大学物理(量子力学)期末考试试卷及参考答案4

合集下载

福州大学大三物理专业量子力学试卷及答案 (4)

福州大学大三物理专业量子力学试卷及答案 (4)

福州大学2004—2005学年第2学期 《量子力学》期末考试试卷及答案(B 卷)一、 简答题(每小题5分,共40分)1.用球坐标表示,粒子波函数表为 ()ϕθψ,,r ,写出粒子在立体角Ωd 中被测到的几率。

解:()⎰∞Ω=022,,dr r r d P ϕθψ2.写出一维谐振子的波函数(包括归一化系数)和能级表达式。

解:!2,)()(2/22n A x H eA x n n n x n n ⋅==-πααψα,2,1,0,21=⎪⎭⎫⎝⎛+=n n E n ω 3.写出长、宽、高分别为 c b a 、、的三维无限深势阱的能级和波函数。

解:能量本征值和本征波函数为 ⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<<<<=n c z b y a x c zn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ4.给出如下对易关系:[][][][][]?,?,?,?,?,=====2yzy z yx xL LL Lp y p x σσ解:[][][]x z yxx L i L Lpy i p x ===,0,,[][]x y zy i L L σσσ2,0,2-==5. 粒子在一维δ势阱 )()()(0>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。

解:)0(2)0()0(2ψγψψm -='-'-+6.()z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么? 解:()z L L ,2的共同本征函数是球谐函数),(ϕθlm Y 。

),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=7.一个力学量Q 守恒的条件是什么(用式子表示)? 解:有两个条件:0],[,0==∂∂H Q tQ。

安徽大学期末试卷MK量子力学题(推荐版本)【含答案】.pdf

安徽大学期末试卷MK量子力学题(推荐版本)【含答案】.pdf
∑ ψ (x) = cnψ n (x) , n
写出展开式系数 cn 的表达式。
解:
∫ cn = (ψ n (x) ,ψ (x)) =
ψ
* n
(
x)ψ
(
x)
dx

29.
一个电子运动的旋量波函数为
ψ
(
K r
,
sz
)
=
⎜⎜⎝⎛ψψ
( (
K r
,
=
K r
,

2)
=2
)⎟⎟⎠⎞
,写出表示电子自旋向上、位置在
K r
=
解: s z
=
, 2
α
=
χ1
2
(s
z
)
=
⎜⎜⎝⎛
1 0
⎟⎟⎠⎞
;sz
=−=, 2
β
=
χ−1 2 (s z )
=
⎜⎜⎝⎛
0 1
⎟⎟⎠⎞

16. 解:
[x , py]= 0
[ ] [ ] z , p z = i=
L x , L z = −i=Ly
[y , Lz ] = i=x
[ ] L2 , L z = 0
=
⎜⎜⎝⎛
0 1
1 0
⎟⎟⎠⎞
,
σy
=
⎜⎜⎝⎛
0 i
−i 0
⎟⎟⎠⎞
,
σ z = ⎜⎜⎝⎛10 −01⎟⎟⎠⎞
12. 电子自旋假设的两个要点。
解:(1)电子具有自旋角动量
K s
,它在空间任意方向的投影只有两个取值:
±
=
2;
K (2)电子具有自旋磁矩 M ,它的回转磁比值为轨道回转磁比值的 2 倍,即

