Annealing twin formation study of cold-drawn copper wires frome EBSD measurements
冶金专业英语词汇(M)

冶金专业英语词汇(M) 冶金专业英语词汇(M) machinability 可切显machinability annealing 改善加工性的退火machinable cast iron 可淆铁machine casting 机械化铸造machine charging 机械装料machine molding 机旗型machine side 推焦侧machine welding 机械化焊接machine work 机械加工machinery casting 机械化铸造machining 机械加工machining allowance 加工余量machining property 可切显mackintoshite 黑铀缸矿macle 双晶macro analysis 常量分析macro etching 宏观浸蚀macroaxis 长轴macrocrack 宏观裂纹macrogranular structure 粗粒组织macrograph 宏观组织相片macrographic test 宏观照相检验macrography 宏观检验macroscopic segregation 宏观偏析macroscopic stress 宏观应力macroscopic structure 宏观组织macrosection 宏观磨片macrosegregation 宏观偏析macrostress 宏观应力macrostructure 宏观组织mag coke 镁焦magnalium 马格纳利乌姆铝镁铸造合金magnesia 苦土magnesia brick 镁砖magnesia carbon brick 镁碳砖magnesia carbon refractory 镁碳质耐火材料magnesia cement 菱镁土水泥magnesian lime 镁石灰magnesian limestone 镁质石灰岩magnesioferrite 镁铁矿magnesite 菱镁矿magnesite brick 镁砖magnesite dolomite refractory 镁质白云石耐火材料magnesite lining 镁砂内衬magnesite refractory 镁质耐火材料magnesium 镁magnesium alloy 镁合金magnesium base alloy 镁基合金magnesium chloride 氯化镁magnesium nitride 氮化镁magnesium oxide 氧化镁magnesium sulfate 硫酸镁mag 磁石mag crane 电磁铁起重机mag steel 磁石钢magic aftereffect 磁性后效magic aging 磁时效magic alloy 磁性合金magic analysis 磁分析magic anisotropy 磁蛤异性magic annealing 磁性退火magic blowout 磁吹熄弧magic circuit 磁路magic concentration 磁力选矿magic crack detection 磁力探伤法magic cycle 磁化循环magic domain 磁畴magic field 磁场magic field intensity 磁场强度magic field strength 磁场强度magic filter 磁性过滤器magic flaw detection 磁力探伤法magic flaw detector 磁力探伤器magic flux 磁通magic flux density 磁通密度magic hammer 磁性锤magic hysteresis 磁滞magic induction 磁感应magic inspection 磁力探伤法magic iron ore 磁铁矿magic material 磁性材料magic moment 磁矩magic needle 磁针magic permeability 磁导率magic polarization 磁极化magic pole 磁极magic potential 磁位magic properties 磁特性magic pyrite 磁黄铁矿magic quantum number 磁量子数magic resistance 磁阻magic rigidity 磁刚性magic saturation 磁性饱和magic separation 磁选magic separator 磁力选矿机magic susceptibility 磁化率magic transformation 磁性变化magic viscosity 磁粘性magically hard alloy 硬磁合金magically soft alloy 软磁合金magism 磁性magite 磁铁矿magite concentrate 磁铁精矿magization 磁化magization curve 磁化曲线magizing 磁化magizing force 磁化力magizing roasting 磁化焙烧magograph 磁强记录仪magography 磁记录法magometer 磁强计magometric analysis 测磁分析magomotive force 起磁力magostriction 磁致伸缩magostriction constant 磁致伸缩常数magnification 放大倍数main deformation 治变main drive 肢动main frequency furnace 工频电炉main roof 织顶main table 工柞道maitlandite 钍铅铀矿malachite 孔雀石malacon 变水锆石maldonite 黑铋金矿malleability 可锻性;可塑性malleable iron 可锻铸铁malleablizing 韧化mallet 木锤malmstone 砂岩mandrel 芯杆mandrel bar 芯棒mandrel coiler 筒式卷取机mandrel die 舌形组合模mandrel drawing 长芯棒拔制mandrel extractor 芯棒抽出机mandrel holder 芯棒座mandrel mill 芯棒式无缝管轧机mandrel stripper 芯棒抽出机mandrel stripping 芯棒抽出mandrel uncoiler 卷筒式开卷机manganate 锰酸盐manganese 锰manganese brass 锰黄铜manganese bronze 锰青铜manganese chloride 氯化锰manganese dioxide 二氧化锰manganese dithionate 过二硫酸锰manganese green 绿锰矿manganese iron 含锰生铁manganese killed steel 锰镇静钢manganese ore 锰矿manganese oxide 氧化锰manganese steel 锰钢manganese sulfate 硫酸锰manganese superoxide 过氧化锰manganese yield 锰收得率manganic acid 锰酸manganic oxide 三氧化二锰manganic salt 正锰盐manganin 锰铜manganite 亚锰酸盐manganosite 方锰矿manganous acid 亚锰酸manganous oxide 氧化亚锰manganous salt 亚锰盐mangling 矫直manipulation 操纵manipulator 操纵器;推床manipulator slide beam 推床的导板mannesmann mill 带桶形轧辊的穿孔机mannesmann piercer 带桶形轧辊的穿孔机mannesmann process 曼内斯曼轧管法manometer pressure 计示压力mantle 铁罩mantle ring 炉身托圈manual welding 手工焊接manufacturing process 生产过程maraging 马氏体时效maraging steel 马氏体时效钢marble fracture 大理石状断口marcasite 白铁矿margin 边缘marine corrosion 海水腐蚀mark 痕迹market brass 普通黄铜marking 标志marl 泥灰土marl brick 泥灰岩砖marmatite 铁闪锌岩marsh gas 沼气martempering 马氏体等温淬火martensite 马氏体martensite finish point mf 点martensite plate 马氏体片martensite point 马氏体转变点martensite start point ms 点martensite structure 马氏体组织martensitic aging 马氏体时效martensitic phase 马氏体相martensitic range 马氏体区域martensitic steel 马氏体钢martensitic transformation 马氏体转变martin furnace 平炉martin process 平炉炼钢法martite 假像赤铁矿martite concentrate 假像赤铁矿精矿mash 矿浆mash seam welding 滚压电阻缝焊mass 质量mass action 质量酌mass analysis 质量分析mass concentration 质量浓度mass defect 质量筐mass effect 质量效应mass percent 质量白分比mass spectrograph 质谱仪mass spectrography 质谱分析法mass spectrometer 质谱分光计mass spectrometry 质谱分析mass spectroscopy 质谱学mass spectrum 质谱mass transfer 质量转移massicot 铅黄massive martensite 块状马氏体massive minerals 块状矿物master 标准规master alloy 中间合金master form 阴模master gage 标准规master pattern 原模型mat etching 变暗浸蚀mat surface 消光外表match plate 对型板material balance 物料平衡mathematical model 数学模型matrix 基体;模型;脉石matrix metal 基体金属matte 锍冰铜matte smelting 冰铜熔炼maximum load 最高负荷maximum permeability 最大磁导率maximum stress 最大应力mean error 平均误差mean free path 平均自由行程mean pressure 平均压力mean square error 均方误差mean stress 平均应力measuring apparatus 测量装置measuring cell 测力仪measuring head 移动定尺挡板measuring hopper 计量料包measuring instrument 测量仪器mechanical alloying 机械合金化mechanical anisotropy 机械性能蛤异性mechanical charging 机械装料mechanical classifier 机械分级机mechanical cleaning 机械清理mechanical descaling 机械除鳞mechanical energy 机械能mechanical equivalent of heat 机械的热当量mechanical metallization 机械金属化mechanical metallurgy 加工冶金学mechanical mixture 机械混合物mechanical molding 机旗型mechanical passivity 机械钝态mechanical plating 机械镀覆mechanical polishing 机械抛光mechanical press 机械压力机mechanical properties 机械性质mechanical rammer 缓冲器mechanical strength 机械强度mechanical stress 机械应力mechanical stripping 机械脱模mechanical test 机械性能试验mechanical tube 结构用管mechanical twin 形变孪晶mechanism 机构medium 介质medium carbon steel 中碳钢medium plate 中板medium section mill 中型轧机medium shape 中型型钢meehanite 米哈奈特铸铁melaconite 黑铜矿melanite 黑榴石melt 熔解melt backing 焊药垫melt down period 熔化期melt through 焊穿meltability 可熔性meltdown 熔化melter 熔炼炉melting 熔解melting furnace 熔炼炉melting heat 熔化热melting loss 熔化损melting point 熔点melting pot 熔化锅melting temperature 熔化温度melting zone 熔化带membrane 膜mendelevium 钔meniscus 弯月面merchant bar 商品条钢merchant iron 商品条钢merchant mill 小型轧机mercuric pound 正汞化合物mercurous pound 亚汞化合物mercury 汞merit number 质量指标mesh 筛目mesh analysis 筛分析mesh number 筛号mesh size 筛孔径metacinnabarite 黑辰砂矿metal 金属metal arc inert gas welding 金属惰性气体电弧焊metal arc welding 金属弧焊接metal bath 金属浴metal beating 金属的锤还薄metal carbonyl 羰基金属metal cased brick 铁皮砖metal cementation 渗金属法metal ceramic technique 金属陶瓷法metal ceramics 金属陶瓷metal charge 金属装料metal coating 金属敷层metal deposit 熔敷金属metal electrode 金属电极metal fall 金属提取率metal fog 金属雾metal foil 金属箔metal forming 金属成形metal gauze 金属网metal intensity 金属单位消耗量metal level control 金属液面第metal loss 金属烧损metal mold 金属铸型metal pattern 金属模metal peration 机械粘砂metal physics 金属物理学metal pickup 金属粘接metal powder rolling mill 金属粉末轧机metal products 金属制品metal scrap 废金属metal sheet 金属板metal spraying 金属喷镀metal sticking 金属粘接metal stream shrouding 金属粒护metallic bond 金属键metallic charge 金属装料metallic coating 镀金属metallic pound 金属化合物metallic crystal 金属晶体metallic element 金属元素metallic fume 金属烟气metallic glass 金属玻璃metallic inclusions 金属夹杂物metallic iron 金属铁metallic luster 金属光泽metallic paint 金属涂料metallic phase 金属相metallic ring 金属声metallic silicon 金属硅metallic solution 金属溶液metallic state 金属态metallicity 金属性能metallization 敷金属metallized charge 金属化炉料metallized sinter 金属化烧结矿metallizing 敷金属metallographer 金相学家metallographic etchant 金相腐蚀液metallographic examination 金相研宄metallographic microscope 金相显微镜metallographic microscopy 金相显微学metallographic section 金相试样metallographic specimen 金相试样metallographic study 金相研宄metallographic test 金相检验metallographist 金相学家metallography 金相学metalloid 类金属metalloscope 金属显微镜metalloscopy 金属显微检查metallostatics 金属静力学metallothermics 金属热复原法metallothermy 金属热复原metallurgical chemistry 冶金化学metallurgical coke 冶金焦metallurgical furnace 冶金炉metallurgical industry 冶金工业metallurgical length 冶金长度metallurgical process 冶金过程metallurgical reactor 冶金反响堆metallurgical works 冶金工厂metallurgist 冶金学家metallurgy 冶金metasilicate 偏硅酸盐metastability 亚稳定性metastable condition 亚稳态metastable equilibrium 准稳平衡metastable phase 准稳定相metastable state 亚稳态metatectic transformation 包晶转变metatungstate 偏钨酸盐meteoric iron 陨铁methane 甲烷method of impregnation 浸渍法method of least squares 最小二乘法meyer hardness 迈耶耳硬度mf point mf 点miargyrite 辉锑银矿miarolitic structure 晶洞状构造mica 云母micelle 胶粒microalloyed steel 微合金化钢microalloying 微量合金化microanalysis 微量分析microbiological leaching 微生物浸出microchemical analysis 微量化学分析microcline 钾微斜长石microconstituent 显微组织成份microcrack 微裂纹microcreep 微观蠕变microcrystal 微晶microelement 微量元素microetching 显微腐蚀microfissure 微裂纹micrograph 显微照片micrography 显微检验microhardness 显微硬度microhardness tester 显微硬度计microhardness testing 显微硬度试验microlite 微晶;细晶石microlitic structure 微晶体组织micromanometer 微压计micrometer 千分尺micrometer stop 千分尺定位器microphotographic apparatus 显微照相机microphotography 显微照相术microporosity 微观孔隙率microradiograph 显微射线像microsclerometry 显微硬度测定microscope 显微镜microscopic analysis 显微分析microscopic examination 显微镜检验microscopic segregation 显微偏析microscopic stress 微观应力microscopic structure 显微组织microsection 显微磨片microsegregation 显微偏析microshrinkage 显微缩孔microslice 显微磨片microstrain 微应变microstress 微观应力microstructure 显微组织microstructure analysis 显微组织分析microthrowing power 微观电镀本领middle flask 中间砂箱middle plate mill 中板轧机middle roll 中辊middlings 中间产品midland ross process 米德兰德罗斯法midrex process 