°,∵∠DPC =60°,∴∠BPD +∠CPQ =120°,∴∠BPD =∠PCQ ,∴△BDP ∽△QPC ,∴BD PQ =BP CQ , ∴38−BP =BP 4, ∴BP =2或BP =6.24.(10分)如图,抛物线与x 轴相交于点A (﹣3,0)、点B (1,0),与y 轴交于点C (0,3),点D 是抛物线上一动点,联结OD 交线段AC 于点E .(1)求这条抛物线的解析式,并写出顶点坐标;(2)求∠ACB 的正切值;(3)当△AOE 与△ABC 相似时,求点D 的坐标.【解答】解:(1)设抛物线解析式为:y =ax 2+bx +c ,将点A (﹣3,0),B (1,0),C (0,3)分别代入得:{9a −3b +c =0a +b +c =0c =3,解得:{a =−1b =−2c =3,故抛物线解析式为:y =﹣x 2﹣2x +3.由于y =﹣x 2﹣2x +3=﹣(x +1)2+4,所以该抛物线的顶点坐标是(﹣1,4);(2)如图1,过点B 作BH ⊥AC 于点H ,∵∠AOC =90°,OA =OC =3,∴∠OAC =∠OCA =45°,AC =3√2.∵∠BHA =90°,∴∠HAB +∠HBA =90°.∴∠HAB =∠HBA =45°.∵在直角△AHB 中,AH 2+BH 2=AB 2,AB =4.∴AH =BH =2√2.∴CH =3√2−2√2=√2.∵∠BHC =90°,∴∠ACB =BH CH =√22=2;(3)如图2,过点D 作DK ⊥x 轴于点K ,设D (x ,﹣x 2﹣2x +3),则K (x ,0).并由题意知点D 位于第二象限. ∴DK =﹣x 2﹣2x +3,OK =﹣x .∵∠BAC 是公共角,∴当△AOE 与△ABC 相似时,有2种情况:①∠AOD =∠ABC .∴tan ∠AOD =tan ∠ABC =3.∴−x 2−2x+3−x=3,解得x 1=1−√132,x 2=1+√132(舍去) ∴D (1−√132,3√13−32).②∠AOD =∠ACB .∴tan ∠AOD =tan ∠ACB =2.∴−x 2−2x+3−x =2,解得x 1=−√3,x 2=√3(舍去)∴D (−√3,2√3).综上所述,当△AOE 与△ABC 相似时,求点D 的坐标是(1−√132,3√13−32)或(−√3,2√3).。

2020年武汉市中考数学模拟试题与答案

2020年武汉市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。

2020年湖北省武汉市中考数学试卷(附答案详解)

2020年湖北省武汉市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·湖北省武汉市·模拟题)实数−2的相反数是()A. 2B. −2C. 12D. −122.(2021·天津市市辖区·月考试卷)式子√x−2在实数范围内有意义,则x的取值范围是()A. x≥0B. x≤2C. x≥−2D. x≥23.(2021·山东省淄博市·模拟题)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A. 两个小球的标号之和等于1B. 两个小球的标号之和等于6C. 两个小球的标号之和大于1D. 两个小球的标号之和大于64.(2021·全国·单元测试)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.5.(2021·黑龙江省哈尔滨市·期末考试)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(2021·安徽省芜湖市·单元测试)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 13B. 14C. 16D. 187.(2021·福建省厦门市·月考试卷)若点A(a−1,y1),B(a+1,y2)在反比例函数y=k(k<0)的图象上,且y1>y2,则a的取值范围是()xA. a<−1B. −1<a<1C. a>1D. a<−1或a>18.(2021·黑龙江省·其他类型)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A. 32B. 34C. 36D. 389.(2021·安徽省芜湖市·期末考试)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是AC⏜的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A. 5√32B. 3√3C. 3√2D. 4√210.(2020·湖北省武汉市·历年真题)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 48二、填空题(本大题共6小题,共18.0分)11.(2020·浙江省宁波市·期末考试)化简√(−3)2的结果是______.12.(2021·湖北省·其他类型)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:ℎ),分别为:4,3,3,5,5,6.这组数据的中位数是______.13.(2021·湖南省·单元测试)计算2m+n −m−3nm2−n2的结果是______.14.(2021·四川省成都市·模拟题)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是______.15.(2021·贵州省贵阳市·单元测试)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).16.(2021·湖北省·其他类型)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.三、解答题(本大题共8小题,共72.0分)17.(2021·全国·单元测试)计算:[a3⋅a5+(3a4)2]÷a2.18.(2021·山东省枣庄市·月考试卷)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM//FN.求证:AB//CD.19.(2021·江苏省徐州市·模拟题)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了______名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是______;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(2020·湖北省武汉市·历年真题)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(2020·湖北省武汉市·历年真题)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(2020·湖北省武汉市·历年真题)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D 地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m 的式子表示).23.