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

理工大学物理工程学院电子科学与技术专业量子力学期末考试试卷及答案

理工大学物理工程学院电子科学与技术专业量子力学期末考试试卷及答案

、如果原子本身处于激发态,在没有外界光照时,也可能跃迁到某些较低能级而放出光来,(B)自发和受激吸收(C)光的吸收是可观测量,应为实数,表示力学量的算符必须是ˆx p μω+ˆx p μω-1=- (2),a a a +⎡⎤⎣⎦,a a a a +++⎤=⎦(3)ˆH 、2题各15分,第3、,要求有具体计算步骤)的矩阵为: ⎤⎥理工大学教务处试题标准答案及评分标准用纸| 课程名称—量子力学—— ( A 卷) | 一、选择题(每题3分,共15分) 装 1.B 2.C 3. A 4.D 5.B | 二、填空题 (每空2分,共20分)1. 单值的,平方可积的2. 线性算符,厄米算符3. 平均值 几率分布4. 4 200ψ,211ψ,210ψ,211ψ-5. 平均场 积三、 证明题(共15分)证明:(1)[][]ˆˆˆˆ,,21111ˆˆˆˆˆˆˆˆ,,,,2222ˆˆˆˆ,,122a a x p x p i i i x x x p p x p pi i x p p x μωμωμωμωμωμωμωμωμωμω+⎡⎤⎫⎛⎫⎡⎤=-+⎥⎪ ⎪⎣⎦⎪ ⎪⎥⎭⎝⎭⎦⎡⎤⎡⎤⎡⎤⎤=+--⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎢⎥⎦⎣⎦⎣⎦⎣⎦=-=- 其中利益[]ˆˆ,xp i = (6分) (2)[],,,a a a aa a a a a a +++⎡⎤⎡⎤=+=-⎣⎦⎣⎦ ,,,a a a a a a a a a a +++++++⎡⎤⎡⎤⎡⎤=+=⎣⎦⎣⎦⎣⎦ (4分)(3)可以求得:()ˆxa a +=+ ()ˆpa a +=-系统Hamilton 为()()()()22222ˆ1111ˆˆ2222211121222p H x a a a a a a aa a a a a μωωμωωω++++++⎡⎤=+=--++⎢⎥⎣⎦⎛⎫=+=+=+ ⎪⎝⎭(5分)四 计算题(第1、2题各15分,第3、4题各10分,要求有具体计算步骤)1、解:(1)一维无限深势阱的本征态波函数是()n n xx aπψ=(2分) 利用三角函数积化和、差,将()x ψ改写 ()2cos x xx a a ππψ=21cosx x a a ππ⎡⎤=+⎢⎥⎣⎦ 22sin 2sin cos x x x a a aπππ⎤=+⎥⎦3sin sin x x a a ππ⎤=+⎥⎦ 3x x a a ππ⎤=⎥⎦()()13x x ψψ=+⎤⎦ (4分)()x ψ是非本征态,它可以有二种本征态,部分处在()1xx aπψ=出现几率为12,能量为22122E ma π=部分处在()33x x a πψ=,出现几率为12,能量为223292E ma π= (2分) (2)处于这种状态下粒子的能量平均值22132115222E E E ma π=+= (3分)(3)粒子随时间变化的波函数为 ()222292223,sin 2n i i iE tt t ma ma nnx x x t C ee e a a ππππψψ---⎫⎛⎫==+⎪ ⎪⎪⎪⎭⎭∑ (4分) 2、解:(1)在z σ表象中,0110x σ⎛⎫=⎪⎝⎭ 00y i i σ-⎛⎫= ⎪⎝⎭ 1001z σ⎛⎫= ⎪-⎝⎭(3分)cos sin sin cos i x x y y z z i e n n n n eϕϕθθσσσσθθ-⎛⎫=++= ⎪-⎝⎭,其本征方程为cos sin cos sin 0sin cos sin cos i i i i a a a e e b b b ee ϕϕϕϕθθθλθλθθθθλ--⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=⇒= ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 有非零解的条件为cos sin 01sin cos i i e eϕϕθλθλθθλ--=⇒=±-- (4分)当1λ=时,对应的本征态为()()1cos /2sin /2i e ϕθψθ-⎛⎫=⎪⎝⎭ 当1λ=-时,对应的本征态为()()2sin /2cos /2i e ϕθψθ-⎛⎫= ⎪-⎝⎭ (2分) (2)在ˆz s本征态1/2χ下,n σ的可能测值为1± 故n σ的可能测值为1+的几率为()()()()22211/21cos /2,sin /2cos /20i e ϕψχθθθ⎛⎫== ⎪⎝⎭(3分)故n σ的可能测值为1-的几率为()()()()22221/21sin /2,cos /2sin /20i e ϕψχθθθ-⎛⎫=-= ⎪⎝⎭(3分)3、解:微扰算符的的矩阵是'''111213'''212223'''31323300'000H H H b H H H H a H H H ba **⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (1) 根据无简并微扰论,一级能量修正量是: kk H从(1)中看出,对角位置的矩阵元全是零,因此一级修正量0)0(3)0(2)0(1===E E E (2分)又二级能量公式是: 2'(2)(0)(0)nkkn k nn kH E E E ≠=-∑(2分)所需的矩阵元'nk H 已经直接由式(1)表示出,毋需再加计算,因而有:2222'''12131(2)1(0)(0)(0)(0)(0)(0)(0)(0)1121313n nnH H H b E EEEEE E E E ==+=----∑(2分) 2222'''21232(2)2(0)(0)(0)(0)(0)(0)(0)(0)2312123n nnH H H a E E E E E E E E E ==+=----∑(2分) 22222'''32313(2)3(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)332313132n nnH H Hb a E EEEEE E E E E E ==+=+-----∑(2分) 4.解:(1)利用21ˆˆ2q H P A q c φμ⎛⎫=-+ ⎪⎝⎭可得系统的哈密顿量为 222222211ˆˆˆˆˆ221ˆˆˆ2x x y y zz x y z q q q q H P A q P A P A P A q y c c c c q P By P P q yc φεμμεμ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+-+--⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=+++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4分)(2)证明:2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222x x y z x x x y x z x x q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦2222221ˆˆˆˆˆˆ,,2111ˆˆˆˆˆˆˆ,,,,0222z x y z z x z y z z z z q H P P By P P q y P c q P By P P P P P q y P c εμεμμμ⎡⎤⎡⎤⎛⎫⎡⎤=+++-⎢⎥⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎛⎫⎡⎤⎡⎤⎡⎤=+++-=⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎣⎦ˆx P 的本征函数为()/x x ip x P x e ψπ=,本征值为x p -∞<<∞ ˆz P 的本征函数为()/z zip z P x e ψπ=,本征值为z p -∞<<∞ (4分) (3)选守恒量完全集为()ˆˆˆ,,x zH P P (2分)。