米德雷斯直接炼铁法mig welding 金属惰性气体电弧焊mild steel 软钢mild steel plate 软钢板mild steel sheet 低碳钢薄板milk of lime 石灰乳mill 工厂mill approach table 轧机前的辊道mill bay 轧机跨mill edge 轧制的边mill finish 精轧mill hardening 轧制余热淬火mill housing 轧机机架mill layout 轧机布置mill opening 轧辊开度mill pack 叠轧板材mill pinion 齿轮辊mill scale 轧钢皮mill scale powder 轧钢皮粉mill screw 第螺钉mill setting 轧机蝶mill setup 轧机蝶mill speed 轧制速度mill springing 轧机机座的弹跳mill stand change 换机座mill table 轧机辊道mill torque 轧制力矩mill train 轧机机组milled powder 碎粉miller indices 密勒指数millerite 针硫镍矿milling 粉碎milling fluid 研磨液体milling liquid 研磨液体milliscope 金属液温度报警器mimetite 砷铅矿mine 矿山mineral 矿物mineral acid 无机酸mineral position 矿物组成mineral deposit 矿床mineral dressing 选矿mineral processing 选矿mineral salt 矿物盐mineral substance 矿物质mineral water 矿泉水mineral wool 渣棉mineralization 成矿酌mineralizing 成矿酌mineralogical analysis 矿物分析mineralogy 矿物学mite 鲕状褐铁矿mini mill 小型钢铁厂mini steel mill 小型钢铁厂mining 采矿minium 红铅minus sieve powder 筛下粉末minute adjustment 精调mirabilite 芒硝misch metal 混合稀土金属miscibility 溶混性miscibility gap 溶混间隔mismatch 不一致mismatch in mold 错箱misorientation 错取向misrun 浇不满miss rolling 欠轧mistrimmed forging 不正确切边的锻件mixed coke oven and blast furnace gas 焦炉与高炉混合煤气mixed crystal 固溶体;混合晶mixed dislocation 混合型位错mixed gas 混合煤气mixed joint 混合接头mixed potential 混合电位mixed scrap 混合废钢铁mixer 混合机mixer ladle 混铁炉式铁水罐mixer metal 混铁炉生铁mixing 混合mixing ladle 混铁炉式铁水罐mixing power 搅拌力mixing proportion 混合比mixing ratio 混合比mixing valve 混合阀mixture 混合物mixture heat 混合热mobile dislocation 可动位错mobile mixer 移动式混铁炉mobile phase 怜相mobility 迁移率model 模型model test 模型试验modification 变体modifier 变质剂modifying addition 改良剂modulated structure 形变织构module 模数modulus 模数modulus of elasticity 弹性模数modulus of pressing 压缩模量modulus of rigidity 刚性模数modulus of volume elasticity 体积弹性系数moebius process 莫比斯银电解法mohs hardness scale 莫斯硬度标moire fringe method 莫阿干预法moissanite 碳硅石moistening 湿润moistness 湿度moisture 湿分moisture content 含水量moisture meter 湿度计mol 克分子molar concentration 克分子浓度molar conductivity 克分子导电率molar heat capacity 克分子热容量molar ratio 克分子比molar solution 克分子溶液molarity 重量克分子浓度mold 型mold casting 型铸造mold cavity 铸模型腔;结晶苹mold clamp 模夹钳mold cooling jacket 结晶其却水套mold core 模芯mold dilatation 铸模膨胀mold dismantling 打箱mold jacket 模箱mold level 结晶期钢液面mold oscillation frequency 结晶岂动频率mold paint 铸型涂料mold saddle 铸模托台mold slag 铸模内渣mold stool 锭盘mold table 结晶岂动台mold taper 结晶票度mold wash 铸型涂料molded section 冷弯型钢molder 造型工;造型装置molder tool 造型工具molder's rule 收缩尺molding 造型;铸造;铸件molding box 型箱molding flask 型箱molding machine 造型机molding material 造型材料molding sand 型砂mole fraction 克分子分数molecular crystal 分子结晶molecular distillation 分子蒸馏molecular lattice 分子晶格molecular mass 分子质量molecular sieve 分子筛molecular weight 分子量molecule 分子molten bath 熔融浴molten metal 熔融金属molten pool 熔池molten salt 熔融盐molybdate 钼酸盐molybdenite 辉钼矿molybdenum 钼molybdenum base alloy 钼基合金molybdenum chloride 氯化钼molybdenum disulfide 二硫化钼molybdenum glance 辉钼矿molybdenum ore 钼矿molybdenum oxide 氧化钼molybdenum steel 钼钢molybdenum sulfide 硫化钼molybdic acid 钼酸molybdic acid anhydride 钼酸酐molybdite 钼华monazite 独居石monazite sand 独居石砂mond process 蒙德法monel 蒙奈尔铜镍合金monel metal 蒙奈尔铜镍合金monkey 渣口小套monoblock casting 块铸monoblock machine 单次拉丝机monochromator 单色光镜monoclinic lattice 单斜晶格monoclinic system 单斜晶系monocrystal 单晶体monocrystal pulling 拉单晶monocrystal substrate 单晶基板monolithic lining 整体炉衬monolithic lining material 整体炉衬材料monolithic refractory 整体耐火材料monopolar system 单极接线法monosilicate 单硅酸盐monosize powder 单粒度粉末monotectic horizontal 偏晶线monotectic line 偏晶线monotectic point 偏晶点monotectic reaction 偏晶反响monotectic transformation 偏晶转变monotectoid reaction 偏析反响monotonous loading 单岛荷monotype metal 单式铸字合金monovariant system 单变系monte carlo simulation 蒙特卡罗模拟mop 挡渣器挡渣杆morphology 形态学mort phase 死相mortar 火泥mosaic block 嵌镶块mosaic structure 嵌镶构造moseley numbers 莫塞莱数mossite 重铌钽矿mossy zinc 粒状锌mother blank 母板mother liquid 母液mother liquor 母液mottled iron 麻口铁mottling 斑点mottramite 矾铜铅矿mountain cork 石棉mouth 炉喉movable armor 可动炉喉护板moving bed process 动态床法moving dislocation 移动位错ms point ms 点muck bar 熟铁粗轧坯mud gun 泥炮muff joint 套管接头muffle furnace 马弗炉muller 碾碎机mullite refractory 莫来石耐火材料multiaxial deformation 多轴变形multiblock machine 屡次拉丝机multiponent solution 多元溶液multiponent system 多元系multicyclone 多管旋风除尘器multidie machine 屡次拉丝机multiflame torch 多线式火嘴multihearth roaster 多层焙烧炉multihole lance 多孔喷枪multilayer welding 多层焊multilayered pipe 多层管multilayered tube 多层管multipass welding 多道焊接multiple drawing 多线式拉拔multiple pressing 复式冲压multiple pressing technique 复式压制工艺multiple process 多段法multiple slip 复滑移multiple spot welding 多点焊multiple stage nitriding 多段渗氮multiplex heat treatment 复合热处理multiplication of dislocation 位错的增殖multiroll flattener 多辊矫直机multiroll mill 多辊式轧机multiroll stand 多辊式机座multiroll straightener 多辊矫直机multirun welding 多道焊接multistage drawing 程序拉拔multistage grate 多层炉multistage process 多段操专multistand mill 多机座轧机multistrand drawing mill 多线拉拔机multistrand rolling 多线轧制multistrand rope 多股钢丝绳multistrand straightening 多条矫直mundic 黄铁矿muntz brass 蒙次黄铜muntz metal 蒙次黄铜muscovite 白云母mushy state 浆糊状态music wire 钢琴丝muthmannite 杂碲金银矿mutual solubility 互溶度。
中间退火对孪晶结构Mg-Nd合金组织演变的影响

中文摘要摘要镁合金室温下绝对强度低和塑性变形能力较差是阻碍其广泛应用的瓶颈问题。
滑移和孪生是镁合金重要的塑性变形机制,由于室温下只能开启有限的滑移系,所以孪生对塑性变形的协调变得十分重要。
孪晶结构镁合金中的退火强化是近年来发现的一个有趣的现象,即,通过预变形和中间退火处理可以让固溶原子偏聚在孪晶界上产生钉扎作用,使孪晶在后续变形过程中的长大受到抑制,从而起到强化作用。
然而,孪晶界被钉扎后,合金在后续变形过程中的组织演变规律尚缺乏研究。
对孪晶结构镁合金组织演变规律的探讨有助于更深入的理解孪生变形机制,为调控孪生行为提供科学依据。
本课题选取了Nd原子百分比为0.03%(1#)和0.18%(2#)的两种Mg-Nd 合金,研究对比中间退火后孪晶在进一步变形过程中的演变规律。
对上述合金挤压棒材先进行预压缩得到预变形样品,然后对一部分样品在200℃下退火6h后做再压缩实验,另一部分样品不进行退火直接做再压缩实验。
采用电子背散射技术(EBSD)原位观察研究孪晶的演变,统计分析了孪晶的特征参量,包括孪晶的数量和体积分数、孪晶形核和长大的施密特因子,以及孪晶形核和长大对孪生过程的贡献等,并探讨了中间退火和合金元素对孪晶演变的影响规律。
研究结果表明:①对于经过中间退火的1#合金孪晶演变过程,再压缩后孪晶的体积分数增加量为14%,其中形核的贡献为14%,长大的贡献为86%。
再压缩过程中孪生变形由孪晶长大主导。
孪晶形核的数量分数为24%,孪晶长大的数量分数为38%。
孪晶形核的平均施密特因子(SF)为0.35,孪晶长大的平均SF为0.47。
孪晶形核的SF主要分布在0.4-0.3范围内,孪晶形核的SF等级主要是R1和R2等级(R1~R6分别对应于孪晶六个变体中最大~最小的等级),孪晶长大的SF主要分布在0.5-0.4范围内,孪晶长大的SF等级主要是R1和R2等级。
②对于不经中间退火的1#合金孪晶演变过程,再压缩后孪晶的体积分数增加量为22%,其中形核的贡献为59%,长大的贡献为41%。
[整理]-12-04tensile break stress拉伸断裂应力
![[整理]-12-04tensile break stress拉伸断裂应力](https://img.taocdn.com/s3/m/51a0b283f8c75fbfc67db22f.png)
tensile break stress拉伸断裂应力tensile hoop stress周向拉应力tensile yield stress拉伸屈服应力tensile stress relaxation拉伸应力弛豫ultimate tensile stress极限张应力;极限拉伸应力;极限拉应力;极限抗拉应力tensile stress at break断裂拉伸应力longitudinal tensile stress纵向拉应力critical tensile stress临界拉应力intensity of tensile stress拉伸应力强度annealing furnace[炉窑]退火炉;[炉窑]退火窑;[炉窑]回火炉;[炉窑]退炉子annealing temperature[机]退火温度;黏合温度annealing oven[炉窑]退火炉;热处理炉straightening annealing矫直退火annealing twin退火孪晶;退火双晶magnetic annealing磁性退火;磁场退火annealing point退火点;钝化点flame annealing火焰退火local annealing局部退火annealing furnace 退火炉annealing temperature 退火温度;退火点annealing treatment 退火处理continuous annealing furnace 连续退火炉thermal annealing 加温退火;热处理(退火)spheroidizing annealing 球化退火bright annealing 光亮退火;非氧化退火high temperature annealing 高温退火batch annealing 分批退火,箱式炉退火recrystallization annealing 再结晶退火isothermal annealing 等温退火,再结晶退火intermediate annealing [冶金]中间退火diffusion annealing 扩散退火,均匀化退火annealing furnace 退火炉annealing temperature 退火温度;退火点annealing treatment 退火处理continuous annealing furnace 连续退火炉thermal annealing 加温退火;热处理(退火)spheroidizing annealing 球化退火bright annealing 光亮退火;非氧化退火high temperature annealing 高温退火batch annealing 分批退火,箱式炉退火recrystallization annealing 再结晶退火isothermal annealing 等温退火,再结晶退火intermediate annealing [冶金]中间退火diffusion annealing 扩散退火,均匀化退火annealing furnace 退火炉annealing temperature 退火温度;退火点annealing treatment 退火处理continuous annealing furnace 连续退火炉thermal annealing 加温退火;热处理(退火)spheroidizing annealing 球化退火bright annealing 光亮退火;非氧化退火high temperature annealing 高温退火batch annealing 分批退火,箱式炉退火recrystallization annealing 再结晶退火isothermal annealing 等温退火,再结晶退火intermediate annealing [冶金]中间退火diffusion annealing 扩散退火,均匀化退火mismatch repair 错配修复;失配校正impedance mismatch 阻抗失配funding mismatch资金错配phase mismatch相位失配;相位不匹配path mismatch光程失配Units Mismatch单位不匹配Type mismatch类型不匹配;类型失配;输入不匹配parameter mismatch参数失配Net mismatch净缺口mismatch attenuation失配衰减Die mismatch模错位heteroepitaxy,heteroepitaxy,异质外延heteroepitaxy,heteroepitaxy异质外延magnetron sputtering[电子] 磁控溅射;[电子] 磁控管溅射ExB magnetron sputtering system直交电磁场型溅镀系统unbalanced magnetron sputtering非平衡磁控溅射dc magnetron sputtering system直流磁控溅镀系统RF reactive magnetron sputtering磁控溅镀nonequilibrium magnetron sputtering非平衡磁控溅射planar magnetron sputtering system平面磁控管溅镀系统coxial magnetron sputtering system同轴磁控管溅镀系统Magnetron Sputtering Deposition磁控溅镀法Direct Current Magnetron Sputtering直流磁控溅射vapor phase epitaxy汽相外延;蒸汽相位晶体外延Hydride vapor-phase epitaxy氢化物气相磊晶法organometallic vapor phase epitaxy金属有机物气相外延Metalorganic vapor phase epitaxy有机金属化学气相沉积法vapor phase epitaxy, VPE汽相外延metallo organic vapor phase epitaxy有机金属汽相外延molecular-beam epitaxy[电子]分子束外延molecular-beam分子束磊晶molecular ion beam分子离子射柱epitaxy, molecular-beam分子束外延molecular-beam electron bombardment detector分子束电子轰击探测器molecular beam deposition分子束淀积silicon molecular beam epitaxy硅分子束外延organic molecular beam epitaxy有机分子束外延molecular beam scattering分子束散射biaxial stress state双轴向应力状态biaxial state of stress双轴应力biaxial stress,biaxial stress平面应力curvature radius 曲率半径radius of curvature 曲率半径mean curvature 平均曲率gaussian curvature 高斯曲率constant curvature 常曲率field curvature 场曲率center of curvature 曲率中心curvature tensor 曲率张量lateral