(2021·陕西省咸阳市·期末考试)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,ADBD =√3,求DFCF的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2√3,直接写出AD的长.24.(2020·福建省泉州市·单元测试)将抛物线C:y=(x−2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4kx与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.答案和解析1.【答案】A【知识点】实数的性质、相反数【解析】解:实数−2的相反数是2,故选:A.由相反数的定义可知:−2的相反数是2.本题考查相反数的定义;熟练掌握相反数的定义是解题的关键.2.【答案】D【知识点】二次根式有意义的条件【解析】解:由题意得:x−2≥0,解得:x≥2,故选:D.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3.【答案】B【知识点】随机事件【解析】【分析】本题考查了随机事件、必然事件、不可能事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.【解答】解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.【答案】C【知识点】轴对称图形【解析】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.【答案】A【知识点】简单组合体的三视图【解析】解:从左边看上下各一个小正方形.故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】C【知识点】用列举法求概率(列表法与树状图法)【解析】解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212=16;故选:C.根据题意画出树状图得出所有等情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】B【知识点】反比例函数图象上点的坐标特征、反比例函数的性质、分类讨论思想【解析】【分析】此题主要考查了反比例函数的性质,关键是掌握当k<0时,在图象的每一支上,y随x 的增大而增大.根据反比例函数的性质分两种情况进行讨论,①当点(a−1,y1)、(a+1,y2)在图象的同一支上时,②当点(a−1,y1)、(a+1,y2)在图象的两支上时,分别列不等式求解即可.【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a−1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a−1>a+1,此不等式无解;②当点(a−1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a−1<0,a+1>0,解得:−1<a<1,故选:B.8.【答案】C【知识点】函数的图象【解析】【分析】此题考查了函数图象的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.【解答】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5−(35−20)÷(16−4)=3.75(L/min),第24分钟时的水量为:20+(5−3.75)×(24−4)=45(L),a=24+45÷3.75=36.故选C.9.【答案】D【知识点】勾股定理、垂径定理、圆心角、弧、弦的关系、全等三角形的判定与性质【解析】【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=12BC=12DF,从而求得BC=DF=2,利用勾股定理即可求得AC.本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.【解答】解:连接OD,交AC于F,∵D是AC⏜的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF =12BC ,∵AB 是直径,∴∠ACB =90°,在△EFD 和△ECB 中{∠DFE =∠ACB =90°∠DEF =∠BEC DE =BE∴△EFD≌△ECB(AAS),∴DF =BC ,∴OF =12DF ,∵OD =3,∴OF =1,∴BC =2,在Rt △ABC 中,AC 2=AB 2−BC 2,∴AC =√AB 2−BC 2=√62−22=4√2,故选D . 10.【答案】A【知识点】图形规律问题【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n 的值是40×4=160.故选:A .对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.11.【答案】3【知识点】二次根式的性质【解析】解:√(−3)2=√9=3.故答案为:3.根据二次根式的性质化简即可解答.本题考查了二次根式的性质与化简.12.【答案】4.5【知识点】中位数【解析】解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为4+52=4.5,故答案为:4.5.根据中位数的定义求解可得.本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】1m−n【知识点】分式的加减【解析】解:原式=2(m−n)(m+n)(m−n)−m−3n(m+n)(m−n)=2m−2n−m+3n(m+n)(m−n) =m+n(m+n)(m−n)=1m−n.故答案为:1m−n.原式通分并利用同分母分式的减法法则计算,约分即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.【答案】26°【知识点】平行四边形的性质【解析】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°−∠ABC=180°−102°,∴∠BAC=26°,故答案为:26°.根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.15.