量子物理试题及答案

量子物理试题及答案

量子物理试题及答案1. 请解释普朗克常数在量子力学中的作用。

答案:普朗克常数是量子力学中一个基本常数,它标志着能量与频率之间的联系。

在量子力学中,普朗克常数用于描述粒子的能量量子化,即粒子的能量只能以普朗克常数的整数倍进行变化。

2. 描述海森堡不确定性原理。

答案:海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量。

具体来说,粒子的位置不确定性与动量不确定性的乘积至少等于普朗克常数除以2π。

3. 什么是波函数坍缩?答案:波函数坍缩是指在量子力学中,当进行测量时,系统从一个不确定的量子态(波函数描述的状态)转变为一个确定的经典态的过程。

4. 简述薛定谔的猫思想实验。

答案:薛定谔的猫是一个思想实验,用来说明量子力学中的超位置原理。

在这个实验中,一只猫被放置在一个封闭的盒子里,盒子内还有一个装有毒气的瓶子和一个放射性原子。

如果原子衰变,毒气瓶就会打开,猫就会被毒死。

在没有观察之前,猫处于既死又活的超位置状态。

只有当观察者打开盒子时,猫的状态才会坍缩为一个确定的状态。

5. 什么是量子纠缠?答案:量子纠缠是量子力学中的一种现象,指的是两个或多个粒子之间存在一种特殊的关联,使得即使它们相隔很远,一个粒子的状态也会立即影响到另一个粒子的状态。

6. 解释泡利不相容原理。

答案:泡利不相容原理指出,在同一个原子内,两个电子不能具有相同的四个量子数(主量子数、角量子数、磁量子数和自旋量子数)。

这个原理解释了原子的电子排布和元素周期表的结构。

7. 描述量子隧穿效应。

答案:量子隧穿效应是指粒子能够穿越一个在经典物理学中不可能穿越的势垒。

这种现象是由于量子力学中的波函数具有非零的概率在势垒的另一侧存在,即使粒子的能量低于势垒的高度。

8. 什么是量子比特?答案:量子比特,又称为量子位,是量子计算中的基本信息单位。

与经典比特不同,量子比特可以处于0和1的叠加态,这使得量子计算机能够同时处理大量信息。

9. 简述狄拉克方程。

量子力学期末考试试卷及答案范文

量子力学期末考试试卷及答案范文

量子力学期末试题及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。

2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。

3、一个量的本征值对应多个本征态,这样的态称为简并。

4、两个力学量对应的算符对易,它们具有共同的确定值。

二、简答题:1、简述力学量对应的算符必须是线性厄米的。

答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。

综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。

2、一个量子态分为本征态和非本征态,这种说法确切吗?答:不确切。

针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。

3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收,也可能受激跃迁。

谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。

三、证明题。

2、证明概率流密度J不显含时间。

四、计算题。

1、第二题:如果类氢原子的核不是点电荷,而是半径为0r、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。