curvature脊柱侧凸;侧弯greater curvature胃大弯average curvature平均曲率Field curvature像场弯曲;场曲率;场曲;像面弯曲concave curvature凹曲度constant curvature常曲率affine curvature仿射曲率Curvature method曲率方法;最小曲率法synclastic curvature同向曲率Bragg Reflector布拉格反射器;布拉格反射镜;格反射器;反射层Bragg curve布拉格曲线;布喇格曲线Bragg Grating布拉格光栅;格光栅Bragg plane布喇格平面Fort Bragg布拉格堡;布雷格堡;布拉格军事基地;布莱格堡Billy Bragg比利·布拉格;布拉格;布雷格;比利布拉格bragg spectrometer电离谱仪;布喇格光谱仪;布拉格谱仪bragg scattering布喇格散射;格散射;布拉格散射;布雷格散射bragg law布喇格方程;布拉格定律;布喇格定律;布拉格定律nondestructive testing 无损检测;非破坏性试验;原位测试无损检测nondestructive test 无损检测;非破坏性试验nondestructive examination [化]非破坏性检验,无损探伤nondestructive flaw detection 无损探伤nondestructive memory非破坏性存储器;非破坏存储器nondestructive cursor非破坏性光标nondestructive monitoring非破坏性试验Nondestructive Addition破坏性加法Nondestructive Reading无损读数;不破坏读出Nondestructive Evaluation无损评价nondestructive sampling性取样nondestructive tebite非破坏性试验nondestructive technique非破坏技术high precision 高精度precision machinery 精密机械;精密机械学precision machining 精密加工;精密机械加工measurement precision 测量精度machining precision 加工精度precision casting 精密铸造precision measurement 精密测量precision grinding 精密磨削precision instrument [计][经]精密仪器precision forging 精密锻造;精密铸造precision parts 精密零件precision agriculture 精准农业;精细农业precision equipment 精密设备precision work 精密加工;精工precision processing 精密处理dimensional precision 尺寸精度precision lathe 精密车床precision ratio 查准率precision finishing [化]精密加工precision rolling 精轧;精密轧制precision balance[仪]精密天平;[仪]高精密天平multiple precision[计]多倍精度extended precision[计]扩展精度;[计]扩增精确度;延伸精度precision estimation精密估计;精度估计Precision marketing精准营销;精确营销;精准行销precision potentiometer精密电位计;精密电位差计精密分压器;精密电位器precision resistor精密电阻器;精密电阻precision regulator精密调节器precision instrument精密工具;精密仪器;精密仪表;释义精密仪器bulk cargo 散装货bulk density 容积密度,体积密度;单位体积重量bulk cement 散装水泥dry bulk 干散货bulk material 疏松物质bulk polymerization 本体(整体)聚合bulk carrier 散装货船,散货船bulk production 批量生产bulk modulus 体积弹性模量bulk grain 散粮;散装谷物soil bulk density 土壤容重;土壤颗粒密度bulk commodity 大宗商品,散装货物bulk goods 散装货物bulk order 大宗订单bulk purchase 大量采购,成批采购bulk volume 总体积bulk up 胀大;形成大数目bulk cement truck 散装水泥卡车;散装水泥运输车bulk processing粗处理;大量处理bulk eraser消磁器;大消磁器;大量抹除器;整体消磁器bulk strain体积应变;容积应变bulk factor体积因数;体积比;松厚率;压缩比Increasing Compressive Residual Stress提高压缩残余应力longitudinal compressive stress纵向压缩应力intensity of compressive stress压缩应力强度allowable compressive stress容许压应力;容许压缩应力maximum compressive stress最大压应力Compressive Pre-stress预压应力equivalent compressive stress当量压应力thermal compressive stress热压应力critical compressive stress临界压缩应力compressive strength 抗压强度;压缩强度compressive stress 压力,抗压应力unconfined compressive strength 无侧限抗压强度;非封闭抗压强度compressive deformation 压缩变形;压缩形变compressive resistance 抗压强度;压应力;抗压力;压电阻compressive force 压缩力compressive strain 压缩应变;压缩变形compressive load 压缩负荷compressive resistance抗压强度;压应力;抗压力;压电阻compressive deformation压缩变形;压缩形变;压应变compressive bar压杆compressive capacity受压承载能力compressive modulus压缩模量Compressive Sensing压缩传感;压缩感知Compressive Property抗压性能compressive resultant压缩合力inclination angle 倾斜角,倾角angle of inclination 倾角,倾斜角inclination correction 倾斜改正kingpin inclination 主销内倾;大王销倾斜big inclination大斜度钻井inclination angle[数]倾角;[数]倾斜角maximum inclination最大井斜path inclination轨道倾角Natural Inclination癖性;自然倾向lateral inclination横向倾斜;横向倾斜度geomagnetic inclination地磁倾角borehole inclination井斜grabenward inclination向地堑侧倾斜Band-gap Reference带隙基准;带隙参考电压band-gap transition带隙跃迁wide band-gap宽能阶band-gap alteration带隙跃迁band-gap crystal带隙晶体band-gap energy频带隙能量PBG photonic band-gap光能隙band-gap laser action频常隙激光作用band-gap tra ition带隙跃迁radio-frequency welding[机]射频熔接;[机]高频焊接;[机]射频焊接radio-frequency voltage射频电压radio-frequency electrode射频电极radio-frequency discharge射频放电radio-frequency signal高频率信号;射频信号radio-frequency lamp射频灯radio-frequency field射频场;高频场radio-frequency reading用高频扫描快速读出;射频读出radio-frequency converter射频变换器;射频变频器ambient temperature 环境温度;室温;周围温度ambient air 环境空气ambient pressure 环境压力;周围压力ambient noise 环境噪声ambient air quality 环境空气质量;环境空气品质ambient light 环境光线;背景光ambient humidity 环境湿度ambient condition 环境条件;周围条件ambient lighting 环境照明ambient gas 周围气体ambient sound 环境声ambient temperature[环境]环境温度;环境;室温;周围的温度ambient medium周围介质;环境介质;四周介质ambient standard环境标准Amb Ambient周围的;四周的;环境的ambient condition周围条件;环境条件;周围介质状态;环境ambient awareness环境知觉;情况知觉oxidation ambient氧化气氛ambient Property环境内容;环境属性ambient space环绕空间;把流形放入外围空间polycrystalline diamond 多晶金刚石polycrystalline silicon 多晶硅polycrystalline structure多晶结构;晶结構polycrystalline material多晶物质;多晶体散射polycrystalline semiconductor聚甲基丙烯酸环已酯polycrystalline glass聚晶玻璃polycrystalline irons多晶形铁粉polycrystalline substrate多晶衬底polycrystalline fibers多晶纤维polycrystalline nickel多品纯镍polycrystalline acquaintancerial多晶体散射dynamic elastic properties动力学弹性性质Super Elastic Properties超强弹性性能elasticity, elastic properties, resilience弹性Poisson s ratio地基应力和变形泊松比Poisson‘s ratio纵横应变比;帕松比;蒲松氏比poisson ratio correction泊松比修正Poisson’s Ratio泊松比;波桑比Poisson's Ratio泊松比;柏松比;波松比;泊松系数Poisson’s ratio波桑比rock Poisson’s ratio岩石的泊松比Poisson's ratio apparratus泊松比测量仪Poisson’s ratio ν泊松比asymmetry coefficient[数]不对称性系数;偏度系数;偏态系数membrane asymmetry[生物物理]膜的不对称性;[生物物理]膜不对称性hemispheric asymmetry大脑半球非对称性functional asymmetry功能性偏利asymmetry cut不对称修剪;对比推进层次Baryon Asymmetry重子不对称ASYM Asymmetry不对称power asymmetry权力不对称linguistic asymmetry这种语言非对称性slope stability 坡面稳定性rock slope 岩石边坡;石坡;岩石坡;石流坡slope protection 边坡保护,护坡;护坡工程side slope 边坡;侧坡;侧面斜坡steep slope 陡坡,急坡;高倾斜slope angle 斜角;倾斜角;坡度角north slope 阿拉斯加北坡;北坡油田gentle slope 缓坡;平缓坡度;平缓倾斜slope failure 边坡破坏;滑坡;山泥倾泻;斜坡崩塌northern slope 北坡(美国阿拉斯加州北冰洋之间)at the slope [英国英语](士兵)扛着枪;(枪)在扛着continental slope 大陆坡longitudinal slope 纵坡;纵向坡度slope efficiency 斜率效能;斜度效率slippery slope n. 灾难性的急剧下滑slope toe 坡脚abrupt slope 陡坡upstream slope 上游坡;上游坡度unstable slope 不稳定斜坡,不稳定边坡;annealing-point temperature韕化点温度Including Annealing Temperature包括退火温度upper annealing temperature退火温度上限Annealing Temperature And Time退火温度时间annealing temperature range退火温度范围Stress –relieving Annealing Temperature应力退火温度low temperature annealing低温退火;扩散退火high temperature annealing高温退火ow temperature annealing低温退火电场发射扫描电子显微镜(Field emission scanning electron microscopy)fatigue crack 疲劳裂纹crack down 镇压;取缔;劈啪击下crack propagation 裂纹扩展crack down on 镇压;制裁crack tip 裂纹尖端,裂纹端crack growth 裂纹扩展;龟裂增长crack on v. [口]继续疾驶;满帆前进;继续干下去crack resistance 抗裂性;抗裂度;裂纹阻力crack initiation 裂纹萌生;裂纹开裂crack width 裂缝宽度crack control n. 裂绞控制crack length 裂纹长度;裂缝长度;裂隙长度crack formation 龟裂形成get cracking 开始;开始工作;开始移动hot crack [机]热裂,过热裂缝crack a smile [俚]展颜微笑transverse crack 横裂;横向裂缝crack extension 裂纹扩展;裂纹扩张crack detection 裂纹检验shrinkage crack 收缩裂缝edge crack裂边;[木]边缘裂缝;边裂;[木]边缘裂纹contraction crack收缩裂缝;收缩破裂;收缩裂纹;[机]缩裂shear crack[地质]剪切裂缝;[地质]剪切裂隙;[地质]剪切裂纹;海冰受剪力产生的裂缝quench crack淬火裂纹;淬火裂痕crack initiation裂纹萌生;起裂;裂纹发源;裂痕起始阶段tempering crack回火裂痕;回火裂缝;回火开裂crack closure裂纹闭合;裂缝闭合Blind crack细微裂纹Crack Up垮掉;健康崩溃;失去控制;撞坏Thermal Anneal热处理Bright Anneal光辉烧结process anneal进行退火;举行退火stabilizing anneal安定化退火softening anneal软化退火intrinsic value 内在规定intrinsic viscosity 特性粘度;固有粘度;本征粘度intrinsic quality 内在质量intrinsic motivation 内在动机;内在激励intrinsic safety 内在安全,本质安全intrinsic property 本征性质,固有特性intrinsic factor 内在因素;[医](造血)内因子intrinsic activity [化]固有活性;内在活性intrinsic function 内部函数;内在函数;固有功能intrinsic value内在价值;[计]固有价值;内在值;内涵价值intrinsic energy内藏能量;本哲;本哲量;[物]本征能intrinsic crystal[晶体]本征晶体intrinsic validity内在效度intrinsic region本征区;本狰Intrinsic solubility特性溶解度;固有溶解度;物的特性溶解度intrinsic protein内在蛋白;内;内源蛋白质;镶嵌蛋白Intrinsic photoemission内禀光电发射intrinsic detector本微探测器;非本征探测器extrinsic motivation 外在动机;外在激励;外加激励extrinsic conduction[电子]杂质导电;[电子]非本征导电extrinsic semicon非本征半导体;非本征半导体应变计immanent extrinsic内在的;外在的extrinsic innervation外在神经支配extrinsic muscles外在肌extrinsic load外加载extrinsic cues外部线索;则会倾向借助外在线索Extrinsic route外源性激活途径Extrinsic compensation外在薪酬thermal expansion coefficient[热] 热膨胀系数thermal cubic expansion coefficient体积膨胀系数average thermal expansion coefficient平均热膨胀率Volumetric thermal expansion coefficient热膨胀系数TEC Thermal Expansion Coefficient热膨胀系数volume thermal expansion coefficient体积热膨胀系数MTEC Mean Thermal Expansion Coefficient平均热膨胀系数thermal coefficient of expansion热胀系数;热膨胀系数;膨胀系数Linear thermal coefficient of expansion先性膨胀系数coefficient thermal expansion热膨胀系数grain-boundary strength晶界强度grain-boundary segregation晶界偏析grain-boundary weakness晶界弱化grain-boundary precipitation晶界沉淀grain-boundary brittleness晶间脆化grain-boundary plane晶粒边界面grain-boundary crack晶界裂纹grain-boundary movement晶界运动grain-boundary strengthening晶界强化wurtzite structure纤锌矿结构;六方硫化锌结构;纤维锌矿结構;纤锌矿型结构Hexagonal Wurtzite纤锌矿wurtzite type structure纤维锌矿型构造off-diagonal element非対角要素diagonal element rule称之为对角线规则Relaxation Attenuation Coefficient弛豫衰减系数coefficient of relaxation松弛系数。
EBSD Observations of Recrystallisation and Tensile Deformation in Twinning Induced Plasticity Steel