【答案】①③【知识点】二次函数与一元二次方程、二次函数图象上点的坐标特征、一元二次方程的根与系数的关系*、根的判别式【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)该抛物线的对称轴为直线x=2+(−4)2在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】14t2−14t+1【知识点】翻折变换(折叠问题)、矩形的性质、三角形的面积【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.17.【答案】解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.【知识点】整式的除法、同底数幂的乘法、幂的乘方与积的乘方【解析】此题考查了同底数幂的乘除法,属于基础题.原式中括号中利用同底数幂的乘法,积的乘方计算,合并后利用单项式除以单项式法则计算即可求出值.18.【答案】证明:∵EM//FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB//CD.【知识点】平行线的判定与性质【解析】本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的性质和平行线的性质.根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB//CD.19.【答案】解:(1)60;6°;(2)A类别人数为60−(36+9+1)=14(名),补全条形图如下:=1200(名).(3)估计该社区表示“支持”的B类居民大约有2000×3660【知识点】扇形统计图、用样本估计总体、条形统计图【解析】解:(1)这次抽取的居民数量为9÷15%=60(名),=6°,扇形统计图中,D类所对应的扇形圆心角的大小是360°×160故答案为:60;6°;(2)见答案;(3)见答案.(1)由C类别的人数及其所占百分比可得被调查的总人数,用360°乘以样本中D类别人数占被调查人数的比例即可得出答案;(2)根据A、B、C、D四个类别人数之和等于被调查的总人数求出A的人数,从而补全图形;(3)用总人数乘以样本中B类别人数所占比例可得答案.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.【答案】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接AC并延长,点G关于AC的对称点为(0,5),连接(0,5),(5,0)与OA交点即为点F,如图所示:【知识点】作图-轴对称变换、作图-旋转变换、正方形的性质【解析】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等.也考查了轴对称变换.(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出G点关于直线AC的对称点(0,5),连接(0,5),(5,0)与OA的交点即为所求.21.【答案】(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD//AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=DEAD ,sin∠3=DCBC,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x 2+xy −y 2=0,解得x =−1+√52y 或x =−1−√52y(舍去),∴sin∠3=DC BC =√5−12, 即sin∠BAC 的值为√5−12.【知识点】锐角三角函数的定义、圆周角定理、切线的性质【解析】(1)连接OD ,如图,根据切线的性质得到OD ⊥DE ,则可判断OD//AE ,从而得到∠1=∠ODA ,然后利用∠2=∠ODA 得到∠1=∠2;(2)连接BD ,如图,利用圆周角定理得到∠ADB =90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=DE AD ,sin∠3=DC BC ,则AD =BC ,设CD =x ,BC =AD =y ,证明△CDB∽△CBA ,利用相似比得到x :y =y :(x +y),然后求出x 、y 的关系可得到sin∠BAC 的值.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和锐角三角函数的定义.22.【答案】解:(1)由题意得:当产品的数量为0时,总成本也为0,即当x =0时,y =0,则有:{c =0100a +10b +c =400400a +20b +c =1000,解得:{a =1b =30c =0.∴a =1,b =30;(2)由(1)得:y =x 2+30x ,设A ,B 两城生产这批产品的总成本为w ,则w =x 2+30x +70(100−x)=x 2−40x +7000,=(x −20)2+6600,由二次函数的性质可知,当x =20时,w 取得最小值,最小值为6600万元,此时100−20=80.答:A 城生产20件,B 城生产80件;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20−n)件,从B 城运往C 地的产品数量为(90−n)件,从B 城运往D 地的产品数量为(10−20+n)件,由题意得:{20−n ≥010−20+n ≥0, 解得10≤n ≤20,∴P =mn +3(20−n)+(90−n)+2(10−20+n),整理得:P =(m −2)n +130,根据一次函数的性质分以下两种情况:①当0<m ≤2,10≤n ≤20时,P 随n 的增大而减小,则n =20时,P 取最小值,最小值为20(m −2)+130=20m +90;②当m >2,10≤n ≤20时,P 随n 的增大而增大,则n =10时,P 取最小值,最小值为10(m −2)+130=10m +110.答:0<m ≤2时,A ,B 两城总运费的和为(20m +90)万元;当m >2时,A ,B 两城总运费的和为(10m +110)万元.【知识点】二次函数的应用、一元二次方程的应用【解析】(1)先根据题意得出产品的数量为0时,总成本也为0,再利用待定系数法即可求出a ,b 的值;(2)先根据(1)的结论得出y 与x 之间的函数关系,从而可得出A ,B 两城生产这批产品的总成本的和,再根据二次函数的性质即可得出答案;(3)设从A 城运往C 地的产品数量为n 件,A ,B 两城总运费的和为P ,则从A 城运往D 地的产品数量为(20−n)件,从B 城运往C 地的产品数量为(90−n)件,从B 城运往D 地的产品数量为(10−20+n)件,从而可得关于n 的不等式组,解得n 的范围,然后根据运费信息可得P 关于n 的一次函数,最后根据一次函数的性质可得答案.本题考查了待定系数法求二次函数的解析式、二次函数及一次函数在实际问题中的应用,理清题中的数量关系并明确一次函数和二次函数的相关性质是解题的关键.23.