解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。

据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r rπε=-())(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,43441020********420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ,可视为一种微扰,由它引起一级修正为(基态03(0)1/210030()Zra Z e a ψπ-=) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∵0a r <<,故102≈-r a Z e 。

量子力学期末试题及答案


(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜

2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜

2⎟

i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3

量子力学期末考试题库含答案22套

量子力学期末考试题库含答案22套量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。

(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。

(4分)4、证明)??(22x x p x x p i -是厄密算符(5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量x p之间的测不准关系。

(6分)二、(15分)已知厄密算符B A ?,?,满足1??22==B A,且0=+A B B A ,求 1、在A 表象中算符A、B ?的矩阵表示; 2、在B 表象中算符A的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。

三、(15分)设氢原子在0=t 时处于状态),()(21),()(21),()(21)0,(112110311021?θ?θ?θψ-+-=Y r R Y r R Y r R r ,求1、0=t 时氢原子的E 、2L和z L ?的取值几率和平均值;2、0>t 时体系的波函数,并给出此时体系的E 、2L ?和z L ?的取值几率和平均值。

四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出+????? ??-=C C C H000000200030001? 这里,H H H'+=)0(,C 是一个常数,1<<="">五、(10分)令y x iS S S +=+,y x iS S S -=-,分别求+S 和-S 作用于z S 的本征态???? ??=+0121和=-1021的结果,并根据所得的结果说明+S 和-S 的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:)(Et r p i Ae -?=ρρηψ2、定态:定态是能量取确定值的状态。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续.3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片.4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论.5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒.6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态.8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化.9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒.10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————.2.如果已知初始三维波函数)0,(r →ψ ,不考虑波的归一化,则粒子的动量分布函数为 )(p ϕ =——————————————,任意时刻的波函数为),(t r →ψ————————————.3.在一维势阱(或势垒) 中,在x=x 0 点波函数ψ————————(连续或不连续),它的导数'ψ————————————(连续或不连续). 4.如果选用的函数空间基矢为n,则某波函数ψ处于n态的几率用 Dirac 符号表示为——————————,某算符∧A 在 ψ态中的平均值的表示为——————————.5.在量子力学中,波函数ψ 在算符∧Ω操作下具有对称性,含义是——————————————————————————,与 ∧Ω对应的守恒量 ∧F 一定是——————————算符.6.金属钠光谱的双线结构是————————————————————,产生的原因是————————————————————. 三计算题(40分)1.设粒子在一维无限深势阱中,该势阱为:V(x)=0,当0≤x ≤a ,V(x)=∞,当x<0或x>0, 求粒子的能量和波函数.