TECHNICAL PAPER TP 2720EBSD Observations of Recrystallisation and Tensile Deformation in Twinning Induced Plasticity SteelAhmed A.Saleh •Azdiar A.Gazder •Elena V.PerelomaReceived:22January 2013/Accepted:5May 2013/Published online:4July 2013ÓIndian Institute of Metals 2013Abstract The microstructure evolution of cold-rolled and isochronally annealed Fe–24Mn–3Al–2Si–1Ni–0.06C twinning induced plasticity steel was investigated by electron back-scattering diffraction (EBSD).Deformation behaviour of a fully recrystallised sample was tracked in a selected area as a function of the true strain using a com-bination of interrupted tensile testing and EBSD.The results show that the cold rolled microstructure contained a large fraction of primary and secondary twins as well as remnants of annealing twins carried over from the prior hot rolling stage.A novel deconstruction technique was applied to a partially recrystallised sample in order to separate the microstructure into deformed,recovered,newly nucleated and growing recrystallised grains.The interrupted tensile tests revealed the formation of fine striations in grains with h 111i and h 110i orientations just after yielding.While the striations could be attributed to either stacking faults or the formation of fine twin packets,some of them manifested as twin boundaries as the true strain was increased up to 0.209.Keywords TWIP steel ÁElectron back-scattering diffraction (EBSD)ÁRecrystallization ÁTension ÁStacking faults1IntroductionIncreasing demand for economical and environment-friendly cars through reduced weight and CO 2emissions has stimulated the development of newer advanced high strength steels.Austenitic TWinning Induced Plasticity (TWIP)steels with high Mn content (23–35wt%)and additions of Al (3–4wt%)and Si (1–3wt%)possess low stacking fault energy (18–40mJ/m 2)which causes con-current slip and twinning during plastic deformation [1–4].The operation of these two deformation accommodation mechanisms leads to high strain hardening rates and results in excellent combinations of ultimate tensile strength (600–1,100MPa)and total elongation ([50%)[1,2].Understanding how TWIP steel microstructures:(1)undergo annealing after cold-rolling or (2)accommodate deformation after full recrystallisation enables the optimi-sation of their production/processing parameters in order to tailor them to return a particular combination of mechan-ical properties.For example,fine grained microstructures in TWIP steels obtained either by significant rolling reductions or by a decrease in the annealing temperature results in high strengths while maintaining acceptable ductility levels [5,6].On the other hand,the preservation of the deformed,nano-twinned structure along with a reduced total dislocation density due to recovery—type heat treatments produces an even better combination of strength and ductility [7].To-date,detailed investigations of the microstructure evolution during the recrystallisation of cold rolled TWIP steels are limited [8–12].There are also very few studies that detail the exact changes occurring during the defor-mation of fully recrystallised TWIP microstructures [4,13–15].Although some work on the deformation behaviour of TWIP steels has been carried out using in situ diffractionA.A.Saleh (&)ÁA.A.Gazder ÁE.V.PerelomaSchool of Mechanical,Materials and Mechatronic Engineering,University of Wollongong,Wollongong,NSW 2522,Australia e-mail:asaleh@.auA.A.Gazder ÁE.V.PerelomaElectron Microscopy Centre,University of Wollongong,Wollongong,NSW 2519,AustraliaTrans Indian Inst Met (October–December 2013)66(5–6):621–629DOI10.1007/s12666-013-0300-8measurements[16,17],the observation of their micro-structure evolution during straining is typically limited to ex-situ examinations of various samples and different areas [4,13–15].To this end,the present work extensively employs the Electron Back-Scattering Diffraction(EBSD)technique to track microstructure evolution in TWIP steel during:(1) isochronal annealing after cold-rolling to42%thickness reduction,and(2)uniaxial tensile loading of a fully re-crystallised sample in a selected area of interest.2Experimental and Analytical ProcedureAn as-cast TWIP steel slab with the nominal composition 24Mn–3Al–2Si–1Ni–0.06C wt%was homogenised at 1,100°C for2h,hot rolled to52%thickness reduction at the same temperature in4passes at*17%reduction per pass then cold rolled to42%thickness reduction(equivalent to a true strain of0.55)in11passes at*4.8%reduction per pass.3091097.3mm3samples were cut from the cold-rolled strip and subjected to isochronal annealing between 600and850°C which included240s of heating to stable temperature and300s of soaking time followed by imme-diate water quenching.Vickers microhardness with a500g load was used to estimate the fraction softened as a function of the isochronal annealing temperature.All EBSD mapping was undertaken on a JEOL–JSM7001Ffield emission gun—scanning electron micro-scopefitted with a Nordlys-II(S)camera and the Oxford Instruments AZtec software suite operating at15kV, *2–5nA and15mm working distance.Microstructure characterisation of the isochronally annealed samples was conducted on the rolling direction(RD)—normal direction (ND)plane of the samples in the middle of the sample cross-sectional thickness.Step sizes of0.05and0.4l m were used for the cold rolled sample in order to acquire selected and large area statistics,respectively.While a step size of 0.125l m was used for the600°C sample,a step size of 0.175l m was manintained constant for all other partially recrystallised conditions.Post-processing of the EBSD maps was carried out using the HKL Channel-5software package.Low-angle grain boundaries(LAGBs)and high-angle boundaries(HAGBs) possess misorientations between2°B h\15°and15°B h B57.5°respectively.The total high angle grain boundary (THAGBs,15°B h B62.5°)population comprises HAGBs and twin boundaries(TBs).The twin boundaries consist of first order(R3=60°h111i)and second order(R9=38.9°h101i)TBs.The partially recrystallised EBSD map for the700°C condition was deconstructed into subsets comprising deformed,recovered,newly nucleated and growing recrystallised grains in accordance with the methodology described in Ref.[18].In brief,the unrecrystallised and recrystallised fractions werefirst separated using a grain orientation spread(GOS)threshold(h C)of1.5°.Then the un-recrystallised fraction was further sub-divided into deformed and recovered subsets by applying an internal misorientation threshold of7°.Lastly,the recrystallised fraction was sub-divided into newly nucleated and growing recrystallised grains by applying a threshold based on the arithmetic mean of the frequency distribution of the recrystallised grain size.The latter accounts for the increasing(sub)grain size with higher isochronal annealing temperature.To study the deformation behaviour,aflat dog-bone shaped tensile sample of25mm gage length and5mm width was wire-cut from the850°C,fully recrystallised material such that its gage length and width were parallel to the rolling(RD)and the transverse(TD)directions, respectively.Uniaxial tensile testing was undertaken on an in-house modified5kN Kammerath&Weiss tensile stage operating in speed control mode at5l m/s.The tension test was interrupted at predetermined load levels and the EBSD mapping was conducted on a defined area of interest in the middle of the gage length at a constant step size of0.1l m. 3Results and Discussion3.1Effect of Isochronal AnnealingThe change in microhardness as a function of the iso-chronal annealing temperature and the area fractions soft-ened and recrystallised estimated from microhardnessand Fig.1The evolution of the microhardness with higher isochronal annealing temperature and the fractions softened and recrystallised estimated by microhardness and EBSD,respectivelyEBSD measurements,respectively are shown in Fig.1.Representative inverse pole figure (IPF)maps of the cold-rolled and partially recrystallised microstructures aligned with the horizontal RD are depicted in Fig.2.The microstructure of the cold-rolled sample comprises elongated grains along the RD (Fig.2a)where the imposed strain was accommodated inhomogeneously via various deformation modes.Some grains are free of twinsandFig.2Representative inverse pole figure (IPF)maps of a 42%cold-rolled,b 600°C recovered,c 700°C,d 750°C,e 775°C,and f 850°C partially recrystallised TWIP GBs (2°B h \15°)=grey ;HAGBs (15°B h B 57.5°)=black ;60°h 111i R 3TBs =red ;38.9°h 101i R 9TBs =white ;RD =horizontal .