【答案】问题背景证明:∵△ABC∽△ADE ,∴AB AD =AC AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE ,AB AC =AD AE ,∴△ABD∽△ACE ;尝试应用解:如图1,连接EC ,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴AEEC =ADBD=√3,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴ADAE=√3,∴ADEC =ADAE×AECE=√3×√3=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴DFCF =ADCE=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴BDMD =DCDA,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,∴△BDM∽△CDA,∴BMCA =DMAD=√3,∵AC=2√3,∴BM=2√3×√3=6,∴AM=√BM2−AB2=√62−42=2√5,∴AD=12AM=√5.【知识点】相似形综合【解析】问题背景由题意得出ABAD =ACAE,∠BAC=∠DAE,则∠BAD=∠CAE,可证得结论;尝试应用连接EC,证明△ABC∽△ADE,由(1)知△ABD∽△ACE,由相似三角形的性质得出AEEC=AD BD =√3,∠ACE=∠ABD=∠ADE,可证明△ADF∽△ECF,得出DFCF=ADCE=3,则可求出答案.拓展创新过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,证明△BDC∽△MDA,由相似三角形的性质得出BDMD =DCDA,证明△BDM∽△CDA,得出BMCA=DMAD=√3,求出BM=6,由勾股定理求出AM,最后由直角三角形的性质可求出AD的长.此题是相似形综合题,考查了直角三角形的性质,勾股定理,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.24.【答案】解:(1)∵抛物线C:y=(x−2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x−2)2−6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x−2+2)2−6,即y=x2−6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a−2)2−6),则BD=a−2,AC=|(a−2)2−6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∵AB =OA ,∠ADB =∠OCA ,∴△ABD≌△OAC(AAS),∴BD =AC ,∴a −2=|(a −2)2−6|,解得,a =4,或a =−1(舍),或a =0(舍),或a =5,∴A(4,−2)或(5,3);(3)把y =kx 代入y =x 2−6中得,x 2−kx −6=0,∴x E +x F =k ,∴M(k 2,k 22),把y =−4k x 代入y =x 2−6中得,x 2+4k x −6=0,∴x G +x H =−4k ,∴N(−2k ,8k 2),设MN 的解析式为y =mx +n(m ≠0),则{k 2m +n =k 22−2k m +n =8k 2,解得,{m =k 2−4k n =2, ∴直线MN 的解析式为:y =k 2−4k x +2, 当x =0时,y =2,∴直线MN :y =k 2−4k x +2x 经过定点(0,2),即直线MN 经过一个定点.【知识点】二次函数综合【解析】(1)根据平移规律:上加下减,左加右减,直接写出平移后的解析式;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,设A(a,(a−2)2−6),则BD= a−2,AC=|(a−2)2−6|,再证明△ABD≌△OAC,由全等三角形的性质得a的方程求得a便可得A的坐标;(3)由两直线解析式分别与抛物线的解析式联立方程组,求出M、N点的坐标,进而求得MN的解析式,再根据解析式的特征得出MN经过一个定点.本题是一个二次函数综合题,主要考查了平移的性质,二次函数的性质,等腰直角三角形的性质,全等三角形的性质与判定,待定系数法,求函数图象的交点问题,第(2)小题关键是证明三角形全等,第(3)题关键是求出M、N点的坐标及直线MN的解析式.。

2020年武汉市中考数学模拟试卷及答案(11校联考)

3.已知a 为实数,则代数式 《2T -」2a+2 ”的最小值为( 的内角时,n 的取值范围是(7.如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中2020年武汉市中考模拟试卷8九年级数学试题一.选择题(10X 3=30分) 1. |-4|的平方根是( ) A. 16 B,受 C. 2 D. - 2 2.有13位同学参加学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设 获奖名额.某同学知进自己的比赛分数后,要判断自己能否获奖,在下列 13名同学成绩的统计量中只需知道一个量,它是(A.众数B.方差D,平均数 A. 04.某道路一侧原有路灯 B. 3106盏,相邻两盏货T 的距离为 36米, D. 9现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为 70米,则需更换的新型节能灯有( A. 54 盏B. 55 盏5.已知在 4ABC 中,/C=90°且△ABC C. 56盏不是等腰直角三角形,设)D. 57 盏sinB=n , 当/B 是最小 B.C.D.0<n<6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为则S 1+S 2的值为()2S1,B. 17C. 18的数字表示在该位置的小立方块的个数),不正确的是(乱乱8 .如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成 24个(形状不一定相同的)长方形,如果这 24个长方形的周长的和为 24,则原正方形的面积为()A. 1B. C. 49 .如图,四边形与点F 重合,点ABCD 是边长为1的正方形,四边形 EFGH 是边长为2的正方形,点 DB, D (F ) , H 在同一条直线上,将正方形 ABCD 沿F? H 方向平移至点 B与点H 重合时停止,设点 D 、F 之间的距离为x,正方形ABCD 与正方形EFGH 重叠部分移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边()।__j>B CA. AB 上B. BC 上C. CD 上D. DA 上二.填空题(6X 3=18分)11.关于x的不等式组,一的整数解共有3个,则a的取值范围是1-K>0 —*12.