(10分)2.设一维粒子的初态为)/()0,(0h x ip Exp x =ψ,求),(t x ψ.(10分)3.计算z σ表象变换到x σ表象的变换矩阵.(10分)4 .4个玻色子占据3个单态1ϕ ,2ϕ,3ϕ,把所有满足对称性要求的态写出来.(10分)B 卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数.(4分)4、在一维情况下,求宇称算符Pˆ和坐标x 的共同本征函数.(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系.(5分) 二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在A 表象中算符Bˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S. 三、(15分)线性谐振子在0=t时处于状态)21exp(3231)0,(22x x x ααπαψ-⎥⎦⎤⎢⎣⎡-=,其中ημωα=,求1、在0=t时体系能量的取值几率和平均值.2、0>t 时体系波函数和体系能量的取值几率及平均值四、(15分)当λ为一小量时,利用微扰论求矩阵⎪⎪⎪⎭⎫⎝⎛++λλλλλλ2330322021的本征值至λ的二次项,本征矢至λ的一次项. 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的.2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称.3、全同玻色子的波函数是对称波函数.两个玻色子组成的全同粒子体系的波函数为:[])()()()(2112212211q q q q S ϕϕϕϕφ+=4、宇称算符P ˆ和坐标x 的对易关系是:P x x P ˆ2],ˆ[-=,将其代入测不准关系知,只有当0ˆ=P x 时的状态才可能使Pˆ和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ˆ和x 的共同本征函数. 5、设Fˆ和G ˆ的对易关系kˆi F ˆG ˆG ˆF ˆ=-,k 是一个算符或普通的数.以F 、G 和k 依次表示Fˆ、G ˆ和k 在态ψ中的平均值,令 F FˆFˆ-=∆,G G ˆG ˆ-=∆, 则有4222k )G ˆ()F ˆ(≥⋅∆∆,这个关系式称为测不准关系.时间t 和能量E 之间的测不准关系为:2η≥∆⋅∆E t二、1、由于1ˆ2=A,所以算符A ˆ的本征值是1±,因为在A 表象中,算符A ˆ的矩阵是对角矩阵,所以,在A 表象中算符Aˆ的矩阵是:⎪⎪⎭⎫ ⎝⎛-=1001)(ˆA A 设在A 表象中算符Bˆ的矩阵是⎪⎪⎭⎫ ⎝⎛=22211211)(ˆb b b b A B ,利用0ˆˆˆˆ=+A B B A 得:02211==b b ;由于1ˆ2=B ,所以⎪⎪⎭⎫ ⎝⎛002112b b ⎪⎪⎭⎫ ⎝⎛002112b b 10012212112=⎪⎪⎭⎫ ⎝⎛=b b b b ,21121b b =∴;由于B ˆ是厄密算符,B B ˆˆ=+,∴⎪⎪⎪⎭⎫⎝⎛0101212b b ⎪⎪⎪⎭⎫ ⎝⎛=010*12*12b b *12121b b =∴令δi e b =12,(δ为任意实常数)得B ˆ在A 表象中的矩阵表示式为:⎪⎪⎭⎫⎝⎛=-00)(ˆδδi i e e A B2、在A 表象中算符Bˆ的本征方程为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-βαλβαδδ00i i e e即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-βαλαβδδi i e e ⇒ ⎩⎨⎧=-=+--00λβαβλαδδi i e e α和β不同时为零的条件是上述方程的系数行列式为零,即=---λλδδi i e e ⇒ 012=-λ 1±=∴λ对1=λ有:⎪⎪⎭⎫ ⎝⎛=+121δϕi Be ,对1-=λ有:⎪⎪⎭⎫ ⎝⎛-=-121δϕi B e所以,在A 表象中算符Bˆ的本征值是1±,本征函数为⎪⎪⎭⎫ ⎝⎛121δi e 和⎪⎪⎭⎫⎝⎛-121δi e3、从A 表象到B 表象的幺正变换矩阵就是将算符Bˆ在A 表象中的本征函数按列排成的矩阵,即⎪⎪⎭⎫⎝⎛-=-1121δδi i e e S三、解:1、0=t的情况:已知线谐振子的能量本征解为:ωη)21(+=n E n )2,1,0(Λ=n , )()exp(!2)(22x H x n x n nn ααπαϕ-=当1,0=n时有:)exp()(220x x απαϕ-=,)exp()(2)(221x x x ααπαϕ-=于是0=t 时的波函数可写成:)(32)(31)0,(10x x x ϕϕψ-=,容易验证它是归一化的波函数,于是0=t 时的能量取值几率为:31)0,21(0==ωηE W ,32)0,23(1==ωηE W ,能量取其他值的几率皆为零.能量的平均值为:ωη67323110=+=E E E2、 0>t 时体系波函数)23exp()(32)2exp()(31),(10t ix t i x t x ωϕωϕψ---=显然,哈密顿量为守恒量,它的取值几率和平均值不随时间改变,故0>t 时体系能量的取值几率和平均值与0=t 的结果完全相同.