(Color figure online)deformed via slip only,whereas others contain twins and in some instances,microscopic shear bands[as indicated by the arrows in Fig.2a(inset)].The deformation twins are present either as parallel primary twins occasionally rotated towards RD or as intersecting arrangements of primary and secondary twins.In addition,some coarse annealing twins carried over from prior hot rolling are also detected.The600°C sample(Fig.2b)recorded*16%softening from the microhardness measurements and*3%recrys-tallisation from the EBSD maps.The discrepancy in the above values is due to recovery processes involving the rearrangement of the dislocation substructures(carried over from cold-rolling)resulting in an overall reduction of the total accumulated stored energy[19].Thereafter,the process of recrystallisation proceeds rapidly with an *68%fraction softened obtained at700°C(Fig.2c).The relatively fast recrystallisation kinetics up to this stage of annealing is similar to that encountered in other TWIP steels[9].The start of recrystallisation in the600°C sample is associated with the bulging of annealing twins at grain boundaries(Figs.2b,3a).Similar twin bulging events were seen during the recovery stage in two moderately cold rolled austenitic stainless steels[20].Twin bulges at grain boundaries and the formation of nuclei with orientations either close to or twin related to the cold-rolled matrix are also found in the700°C sample(Figs.2c,3b).In relation to the twin-related nuclei,it was suggested that they ini-tially nucleate with orientations close to that of the deformed matrix and then twinning proliferates in orderto Fig.3Magnified views of a annealing twin boundaries(R3TBs)bulging at the boundaries between two grains at600°C,and b a nucleationevent observed at700°C.c The change in misorientation distribution as a function of the isochronal annealing temperatureTable1The change in the average recrystallised grain size,average misorientation(h AVG°)and grain boundary area fraction with isochronal annealing temperatureSample Recrytallised grain size(l m)Average misorientation(h AVG°)Area fraction(%)w/o TBs with TBs LAGB HAGB R9TB R3TBAs-CR––14.1579.1±1.69.4±0.20.4±0.411.5±2.2 600°C––15.9774.1±0.611.4±1.10.6±0.714.6±2.5 700°C 3.6±2.7 2.1±1.436.7930.3±1.434.9±0.3 5.6±0.134.8±2.4 750°C 4.9±3.7 2.7±1.848.879.4±0.848.1±0.510.7±0.142.5±2.1 775°C 4.9±3.7 2.7±2.048.97 5.3±0.247.0±0.77.4±0.147.7±1.7 850°C7.9±5.5 4.4±3.048.49 4.4±0.650.2±0.67.1±0.245.4±0.9form HAGBs with the matrix[21].While observing similar nucleation events during the recrystallisation of a97% cold rolled bronze(Cu–10Sn),Peters[22]proposed that the first nuclei form by polygonisation with orientations close to the deformed matrix;subsequent to which,first and second order twinning takes place.Following the above,the progress of recrystallisation tends to continue slightly more sluggishly;reaching an *83%fraction recrystallised at750°C and a96% fraction recrystallised at850°C(Fig.2d–f).If TBs are disregarded as grain boundaries,the equivalent circle diameter—based average recrystallised grain size increases from 3.6±2.7l m at700°C to*7.9l m at850°C (Table1).However,the grain refining effect of annealing twins is highlighted by the fact that when TBs are con-sidered as grain boundaries,the average recrystallised grain size reduces by as much as1.7±0.2times.The effect of isochronal annealing temperature on the misorientation distribution is shown in Fig.3c and the average misorientation and the various boundaryarea Fig.4Inverse polefigure maps of the700°C sample deconstructed into a deformed,b recovered,c newly nucleated,and d growing grain fractions.e The misorientation distribution of the various fractions of the700°C sample,and f the misorientation distributions at the interface between newly nucleated and unrecrystallised fractions of the700,750and775°C samples.RD=horizontal.Reprinted with permission from Elsevier,copyright2011[12]fractions are summarised in Table 1.The cold-rolled microstructure is dominated by LAGBs along with minor fractions of HAGBs and TBs.The nucleation events seen in the 600and 700°C samples (Fig.3a,b)and the con-current grain growth seen in Fig.2b–f leads to increases in the R 3and R 9area fractions (first and second order TBs,respectively)up to the 750°C sample.Up to this point,the relatively low fraction of R 9boundaries compared to R 3[11]can be attributed to the limited impingement of R 3boundaries leading to R 9formation via the twinning reaction [23]:R 3?R 3?R 9.Thereafter,the decrease in the R 9boundary area fraction towards the end of recrys-tallisation process (775and 850°C)conforms with the ‘‘R 3regeneration model’’proposed by Randle [23]which pos-tulates the twinning reaction:R 3?R 9?R 3.The unrecrystallised (deformed and recovered)and re-crystallised (newly nucleated and growing grain)fractions of the partially recrystallised 700°C sample are shown in Fig.4a–d.Their corresponding misorientation distributions are given in Fig.4e.While the unrecrystallised fraction is dominated by LAGBs,the recovered grains have an expect-edly lower fraction of LAGBs compared to the deformed grains as the recovered grains possess lower internal misori-entations due to the dislocation annihilation upon annealing.The fraction of first order R 3TBs is the lowest in the deformed grains,is higher in recovered grains,is the highest in the newly nucleated grains and then reduces again in the growing grain fraction.On the other hand,the fraction of second order R 9TBs are more pronounced in the recrystallised fractions than the unrecrystallisedfractions.The lower R 3TB population in the growing grain fractions as opposed to their newly nucleated counterparts follows Gindraux and Form [24]where annealing twins proliferate to reorient the grain boundaries in order to facilitate dislocation absorption and mobility during the initial stages of recrystallisation.Here,twinning contrib-utes significantly to the overall reduction in stored energy during nucleation.Thereafter,during the grain growth stage,the previously formed twins are annihilated and a relatively limited evolution of newer twins occurs.The growth kinetics in TWIP steel can be explained by examining the grain boundary character at the common interface between the newly nucleated and unrecrystallised fractions via subset double-dilation [18]for the 700,750and 775°C samples (Fig.4f).The low-mobility LAGBs and TBs together constitute *59,41and 47%of the total interface boundary population at 700,750and 775°C,respectively.It suggests that orientation-dependent,stored energy consid-erations have a dominant role in dictating the evolution of the microstructure during the recrystallisation process [12].Thus,newly nucleated grains with orientations that inher-ently possess locally higher stored energies will have a growth advantage in order to maximise the release of the stored energy carried over from cold rolling [25].3.2Effect of Uniaxial TensionThe true stress versus strain curve of the 850°C,fully recrystallised sample is given in Fig.5.The red circles in this figure correspond to true strains of 0,0.0014,0.023,0.072,and 0.209and are the points where the tensile test was interrupted for EBSD measurements.The microstruc-ture evolution of the selected area with increasing tensile strain is shown in Fig.6via IPF maps.Similar to Fig.2f and the discussion of its microstructure in Sect.3.1,the initial recrystallised microstructure comprises equiaxed grains with a high fraction of annealing twin R 3boundaries (Fig.6a;Table 2).Expectedly,no change in the microstructure is detected at a true strain of 0.0014(cf.Fig.6a,b)since it corre-sponds to a stress of *210MPa which is lower than the macro-yielding point at *290MPa.At a true strain of 0.0023,striations in the form of single lines or parallel packets evolve preferentially in grains with oreinations close to h 111i and h 110i (Fig.6c).These striations origi-nate mostly at the grain and twin boundaries,while in fewer instances they start and finish within a grain.Inter-secting striations were also detected in a few grains as shown by the white circle in Fig.6c.The number of striations increases progressively upon straining to 0.072and 0.209with some of them being indexed as deformation twin boundaries (indicated by the black arrows in Fig.6d,e).Due to the limitations oftheFig.5The true stress versus true strain curve of the fully recrystal-lised 850°C sample subjected to uniaxial tension.The red circles indicate the true strains at which the tensile test was interrupted for EBSD mapping.(Color figure online)EBSD technique in general and the adopted experimental methodology in particular,there are two possibilities related to the provenance of these striations.As pointed out in previous studies [4],since the thick-ness of deformation twins at low strain levels is in the order of tens of nanometers,they cannot be crystallographically detected due to the limited spatial resolution of the EBSD technique.With increasing strain,the twinning activityincreases such that the twins stack into relatively thick bundles which are eventually detectable by EBSD.Alternatively,TEM investigations of low stacking fault energy austenitic steels during the early stages of defor-mation have frequently reported the formation of stacking faults.Stacking faults were recently observed in the aus-tenite grains of transformation induced plasticity steel at a tensile strain of 0.005[26].Prior to the observation of deformation twinning,stacking faults in the form of widely separated partial dislocations or as long and narrow straight striations have also been detected in a Fe–18Mn–0.6C–1.5Al TWIP steel at a tensile strain of 0.04[15].As opposed to other EBSD studies on TWIP steel deformation behaviour [4],the present work tracks the evolution of the same set of grains up to 0.209true strain.This enables the observation of the change in the nature of the striations;from initial lines of high band contrast at 0.023true strain to their identification as twin boundaries from 0.072true strain onwards.Thus,rather than inter-preting the striations as thin,unindexed twins,it ismoreFig.6Inverse pole figure maps at true strains of a 0,b 0.0014,c 0.023,d 0.072,and e 0.209.f Inverse pole figure showing the orientations of twin-free and twinned grains from e as clear black and solid red squares ,GBs =grey ;HAGBs =black ;60°h 111i R 3TBs =red ;RD =horizontal .