已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为12和4;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为-2和6,那么互”二14.如图,两个同心圆的圆心是O, AD是大圆的直径,大圆的弦AB, BE分别与小圆相切于点C , F,连接BD ,贝U / ABE+2 / D= .)的面积为y,则能大致反映y与x之间函数关系的图象是(E E10.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始甲15.如图,将矩形纸片ABCD (AD>DC)的一角沿着过点D的直线折叠,使点A落在BC 边上,落点为E,折痕交AB边交于点F.若BE : EC=m : n,则AF : FB= (用含有m、n的代数式表示).16.长为1,宽为a的矩形纸片(如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作)再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n= 时,a的值为三.解答题2 2 - 217.(6分)化简:(一^不―一一)/ W+b:当b= —2时,请你为a选择一个适”一m a当的值并代入求值.18.(7分)在学校组织的科学常识竞赛中,D四个等级,其中相应等级的得分依次记为班和二班的成绩整理并绘制成如下的统计图: 每班参加比赛的人数相同,成绩分为A, B, C, 90分,80分,70分,60分,学校将八年级一(1)此次竞赛中二班成绩在 70分以上(包括70分)的人数为(2)请你将表格补充完整:平均数(分)中位数(分)众数(分)一班 77.6 80二班90(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)19. (7分)先阅读,再利用其结论解决问题.阅读:已知一元二次方程 ax 2+bx+c=0 (a%)的两个实根为 x i, x 2,则有x i +x 2=- , x i ?x 2=.这个结论是法国数学家韦达最先发现并证明的,故把它称为 韦达定理利用此定理,可以不解方程就得出x i +x 2和x i ?x 2的值,进而求出相关的代数式的值.解决问题:对于一切不小于 2的自然数n ,关于x 的一元二次方程 x 2- (n+2) x - 2n 2=0 的两个根记作 a n, b n (n 或), 请求出的值.20. (7分)如图①,将一张直角三角形纸片 4ABC 折叠,使点A 与点C 重合,这时DE 为折痕,4CBE 为等腰三角形;再继续将纸片沿 4CBE 的对称轴EF 折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无 重叠的矩形),我们称这样两个矩形为叠加矩形(i )如图②,正方形网格中的 4ABC 能折叠成 叠加矩形”吗?如果能,请在图 ②中画出 折痕;a 3-2) (- 2)+ ••生口11 一 "‘6加11 一 力二班竟察成摄统计图请你根据以上提供的信息解答下列问题:(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC ,使其顶点A在格点上,且4ABC折成的叠加矩形”为正方形;(3)若一个三角形所折成的叠加矩形”为正方形,那么它必须满足的条件是什么?国①图②ss@21. (8分)如图,一次函数y i=k i x+2与反比例函数七二一的图象交于点A (4, m)和B (-8, - 2),与y轴交于点C.(1) k 1=, k2=;(2)根据函数图象可知,当yi>y2时,x的取值范围是 ;(3)过点A作AD^x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S ZXODE=3:1时,求点P的坐标.22. (8分)已知点O为正方形ABCD的中心,M为射线OD上一动点( M与点O , D不重合),以线段AM为一边作正方形(1)当点M在线段DF有怎样的数量及位置关系?请判断并直接写出结果;(2)当点M在线段OD的延长线上时(如图2), (1) 中的结论是否仍然成立?请结合图2说明理由.AMEF ,连接FD.OD上时(如图1),线段BM与23. (8分)(10分)如图,四边形ABCD内接于。

2020届武汉市中考数学模拟试卷有答案(Word版)(已审阅)

武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃ B .-3℃ C .11℃ D .-11℃2.若分式21+x 在实数范围内有意义,则实数x 的取值范围是( )A .x >-2B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 5.计算(a -2)(a +3)的结果是( ) A .a 2-6 B .a 2+a -6 C .a 2+6 D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5) B .(-2,5) C .(-2,-5) D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5 D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .659.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32……平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019 B .2018 C .2016 D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235 D .265二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000 成活数m325 1336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.813 0.891 0.915 0.905 0.8970.90213.计算22111m m m ---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m 16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表 学生读书数量扇形图 阅读量/本 学生人数1 152 a3 b4 5(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52=AC AD ,直接写出tan ∠CEB的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值 (3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档