四、解:将矩阵改写成:='+=H H H ˆˆˆ0⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλ23032020300020001能量的零级近似为:1)0(1=E ,2)0(2=E ,3)0(3=E 能量的一级修正为:0)1(1=E ,λ=)1(2E ,λ2)1(3=E 能量的二级修正为:2)0(3)0(1213)0(2)0(1212)2(14λ-=-'+-'=EEH EEH E ,222)0(3)0(2223)0(1)0(2221)2(2594λλλ-=-=-'+-'=EEH EEH E ,2)0(2)0(3232)0(1)0(3231)2(39λ=-'+-'=EEH EEH E所以体系近似到二级的能量为:2141λ-≈E ,2252λλ-+≈E ,23923λλ++≈E先求出0ˆH 属于本征值1、2和3的本征函数分别为:⎪⎪⎪⎭⎫ ⎝⎛=001)0(1ϕ,⎪⎪⎪⎭⎫ ⎝⎛=010)0(2ϕ,⎪⎪⎪⎭⎫⎝⎛=100)0(3ϕ,利用波函数的一级修正公式)0()0()0()1(ii k ik ki k E E H ϕϕ-'=∑≠,可求出波函数的一级修正为:⎪⎪⎪⎭⎫ ⎝⎛-=0102)1(1λϕ,⎪⎪⎪⎭⎫ ⎝⎛-=302)1(2λϕ,⎪⎪⎪⎭⎫ ⎝⎛=0103)1(3λϕ近似到一级的波函数为:⎪⎪⎪⎭⎫⎝⎛-≈0211λϕ,⎪⎪⎪⎭⎫⎝⎛-≈λλϕ3122,⎪⎪⎪⎭⎫ ⎝⎛≈1303λϕ 五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数.以i q 表示第i )3,2,1(=i 个粒子的坐标,根据题设,体系可能的状态有以下四个:(1))()()(312111)1(q q q s φφφϕ=;(2))()()(322212)2(q q q s φφφϕ= (3)[)()()()()()()()()(311221312211322111)3(q q q q q q q q q C s φφφφφφφφφϕ++=; (4)=)4(s ϕ])()()()()()()()()([113222322112312212q q q q q q q q q C φφφφφφφφφ++一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x nϕ为该氢原子的第n 个能量本征态.求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数.解 已知氢原子的本征值为42212n e E n μ=-h ,Λ,3,2,1=n (1)将0=t时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ (2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪+⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭ (4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦h h (6)自旋z 分量的可能取值为,22-h h,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭h h (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=-⎪⎝⎭h h h(8)0>t时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭h h h (9)二. (20分) 质量为m的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a .解 对于0<<-E V 的情况,三个区域中的波函数分别为()()()()()⎪⎩⎪⎨⎧-=+==x B x kx A x x αψδψψexp sin 0321 (1)其中,ηηE m V E m k 2 ;)(20=+=α (2)利用波函数再0=x处的连接条件知,πδn =,Λ,2,1,0=n .在a x=处,利用波函数及其一阶导数连续的条件()()()()a a a a '3'232ψψψψ== (3) 得到()()()()a B n ka Ak a B n ka A ααπαπ--=+-=+ex p cos ex p sin (4)于是有()αkka -=tan (5)此即能量满足的超越方程.当12E V =-时,由于1tan 000-=-=⎪⎪⎭⎫ ⎝⎛ηηηmV mV a mV (6)故4ππ-=n a mV η()Λ,3,2,1=n (7)最后得到势阱的宽度0 41mV n a ηπ⎪⎭⎫ ⎝⎛-= (8)三、(20分) 证明如下关系式(1)任意角动量算符ˆj r 满足 ˆˆˆi j j j ⨯=r r r h .证明 对x 分量有()ˆˆˆˆˆˆˆ=i y z z y xxj j j j j j j ⨯=-r r h同理可知,对y 与z 分量亦有相应的结果,故欲证之式成立.投影算符ˆn pn n =是一个厄米算符,其中,{}n 是任意正交归一的完备本征函数系.证明在任意的两个状态ψ与ϕ之下,投影算符ˆn p的矩阵元为ˆn pn n ψϕψϕ=而投影算符ˆn p的共軛算符ˆnp+的矩阵元为±{*****ˆˆˆn n n p p p n n n n n n ψϕψϕϕψϕψϕψψϕ+⎡⎤===⎣⎦=⎡⎤⎡⎤=⎣⎦⎣⎦显然,两者的矩阵元是相同的,由ψ与ϕ的任意性可知投影算符ˆn p是厄米算符. 