(Color figure online)Table 2The change in the average misorientation (h AVG °)and grain boundary area fraction with greater true strain during uniaxial tensile loadingStrain (%)Average misorientation (h AVG °)Area fraction (%)LAGB HAGB R 3TB049.76 2.1848.1949.640.1449.76 2.0648.6149.332.348.02 4.7348.7746.57.241.2118.7243.8537.4420.922.7759.422.2118.39probable that they are stacking faults that form preferen-tially at the grain and twin boundaries(Fig.6c).Conse-quently,and as proposed by Byun[27],the divergence of the dissociated partial dislocations to an infinite separation distance with increasing tensile strain leads to twin formation.The black areas in Fig.6d,e depict unindexed regions in the EBSD maps due to the increase in the surface rough-ness of the sample via the orange-peel effect which is a manifestation of the anisotropic nature of plastic strain within individual grains[28].Additionally,and with increasing tensile strain,grains start popping out of the plane of the tensile sample surface forming peaks and valleys;which indicates that a significant part of the strain is accommodated at the grain boundaries.The change in the grain boundary area fraction with increasing tensile strain is given in Table2.The area fraction of LAGBs continues to increase and is associated with a concurrent decrease in the HAGBs and R3TBs population.Since both annealing and deformation twin boundaries follow the same R3=60°h111i relationship,it is not possible to distinguish between them on the basis of mis-orientation or crystallography.However,the main advan-tage of observing the same area while a sample undergoes uniaxial tension is that it also allows us to track the evo-lution of the annealing twins at different strains.As illus-trated by the white ovals in Fig.6d,e,the annealing twin boundaries at0.023and0.072strain are later identified as regular HAGBs at a tensile strain of0.209(Fig.6e).This decay of the annealing twin boundaries is due to the local lattice rotation at the sides of the TBs leading to a deviation from the exact60°h111i relationship[29].This deviation increases with greater tensile strain until it exceeds the employed tolerance limit of6°(following the Palumbo-Aust criterion).Hence,such boundaries are no longer identified as TBs but are rather recognised as being regular HAGBs.Accordingly,and despite the evolution of defor-mation twins,the area fraction of TBs generally decreases with increasing tensile strain.An additional reason for the diminishing twin boundary fraction is the masking effect associated with the increasing area fraction of LAGBs (Table2).Lastly,an example detailing the effect of deformation twinning is discussed.The orientations of twin-free and twinned grains at a tensile strain of0.209are shown on the IPF in Fig.6f as clear black and solid red squares, respectively.The dashed black line on the IPF(Fig.6f) indicates the area where the Schmid factors for slip and twinning are equal.Thus the area to the left of the dashed line denote orientations with higher Schmid factors that favour slip while the region to the right of the dashed line comprise orientations with higher Schmid factors that favour twinning.In this regard,Fig.6f clearly shows some twinned grains(solid red squares)falling to the left of the dashed black line and within the region that favours slip. This observation is in agreement with previous investiga-tions that correlate twinning activity with the crystallo-graphic orientations of TWIP steels[13,14].Gutierrez-Urrutia et al.[14]suggested that while the orientation dependence of twinning follows Schmid’s law at low strains,it increasingly deviates away from it with greater accumulated strain.They ascribed the deviation to the local stress concentration effect which is induced by the inter-action with neighbouring grains.On the other hand,we postulate that the presumed deviation from Schmid’s law at higher tensile strains is the result of the increased feasi-bility of twin nucleation via extrinsic stacking faults in orientations with low Schmid factors for twinning[30]. 4ConclusionsThe application of EBSD allows for detailed insights into the evolution of the microstructure in TWIP steel during isochronal annealing and uniaxial tensile loading.The strain imposed during cold rolling to42%thickness reduction was accommodated via various deformation mechanisms including slip,twinning and micro-shear banding.From the early stages of recrystallisation, annealing twins contribute to nucleation events as twin bulges and twin-related nuclei.The subsequent growth of the newly nucleated grains is affected by orientation-dependent,stored energy considerations as well as second-order twinning.During the early stages of uniaxial tensile loading,the presumed formation of stacking faults were observed as striations in grains with orientations close to h111i and h110i.With increasing tensile strain,some of these stria-tions were successfully indexed as twin boundaries.The area fraction of annealing twin boundaries decreases with greater tensile strain due to local lattice rotation effects which lead to a deviation from the exact60°h111i rela-tionship.The deviation from Schmid’s law with increasing tensile strain can be ascribed to the increased feasibility of twin nucleation via extrinsic faulting in grains that are nominally regarded as being unfavourably oriented for twinning.Acknowledgments The authors are grateful to Prof.D.B.Santos of the Federal University of Minas Gerais,Brazil for providing the source material.The authors acknowledge the use of the JEOL–JSM7001F FEG-SEM at the UOW Electron Microscopy Centre purchased with thefinancial support from the Australian Research Council(LE0882613).References1.Grassel O,Kruger L,Frommeyer G,Meyer L W,Int J Plast16(2000)1391.2.Frommeyer G,Bru¨x U,Neumann P,ISIJ Int43(2003)438.3.Vercammen S,Blanpain B,De Cooman B C,Wollant P,ActaMater52(2004)2005.4.Barbier D,Gey N,Allain S,Bozzolo N,Humbert M,Mater SciEng A500(2009)196.5.Bouaziz O,Allain S,Scott C,Scr Mater58(2008)484.6.Ueji R,Tsuchida N,Terada D,Tsuji N,Tanaka Y,Takemura A,Kunishige K,Scr Mater59(2008)963.7.Bouaziz O,Scott C P,Petitgand G,Scr Mater60(2009)714.8.Scott C,Allain S,Faral M,Guelton N,Rev Metall6(2006)293.9.Bracke L,Verbeken K,Kestens L,Penning J,Acta Mater57(2009)1512.10.Santos B D,Saleh A A,Gazder A A,Carman A,Duarte D M,Ribeiro E´A S,Gonzalez B M,Pereloma E V,Mat Sci Eng A528 (2011)3545.11.Saleh A A,Gazder A A,Santos B D,Pereloma E V,Adv MaterRes409(2012)719.12.Gazder A A,Saleh A A,Pereloma E V,Scr Mater65(2011)560.13.Yang P,Xie Q,Meng L,Ding H,Tang Z,Scripta Mater55(2006)629.14.Gutierrez-Urrutia I,Zaefferer S,Raabe D,Mat Sci Eng A527(2010)3552.15.Beladi H,Timokhina I B,Estrin Y,Kim J,De Cooman B C,KimS K,Acta Mater59(2011)7787.16.Yan K,Carr D G,Callaghan M D,Liss K-D,Li H,Scr Mater62(2010)246.17.Saleh A A,Pereloma E V,Clausen B,Brown D W,Tome´C N,Gazder A A,Acta Materialia(2013).doi:10.1016/j.actamat.2013.05.017.18.Gazder A A,Sanchez-Araiza M,Jonas J J,Pereloma E V,ActaMater59(2011)4847.19.Humphreys F J,Hatherly M,Recrystallisation and RelatedAnnealing Phenomena,2nd ed.,Elsevier,Oxford(2004).20.Jones A R,J Mater Sci16(1981)1374.21.Field D P,Bradford L T,Nowell M M,Lillo T M,Acta Mater55(2007)4233.22.Peters B F,Met Trans4(1973)757.23.Randle V,Acta Mater47(1999)4187.24.Gindraux G,Form W,J Inst Met101(1973)85.25.Sebald R,Gottstein G,Acta Mater50(2002)1587.26.Rafaja D,Krbetschek C,Borisova D,Schreiber G,Klemm V,Thin Solid Films530(2013)105.27.Byun T S,Acta Mater51(2003)3063.28.Reed-Hill R E,Physical Metallurgy Principles,New York:D.Van Nostrand Company(1973).29.Mishra S K,Tiwari S M,Kumar A M,Hector L G,Met MatTrans A43(2012)1598.30.Gazder A A,Saleh A A,Pereloma E V,Scr Mater68(2013)436.。
材料科学专业英语 (3)

Importance of Lattice Defects for Properties of Materials
Show some examples: -………
Learning Objectives
1. Deห้องสมุดไป่ตู้cribe both vacancy and self-interstitial crystalline defects. 2. Calculate the equilibrium number of vacancies in a material at
-Essentially important for catalysts applications
Schematic representations of surface defects that are potential adsorption sites for catalysis.
High-resolution transmission electron micrograph that shows single crystals of (Ce0.5Zr0.5)O2; this material is used in catalytic converters for automobiles.
Interfacial defects -Grain boundaries
The boundary separating two small grains or crystals having different crystallographic orientations in polycrystalline materials.
Edge dislocation
Screw dislocation
典型特殊制备技术对无取向电工钢织构的影响规律

第 2 期第 135-145 页材料工程Vol.52Feb. 2024Journal of Materials EngineeringNo.2pp.135-145第 52 卷2024 年 2 月典型特殊制备技术对无取向电工钢织构的影响规律Impact law of typical special preparation techniques on texture of non -oriented electrical steel金宇晨,李志超*(北京科技大学 钢铁共性技术协同创新中心,北京100083)JIN Yuchen ,LI Zhichao *(Collaborative Innovation Center of Steel Technology ,University of Science and Technology Beijing ,Beijing 100083,China )摘要:电工钢又称硅钢,是一种重要的特殊钢,常被称作特殊钢中的“艺术品”,这主要是因为其加工制备流程复杂、性能影响因素繁多。