利用()()()*''kkkx x x x ψψδ=-∑证明()()ˆˆx mk x mn kn kxpx p =∑,其中,(){}kx ψ为任意正交归一完备本征函数系. 证明()()()()()()()()()()()()()()()()()()'''**''*'''*'*''*'*''ˆˆd ˆd d ˆd d ˆd d ˆd d ˆx m x n mn mx n mn x m k k n x kmkknxkmkxknkxp x x xpx x x x x x x px x x x x x x px x x x x x x px x x x x x x px x pψψψδψψδψψψψψψψψψ∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞∞∞-∞-∞==-=-===⎰⎰⎰⎰⎰∑⎰⎰∑⎰⎰∑四、(20分) 在2L 与z L表象中,在轨道角动量量子数1l=的子空间中,分别计算算符ˆx L 、ˆy L 与ˆz L 的矩阵元,进而求出它们的本征值与相应的本征矢.解 在2L 与z L 表象下,当轨道角动量量子数1l =时,1,0,1m =-,显然,算符ˆx L 、ˆy L 与ˆz L 皆为三维矩阵.由于在自身表象中,故ˆzL是对角矩阵,且其对角元为相应的本征值,于是有100ˆ000001z L ⎛⎫⎪= ⎪⎪-⎝⎭ (1) 相应的本征解为1011; 0000; 100; 01z z z L L L ψψψ-⎛⎫⎪== ⎪⎪⎝⎭⎛⎫ ⎪== ⎪⎪⎝⎭⎛⎫ ⎪=-= ⎪⎪⎝⎭h h (2)对于算符ˆx L 、ˆy L 而言,需要用到升降算符,即()()1ˆˆˆ21ˆˆˆ2i x y L L L L L L +-+-=+=- (3)而ˆ,1L lm m ±=± (4)当1,1,0,1l m ==-时,显然,算符ˆx L 、ˆy L 的对角元皆为零,并且,ˆˆ1,11,11,11,10ˆˆ1,11,11,11,10x yx yL L L L -=-=-=-= (5)只有当量子数m 相差1±时矩阵元才不为零,即ˆˆˆˆ1,11,01,01,11,01,11,11,0ˆˆ1,01,11,11,0ˆˆ1,11,01,01,1x x x xy yy yL L L L L L L L -=-===-==-== (6)于是得到算符ˆx L、ˆyL 的矩阵形式如下0100i 0ˆˆ101; i 0i 0100i 0x y L L -⎛⎫⎛⎫⎪⎪==-⎪⎪⎪⎪⎭⎭ (7) yL ˆ满足的本征方程为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321321 0ii 0i 0i 02c c c c c c λη (8)相应的久期方程为2i 02i 2i 02i =-----λλληηηη (9)将其化为023=-λλη(10)得到三个本征值分别为ηη-===321;0 ;λλλ (11)将它们分别代回本征方程,得到相应的本征矢为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=i 2i 21 ;10121 ;i 2i 21321ψψψ (12) ˆx L 满足的本征方程为112233010101 010c c c c c c λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (13)相应的久期方程为0λ-= (14)将其化为023=-λλη (15) 得到三个本征值分别为ηη-===321;0 ;λλλ (16)将它们分别代回本征方程,得到相应的本征矢为12311111; 0; 22111ψψψ⎛⎫⎛⎫⎛⎫⎪=== ⎪⎪ ⎪ ⎪-⎭⎝⎭⎝⎭ (17) 五、(20分) 由两个质量皆为μ、角频率皆为ω的线谐振子构成的体系,加上微扰项21 ˆx x W λ-=(21,xx 分别为两个线谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正. 提示: 线谐振子基底之下坐标算符的矩阵元为⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n n x m δδα式中,ημωα=. 解 体系的哈密顿算符为W H H ˆˆˆ0+= (1)其中()()212221222210 ˆ21ˆˆ21ˆx x Wx x p p H λμωμ-=+++= (2)已知0ˆH 的解为()()()()2121021,1x x x x n E n n n n ϕϕψωα=+=η (3)其中n fn n n ,,3,2,1,2,1,0,,21ΛΛ==α (4)将前三个能量与波函数具体写出来()()()()()()()()()()()()00001020111011212110202212102220122231112; 2, 3, E x x E x x x x E x x x x x x ωψϕϕωψϕϕψϕϕωψϕϕψϕϕψϕϕ=========h h h (5)对于基态而言,021===n n n ,10=f ,体系无简并.