其中无取向硅钢主要应用于旋转电磁场环境,为了获得优良的软磁性能,需要形成较多的{100}等有利织构,为此研究人员进行了大量探索,近年来发现一些特殊制备技术在形成大量{100}等有利织构方面有显著效果。
本文综述二次轧制、斜轧、异步轧制及双辊薄带连铸四种典型特殊制备技术对无取向硅钢再结晶织构的影响规律,发现二次轧制与双辊薄带连铸均能增强λ与高斯织构,并削弱γ织构,斜轧也会增强λ织构,但对γ织构影响不大,异速异步轧制能增强η织构,而异径异步轧制对再结晶织构却基本没有影响。
最后,总结目前各项特殊制备技术存在的缺陷,并提出一些发展方向,如借助斜轧原理在常规冷轧中产生更多剪切带、利用异步轧制进行二次加工以均匀化磁感等,为后续无取向硅钢的工业生产提供更多参考。
关键词:无取向硅钢;二次轧制;斜轧;异步轧制;双辊薄带连铸doi : 10.11868/j.issn.1001-4381.2023.000406中图分类号: TG142.1 文献标识码: A 文章编号: 1001-4381(2024)02-0135-11Abstract :Electrical steel , also known as silicon steel , is an important special steel and is often referred to as the “work of art ” among special steels. This is mainly due to the complexity of its processing and preparation processes , and the wide range of factors affecting its performance. One of the non -oriented electrical steel is mainly used in the rotating electromagnetic field environment , in order to obtain excellent soft magnetic properties , it is necessary to form a larger number of {100} and other texture , for which the researchers have carried out a lot of exploration. In recent years , some special preparation techniques on the formation of non -oriented are found out that electrical steel has a significant role in promoting the formation of a larger number of {100} and other texture. The effects of two -stage rolling , cross rolling , asymmetric rolling and twin -roll strip cast on the recrystallization structure of non -oriented electrical steel were summarized , and it is found that the two -stage rolling and twin -roll strip cast can enhance the λ and Gaussian texture and weaken the γ texture , the cross rolling also enhances the λ texture but has little effect on the γ texture , and the iso -speed asymmetric rolling enhances the η texture , but the iso -diameter asymmetric rolling has no effect on the recrystallization texture. The shortcomings of the current special preparation techniques are summarized and some development directions , such as generating more shear bands in conventional cold rolling with the help of the principle of shew rolling and utilizing asymmetric rolling to carry out secondary processing in order to homogenize the magnetic susceptibiltty ,which provide引用格式:金宇晨,李志超.典型特殊制备技术对无取向电工钢织构的影响规律[J ].材料工程,2024,52(2):135-145.JIN Yuchen ,LI Zhichao.Impact law of typical special preparation techniques on texture of non -oriented electrical steel [J ].Journal of Materials Engineering ,2024,52(2):135-145.材料工程2024 年 2 月more references for the subsequent industrial production of non -oriented silicon steel are put forward.Key words :non -oriented electrical steel ;two -stage rolling ;skew rolling ;asymmetric rolling ;twin -roll strip cast无取向硅钢作为一种软磁材料,其铁损和磁感分别受到晶粒尺寸与织构的主要影响[1-2]。
钙依赖性磷脂结合蛋白AnnexinⅡ的研究进展
钙依赖性磷脂结合蛋白Annexin Ⅱ的研究进展【关键词】 Annexin,Ⅱ;钙离子;磷脂类;癌【摘要】Annexin Ⅱ是Annexins超家族中A亚家族的重要成员,具有钙离子介导的磷脂结合特性. 主要表达在人体内皮细胞、单核/巨噬细胞、骨髓细胞和某些肿瘤细胞中. 本文着重就Annexin Ⅱ的基因结构、蛋白结构、生物学功能及其与疾病的关系进行阐述.【关键词】Annexin Ⅱ;钙离子;磷脂类;癌0引言Annexin Ⅱ,又名P36, ANX2, LIP2, LPC2, CAL1H, LPC2D,ANX2L4, PAPIV. 其基因位于15q21q22,Mr为36×103,在人体内皮细胞、单核/巨噬细胞、骨髓细胞和某些肿瘤细胞中表达丰富. Annexin Ⅱ最早是在劳氏肉瘤病毒/鸡胚成纤维细胞中作为酪氨酸蛋白激酶的作用底物而被发现的[1]. 后来研究表明,Annexin Ⅱ具有Ca2+依赖性结合磷脂、细胞骨架蛋白的重要特性,从而将其归入Annexins 蛋白超家族的A亚家族中,命名为Annexin A2[2]. 尽管已发现Annexins家族成员多在细胞生长和信号转导的调节方面发挥作用,但Annexin Ⅱ的具体生物学功能还不清楚. 实验表明,Annexin Ⅱ与人类许多疾病的发生发展相关,尤其在肿瘤、心血管疾病中的作用机制成为当前的研究热点[3]. 本文重点综述Annexin Ⅱ的生物学功能及其与人类疾病的关系.1Annexin Ⅱ的基因和蛋白结构人Annexin Ⅱ 的结构基因位于15q21q22,含1.4 kb编码基因,并有三个假基因分别位于4号、9号、10号染色体上. 人Annexin Ⅱ结构基因含13个外显子和12个内含子. 现已发现几种不同的转录变异体[4].Annexin Ⅱ由339个氨基酸残基组成,是Annexins家族A亚家族成员. 与该家族其他成员一样,它在结构上具有一个保守的羧基末端和一个可变的氨基末端. 保守的羧基末端一般具有四个Annexin重复子,每一重复子由大约七十个高度保守氨基酸残基构成. 每一重复子有五个α螺旋结构,它们堆叠成致密的圆盘状. 该结构域具有结合钙离子的能力,从而调节Annexin分子与磷脂分子的结合,故被称为所有Annexins家族成员的核心区域[5]. 这种结构不同于钙调蛋白,肌钙蛋白等的EF臂型钙离子结合位点,而有自己特殊的模序结构[6],即钙离子结合蛋白后,再与带负电荷的磷脂分子极性头部结合. AnnexinⅡ氨基端的前十四个氨基酸残基形成两性α螺旋结构提供了S100A10(p11)的结合位点,从而形成A2S100A10复合物的结构基础,除形成复合物,氨基端部分还有其他功能,如结合内体,与组织纤溶酶原激活物反应,作为磷酸激酶的作用底物等.1996年,Burger等人通过X射线衍射实验,观察到了截去N端三十个氨基酸残基的Annexin Ⅱ晶体结构,其表现为曲面结构,凹面有肽链的氨基端及羧基端,凸面含有钙离子磷脂结合位点. Anja Rosengarth等为进一步从结构上阐明Annexin Ⅱ与其主要结合物S100A10的结合机制再次通过X射线衍射观察到了全长Annexin Ⅱ的晶体结构,如图1所示.Annexin Ⅱ 主要有单体、二聚体、四聚体三种存在形式. 二聚体是AnnexinⅡ与三磷酸甘油酸激酶的结合物,四聚体则由两个Annexin Ⅱ亚基和S100A10(p11)二聚体结合而成.图1Annexin Ⅱ的丝带模型. 左图和右图分别显示全长结构和氮端部分删除结构. 重复子及钙离子结合位点已标注[略]2Annexin Ⅱ的生物学功能2.1Annexin Ⅱ与膜的融合细胞膜融合是真核细胞中的一种重要生物现象. 膜融合是物质运输的基础,如分泌蛋白从内质网运输到高尔基复合体,以衣被小泡形式,通过膜融合方式将内容物释放到高尔基复合体内,又如运输小泡与质膜融合实现了物质的内吞和外吐. Annexin Ⅱ 在膜融合过程中起到了介导生物膜聚集的作用. Annexin A2S100A10四聚体在Ca2+浓度很低的情况下就能够聚集膜结构并使之融合. Annexin Ⅱ单体以羧基端核心区域结合膜结构,同时氨基末端又有S100A10结合位点,二聚化的S100A10起到桥梁作用,把已结合磷脂膜的Annexin Ⅱ拉拢到一起,实现聚集融合膜结构的功能. 在含有转铁受体的内体循环中,Annexin Ⅱ以四聚体形式介导了质膜循环[8]. 另有研究显示,在Annexin Ⅱ的膜融合功能还可通过两个分子的同聚化形成的. 二聚化的分子呈反向平行结构,从而拉拢质膜,如图2,3所示,可能有三种途径:① Annexin Ⅱ通过钙离子二聚化再分别与膜结合;② Annexin Ⅱ先在钙离子介导下与膜结合,再二聚化,最后结合另一部分膜使膜聚集;③ Annexin Ⅱ先在钙离子介导下与膜结合,再募集另一个已与膜结合的单体分子从而实现膜聚集[7].图2Annexin Ⅱ与S100A10形成四聚体介导生物膜聚集的过程[5]略图3Annexin Ⅱ 同源二聚化介导生物膜聚集的三种可能的途径[8]略2.2Annexin Ⅱ与mRNA的特异性结合人们早已发现Annexin Ⅱ在病毒转化的细胞系和人某些肿瘤组织中表达上调. 最近对七种Annexin蛋白测试证明仅Annexin Ⅱ具有特异性结合RNA的特性. Annexin Ⅱ无论是以单体还是以四聚体形式,都可在钙离子介导下特异与mRNA中的poly G结合. 两者结合的部位可能是位于Annexin Ⅱ羧基末端一些特殊模序结构,如RNP模序,富含精氨酸的模序,双链RNA模序、KH模序、RGG盒、锌指结构. Annexin Ⅱ与HeLa, LNCaP肿瘤细胞中的cmyc癌基因的mRNA结合可延长其半衰期,从而使cmyc蛋白表达上调[9].2.3Annexin Ⅱ参与DNA生物合成Annexin Ⅱ可与三磷酸苷油酸酯激酶形成二聚体复合物. 这一复合物是DNA合成过程中的引物识别复合物(Primer Recognition Proteins, PRP). DNA复制过程中,双链DNA解螺旋,领头链和随从链分别由不同的DNA聚合酶催化得以复制. 其中随从链合成有赖于DNA polα. 少量Annexin Ⅱ有结合DNA尤其是ZDNA的能力,同时它可作为PRP中的组分激活DNA polα的活性. 实验观察显示,PRP使引物与模版以较低比例完成DNA复制,提高了复制的效率. 更进一步研究表明PRP与复制因子C复合物结构类似,它们都既能使复制叉中领头链和随从链的复制相互协调进行,又能促进模板引物相互识别[10].2.4Annexin Ⅱ与纤溶系统AnnexinⅡ介导的纤溶酶原激活机制,可能有赖于其羧基末端的赖氨酸残基(Lys307). AnnexinⅡ结构上的显著特点使其可作为纤溶酶原(plasminogen PLG)和组织纤溶酶原激活物(tissue plasmin tPA)的共同受体. 根据三维图像研究分析,annexinⅡ蛋白表面呈环形盘状结构,3个Ca2+ 依赖的磷脂结合位点位于annexinⅡ表面凸区. 它含有3个基本的二肽序列,LysLys(79,80),LysArg(203204)和LysArg(307308),这3个肽段水解后均可产生羧基末端赖氨酸残基,是潜在的纤溶酶裂解位点. 其中,LysArg(307308) 最接近羧基末端,是最可能的纤溶酶靶点. PLG在AnnexinⅡ的激活,需借助受体羧基末端的裂解,进行受体修饰或受体“激活”作用. Mijung Kwon等人研究证明Annexin Ⅱ的异四聚体还具有还原血纤维蛋白溶酶的活性. 它可通过破坏纤溶酶原中的二硫键使其释放A61片段[11]. 四聚体中的Annexin Ⅱ亚基的Cys334残基和S100A10中的Cys61, Cys82均有还原酶活性.2.5Annexin Ⅱ与骨组织Takahashi等[12]在研究中发现Annexin Ⅱ作为破骨细胞的表达产物通过自分泌或旁分泌作用于破骨细胞本身从而增强其形成能力并增强骨质的溶解. 在缺乏1,25(OH)2维生素D3的骨髓环境中Annexin Ⅱ增加了破骨细胞样的多核细胞数量并促进了骨的溶解.新近研究表明[13],Annexin Ⅱ在造骨细胞矿化过程中亦有一定作用. 研究人员通过在造骨细胞中高表达Annexi n Ⅱ,使碱性磷酸酶(alkaline phosphatase ALP)活性增强并伴有大量的造骨细胞矿化. Annexin Ⅱ和ALP的功能均与造骨细胞膜上的微小结构“脂筏”(即富含鞘糖脂和胆固醇的膜,能抵抗冷的Triton X100洗涤)密切相关. Annexin Ⅱ对ALP活性的促进有赖于胆固醇.2.6Annexin Ⅱ与物质运输早期研究表明Annexin Ⅱ通过在胞内体及其他内涵体上形成网状结构,调节转运小泡的形成,参与胞吐过程,如嗜铬颗粒发生胞吐时其中可检测到Annexin Ⅱ. 一些蛋白的分泌,例如要与脂筏结构结合的蔗糖酶以及麦芽糖酶在向上皮细胞游离面运输时需要Annexin Ⅱ结合到运输小泡的膜上才能完成. 同时RNA干扰和抗体干扰的实验证明,Annexin Ⅱ参与依赖胰岛素的GLUT4的跨膜转运[14]. Annexin Ⅱ与钙离子通道形成相关. TPRV5和TPRV6是钙离子通道的受体,A2S100A10可与它们形成复合物影响钙离子内流. S100A10还可结合蓝舌病毒的NS3蛋白[15]. 通过这种结合,NS3蛋白可使聚集的病毒向胞外运输或在膜上定位. S100A10与NS3的结合位点恰恰与Annexin Ⅱ的结合位点相同,从而使A2S100A10形成受抑制,影响其生理功能.2.7Annexin Ⅱ的分泌功能Annexin Ⅱ虽然缺乏经典的信号肽序列,但却能以某种不明机制转位于细胞膜表面. 例如Arunkumar B. Deora在加热刺激细胞的实验中,观察到Annexin Ⅱ转位于膜表面,并且这种转位依赖p11和酪氨酸磷酸化. 这说明除经典的内质网一高尔基复合体�D细胞膜蛋白分泌途径以外还存在别的蛋白分泌途径. 前文提到Annexin Ⅱ在纤溶系统中的受体功能正是以Annex in Ⅱ分泌到胞外为基础的.有研究者通过用尼古丁刺激嗜铬细胞,观察到依赖外源性钙的Annexin Ⅱ分泌,并构建了一种可能的模型来阐明分泌机制. 该模型显示,Annexin Ⅱ介导嗜铬颗粒聚集后,颗粒接触面会出现空洞,甚至发生膜的破裂. Annexin Ⅱ被破裂的膜碎片包裹从而随着胞吐作用出胞,该过程如图4所示.图4Faure等人提出膜结合表面多孔样模型,试图以此解释无信号肽引导的Annexin Ⅱ分泌[16]略3Annexin Ⅱ与人类疾病的关系3.1心血管疾病前已述之,A2S100A10四聚体与纤溶系统有密切关系,故在一些心血管疾病中可观察到Annexin Ⅱ的表达或功能异常. 在急性早幼粒细胞白血病(APL)中,Annexin Ⅱ异常高表达,促使纤溶酶过度产生引起异常纤溶亢进性出血[17]. 在动脉粥样硬化中,可能由于脂蛋白A的影响,Annexin Ⅱ的促纤溶作用减弱. 脂蛋白A含纤溶酶样载脂蛋白A,可结合低密度脂蛋白. 脂蛋白A抑制PLG结合到Annexin Ⅱ分子上,降低纤溶酶产生,导致纤维蛋白溶解障碍,促使进行性动脉粥样硬化发生. 另外同型半胱氨酸的含量增多会引起血管栓塞形成,这主要是由于同型半胱氨酸会竞争性抑制tPA和Annexin Ⅱ的结合,从而减少纤溶酶产生,影响正常纤溶,使体内形成血栓.3.2癌症越来越多的研究表明,Annexin Ⅱ与癌症有着密切关系. 肿瘤细胞中可观察到Annexin Ⅱ表达增加从而激活纤溶酶原,导致肿瘤细胞易出血和转移能力增强从而出现癌变. 在多种类型的肿瘤中都可观察到Annexin Ⅱ的表达异常,如在胰腺癌、结肠癌、乳腺癌、胃癌、脑星型胶质细胞瘤、小细胞肺癌中表达上调,在食管癌、前列腺癌中表达下调等. 各类癌症中的表达异常各有不同的机制,有些作用机制还没有比较准确的解释. 比如食管鳞状细胞癌可能是由于Annexin Ⅱ通过对胞内钙离子的调控作用影响钙离子控制的细胞生长、角化、分化.AnnexinⅡ的mRNA和蛋白均在食管鳞癌组织中低表达,在中分化和低分化肿瘤中,蛋白表达明显低于高分化肿瘤. 所以AnnexinⅡ在食管鳞状细胞癌中的表达可能与鳞状细胞的分化程度有关[18]. 而在前列腺癌中观察到Annexin Ⅱ下调则是DNA甲基化引起的. 大多数癌症中可观察到的Annexin Ⅱ上调. 在胃癌细胞衍生出的细胞系中,观察到A nnexin Ⅱ的高表达与cerbB2的高表达、分化、转移以及预后不良相伴[19]. Annexin Ⅱ和它的结合蛋白S100A10都可直接与胚癌抗原黏附分子1(CEACAM1)反应,这种上皮细胞黏附分子会在结肠癌、前列腺癌、乳腺癌、肝癌中下调. 肺癌患者的呼吸道纤毛、胸膜间皮细胞以及I型、Ⅱ型肺泡上皮细胞上都有Annexin Ⅱ的高表达[20]. 它在肿瘤细胞表面与组织蛋白酶原C反应,促进细胞外蛋白溶解,易化肿瘤的浸润转移. 在肺癌患者血清中检测到了AnnexinⅡ的自身抗体[21],而以往的研究并未发现这种自身抗体在病理状况下有表达,这提示Annexin Ⅱ可能会与自身免疫疾病有关. 在胰腺癌细胞中,Annexin Ⅱ的高表达局限在表达增殖细胞核抗原PCNA的细胞内的,充分说明该蛋白与细胞增殖相关[22]. 较早的研究中将肝细胞癌中Annexin Ⅱ含量与正常肝脏、胚胎肝组织以及损伤后再生修复的鼠细胞中的含量作了对比,结果发现癌细胞中AnnexinⅡ含量非常丰富.3.3抗炎症作用Annexin Ⅱ的抗炎症作用主要体现在它对磷脂酶A2(Phospholipase A2, PLA2)的抑制作用. 在炎症反应中,花生四烯酸(arachidonic acid, AA)会在PLA2作用下释放出来,后经环氧化酶途径和脂质氧化酶途径生成前列腺素和白三烯,以及通过其他途径生成的脂毒素等代谢产物,从而发挥炎症介质作用. Annexin Ⅱ无论以单体还是以四聚体形式存在都可对PLA2活性产生抑制性作用,尤以四聚体抑制性作用更强. 有研究表明四聚体形式中的p11亚基具有比Annexin Ⅱ单体更强的抑制作用,所以四聚体形式的Annexin Ⅱ更能发挥抗炎症作用[23]. 同家族的Annexin I在抗炎症方面亦有很大作用.3.4糖尿病研究糖尿病的实验中,Annexin Ⅰ,Annexin Ⅱ以及大量细胞骨架重建蛋白可与质膜结合形成葡萄糖加合物,这种糖基化作用会改变内皮细胞膜的流动性[24]. 另有研究表明在体外培养的大动脉内皮细胞表面,大量葡萄糖会诱导Hsp90与Annexin Ⅱ结合. Annexin Ⅱ在纤溶系统中生理功能会因这种变化无法正常发挥,从而引起糖尿病的并发症血栓形成,导致许多糖尿患者死亡[25]. 