利用公式⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n m n n x δδαϕϕ (6)可知()0ˆ0010==ψψW E()∑∑≠=-=01000020ˆˆn f nn n nE E W W E αααψψψψ (7)显然,求和号中不为零的矩阵元只有2232302ˆˆαλψψψψ-==W W (8)于是得到基态能量的二级修正为()32242020020841ωμλαλη-=-=E E E (9)第二激发态为三度简并,能量一级修正满足的久期方程为()()()123332312312222113121211=---E W W W W E W W W WE W (10)其中1122331221133123320W W W W W W W W W =========(11)将上式代入(10)式得到()()121200E E --= (12)整理之,()12E 满足()()()23112240E E λα-+= (13)于是得到第二激发态能量的一级修正为()()()21231222121 ;0 ;αλαλ==-=E E E (14)1. 微观粒子具有 波粒 二象性.2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=hν, p=/h λ . 3.根据波函数的统计解释,dxt x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 .4.量子力学中力学量用 厄米 算符表示.5.坐标的x 分量算符和动量的x 分量算符xp 的对易关系为:[],x p i =h .6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符F ˆ的本征值 .7.定态波函数的形式为: t E i n n ex t x η-=)(),(ϕψ.8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 .9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _.10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2η±.1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明:zy x L i L L ˆ]ˆ,ˆ[η=]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)(ηη+-=ˆˆ2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度证明:考虑 Schr ödinger 方程及其共轭式:在空间闭区域τ中将上式积分,则有:1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率.解:在此状态中,氢原子能量有确定值22222282ηηs s e n e E μμ-=-=)2(=n ,几率为1角动量平方有确定值为2222)1(ηηλλ=+=L)1(=λ,几率为1角动量Z 分量的可能值为2|),(|),(),(),(t r t r t r t r ρρρρψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂h r r rh 0=•∇+∂∂J tρω][2ψ∇ψ-ψ∇ψ=**μηρi J 22[](1)2i V t μ∂ψ=-∇+ψ∂h h 22[](2)2i V t μ**∂-ψ=-∇+ψ∂h h (1)(2)*ψ⨯-ψ⨯将式得:][2222****ψ∇ψ-ψ∇ψ-=ψ∂∂ψ+ψ∂∂ψμηηηt i t i ][22ψ∇ψ-ψ∇ψ•∇=ψψ∂∂***μηη)(t i τμτττd d dt d i ][22ψ∇ψ-ψ∇ψ•∇=ψψ***⎰⎰ηη)(τμτττd i d dt d ][2ψ∇ψ-ψ∇ψ•∇-=ψψ***⎰⎰η)(ττωττd J d t r dtdρρ•∇-=⎰⎰),(0=•∇+∂∂J tρω01=Z L η-=2Z L其相应的几率分别为41, 432、(10分)求角动量z 分量 的本征值和本征函数.解:波函数单值条件,要求当φ 转过 2π角回到原位时波函数值相等,即:求归一化系数最后,得 L z 的本征函数3、(20分)某量子体系Hamilton量的矩阵形式为:设c << 1,应用微扰论求H 本征值到二级近似.解:c << 1,可取 0 级和微扰 Hamilton 量分别为:H 0 是对角矩阵,是Hamilton H 0在自身表象中的形式.所以能量的 0 级近似为:E 1(0)= 1 E 2(0)= 3⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎭⎫ ⎝⎛-=c c c H H 0000002000300010⎪⎪⎪⎭⎫ ⎝⎛-=2000301c c cH ˆzd L i d φ=-h ππφφψππ2112||2202220=→===⎰⎰c c d c d Λη,2,1,021)(±±=⎪⎩⎪⎨⎧==m e m l im m z φπφψ归一化系数。

(完整版)量子力学期末考试题及解答

一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。

2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。

解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档