另外依赖胰岛素和肌动蛋白的转糖体GLUT4在脂肪细胞中的转运作用也需要Annexin Ⅱ辅助,若Annexin Ⅱ表达失调,会间接促进糖尿病及其各种并发症发生.4总结对Annexin Ⅱ的研究可追溯到20世纪80年代,二十年时间里,对该蛋白的认识不断更新. 对Annexins家族的病理研究进步显著以至于有了annexinopathies的概念[26],这充分显示了该家族蛋白在机体中的重要地位.但是仍有很多问题有待解决,例如,Annexin Ⅱ分泌的确切机制,它在癌症中究竟扮演了什么样的角色,是否可以提供新的药物治疗靶点等都还需要深入细致的研究.【参考文献】[1] Gerke V, Weber K. Calciumdependent conformational changes in the 36kDa subunit of intestinal protein I protein I related to the cellular 36kDa target of rous sarcoma virus tyrosine kinase[J]. J Bio Chem, 1985,260(3):1688-1695.[2] Rescher U, Gerke V. Annexinsunique membrane binding proteins with perse functions[J]. J Cell Sci, 2004,117(13):2631-2639.[3] Hayes MJ, Moss SE. Annexins and Disease[J]. Biochem Biophysi Res Commun, 2004,322(4):1166-1170.[4] Spano F, Raugei G, Palla E, et al. Characterization of the humanlipocortin2encoding multigen family: Its structure suggests the existence of a short amino acid unit undergoing duplication[J]. Gene,1990,95(2):243-251.[5]Gerke V, Moss SE. Annexins: From Structure to Function[J]. Physiol Rev, 2002,82(2):331-371.[6]Seaton BA, Dedman JR. Annexins[J]. BioMetals, 1998,11(4):399-404.[7] Rosengarth A, Luecke H. Annexin A2: Does it induce Membrane Aggregation by a new multimeric State of the Protein[J]? Annexins, 2004,1(2):e34-e41.[8] Zobiack N, Rescher U, Ludwig C, et al. The annexin2/S100A10 complex controls the distribution of transferrin receptorcontaining recycling endosomes[J]. Mol Biol Cell, 2003,14(12):4896-4908.[9] Filipenko NR, MacLeod TJ, Yoon C, et al. Annexin A2 isa novel RNAbinding protein[J]. J Bio Chem, 2004,279(10):8723-8731.[10] Jindal HK, Chaney WG, Anderson CW, et al. The proteintyrosine kinase substrate, calpactin I heavy chain (p36), ispart of the primer recognition protein complex that interacts with DNA polymerase α[J]. J Bio Chem, 1991,266(8):5169-5176.[11]Ling Q, Jacovina A, Deora A,et al. Annexin Ⅱ regulates fibrin homeostasis and neoangiogenesis in vivo[J]. J Clin Invest, 2004,113(1): 38-48.[12] Takahashi S, Reddy SV, Chirgmin JM, et al. Cloning and identificat ion of annexin Ⅱ as an autocrine/paracrine factor that increases osteoclast formation and bone resorption[J]. J Bio Chem,1994,269 (46):28696-28701.[13] Gillette JM, NielsenPreiss SM. The role of annexin 2 in osteoblastic mineralization[J]. J Cell Sci, 2004; 117(3): 441-449.[14]Huang J, Hsia SH, Imamura T,et al. Annexin Ⅱ is a thiazolidinedioneresponsive gene involved in insulininduced GLUT4 translocation in 3T3L1 adipocytes[J]. Endocrinology, 2004; 145(4): 1579-1586.[15] van de Graaf SF, Hoenderop JG, Gkika D, et al. Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10annexin 2 complex[J]. EMBO, 2003,22(7):1478-1487.[16]Faure AV, Migne C, Devilliers G, et al. Annexin 2 “Secretion” accompan ying exocytosis of chromaffin cells: Possible mechanisms of annexin release[J]. Exp Cell Res, 2002,276(1):79-89.[17]Menell JS, Cesarman GM, Jacovina AT,et al. Annexin Ⅱ and bleeding in acute promyelocytic leukemia[J]. N Engl J Med, 1999,340(25):994-1004.[18] Zhang X, Zhi HY, Zhang J, et al. Expression of annexin Ⅱ in human esophageal squamous cell carcinoma[J]. Chin J Oncol,2003,25(4):353-355.[19] Emoto K, Sawada H, Yamada Y,et al. Annexin Ⅱ overexpression is correlated with poor prognosis in human gastric carcinoma[J]. Anticancer Res, 2001,21(2B):1339-1345.[20]Kirshner J, Schumann D, Shively JE. CEACAM1, a cellcell adhesion molecule directly associates with annexin Ⅱ in athreedimensional model of mammary morphogenesis[J]. J Bio Chem,2003,278 (50):50338-50345.[21]Brichory FM, Misek DE, Yim AM, et al. An immune response manifested by the common occurrence of annexins I and Ⅱ autoantibodies and high circulating levels of IL6 in lung cancer[J]. Proc Natl Acad Sci USA, 2001,98 (17):9824-9829.[22]Vishwanatha JK, Chiang Y, Kumble KD, et al. Enhanced expression of annexin Ⅱ in human pancreatic carcinoma cells and primary pancreatic cancers[J]. Carcinogenesis, 1993,14(12):2575-2579.[23]Wu T, Angus CW, Yao XL, et al. P11, a unique member of the S100 family of calciumbinding proteins, interacts with and inhibits the activity of the 85kDa cytosolic phospholipase A2[J]. J Bio Chem,1997,272(27):17145-17153.[24]Ghitescu LD, Gugliucci A, Dumas F. Actin and annexins I and Ⅱ are among the main end othelial plasmalemmaassociated proteins forming early glucose adducts in experimental diabetes[J]. Diabetes,2001,50(7):1666-1674.[25]Lei H, Romeo G, Kazlauskas A. Heat shock protein90alphadependent translocation of annexin Ⅱ to the surface of endothelial cells modulates plasmin activity in the diabetic rat aorta[J]. Circ Res, 2004,94(7):902-909.[26]Rand JH. The annexinopathies: A new category of disease[J]. Biochim Biophys Acta, 2000,1498(23):169-173.。
Colony formation assay(细胞克隆形成)
Colony formation assay OG 1-14-2001These assays are based on the principle that certain proteins when expressed stably cause either cell cycle arrest or cell death, hence a reduction in colony number.1.Plate out SAOS-2 (p53 -/-. pRB -/-), H1299 (p53 -/-. pRB +/+) or U2OS (p53 +/+,pRB +/+) in p60 dishes for transfection next day. The cells should be approximately 60-70 % (SAOS-2), or appr. 40-60 % (H1299, U2OS) confluent, respectively, on the day of transfection. Use 5 ml of medium per p60 dish.2.Transfect the cells. You can either use BES calcium phosphate or Fugene-6 (Roche)– either one works well. Probably Fugene has lower toxicity, though.3.With Fugene-6 transfect as follows:A.Aliquot the DNA’s (2.5 µg) into Falcon 2054 tubes.B.Prepare a master mix in a separate Falcon tube for all the transfections (make enoughfor one more transfection than you need because of pipetting errors). Mix 117.5 µl DMEM (without serum, or antibiotics) with 7.5 µl Fugene-6 per transfection.Incubate 5 min.C. Add the DMEM/ Fugene mixture (125 µl) to each tube with DNA and mix bypiptetting up and down gently. Incubate 15 min at RT.D.Add the DMEM/ Fugene/ DNA mixture to the cells dropwise.E.The transfection mixture can remain on the cells overnight, since it’s not very toxic.Note on DNA to use: The DNA you transfect must have a drug resistance marker, preferably puromycin (it’s faster) but neomycin or hygromcyin may also be used. For this assay, pBabe-puro works quite well as a vector for puromycin selection.4.Th e next day after transfection pass the cells from p60’s into p100 dishes.5.Two days after transfection start the selection by adding the appropriate amount ofselection drug. E.g. add puromycin to a final conc. of 1-1.5 µg/ml (for pBabe-puro).For G418 selection, 500 µg/ml is a good starting point.6.Every 3-4 days the medium should be replaced with fresh medium containing theselection drug. Most of the non-resistant cells are dead after 3-4 days of puromycinselection. However, it takes 2-3 weeks for the drug-resistant cells to form a visible colony.7.The assay should be stopped when the colonies are clearly visible even withoutlooking under the microscope. Stain the colonies with crystal violet and count them if so desired.Notes:-Every assay should as a minimum have one positive and one negative control, i.e. the vector alone versus vector containing something ‘toxic’.-If you try to rescue colony formation with Bcl-2 or dn–p53 it can be done in an equal ratio, i.e. 2.5 µg ‘your construct’ + 2.5 µg B cl-2/ dn p53 vector. Make sure whatever you try to rescue with does not have the same drug resistance marker. Also, when transfecting 5 µg, as in this case, double the amounts of everything (Fugene, DMEM ).。
英语单词详解系列[高中译林模块5单元1]八十八
英语单词详解系列[高中译林模块5单元1]八十八envy音标_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 英[’envɪ] 美[’ɛnvi]附加_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 复数envies 过去式envied 过去分词envied 现在分词envying ]释义_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ n. 嫉妒,妒忌;羡慕vt. 嫉妒,妒忌;羡慕vi. 感到妒忌;显示出妒忌短语_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Feature Envy:依恋情结;特性依恋;依恋情节;特性羡慕Envy me:嫉妒我;妒忌我;妒嫉我;嫉妒我香氛womb envy:子宫妒羡Inspire envy:引人艳羡I envy:我好羡慕;让我羡慕;我嫉妒;真羡慕Green Envy:茶的物语Cupid Envy:喜悦之泪envy n:妒忌Goldman envy:嫉妒高盛例句_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _1.N-UNCOUNT Envy is the feeling you have when you wish you could have the same thing or quality that someone else has. 羡慕例:Gradually he began to acknowledge his feelings of envy towards his mother.渐渐地他开始承认自己对母亲的羡慕。
《农业科学研究》2023_年总目次
Effect of exogenous rapeseed lactone on photosynthetic characteristics and fruit quality of Merlot grape
……………… Liu Yan,Qiao Zichun,Yin Mengting,Guo Xueliang,Wang Yuening,He Yan,Dai Hongjun,Wang Zhenping(1,33)
辉, 梁晓珊, 王雪妍, 高
瑞, 谢玉杰, 许立华(2,1)
施钾量对滴灌水肥一体化下春玉米钾吸收及产量的影响
…………………………………………………………………王晓苹,康建宏,田仲红,王
磷钾肥配施对卷丹百合鳞茎活性成分积累的影响 …………卜虎柏,王云霞,张
萍,杨
佳,慕瑞瑞,徐
英,王
涵,靳
灿(2,6)
磊(2,12)
植物生长调节剂对切花小菊瓶外生根及外观品质的影响
…………………………………………………………罗
艳,
锁
岚,
虎
瑛,
马蓉蓉,
,61)
专论与综述
农民多层次幸福感的测度与分解研究——基于甘肃和宁夏的社会调查数据
…………………………………………………………………………………………… 李宝军,陈秋霖,王 博(1,57)
Correlation analysis between agronomic traits and yield per plant of asparagus lettuce in Liupanshan region
……………………………………………………… Wu Lixiao,Cao Shaona,Zhang Jianhu,Wang Kexiong,Guan Yaobing(1,33)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Annealing twin formation and recrystallization study of cold-drawncopper wires from EBSD measurementsT.Baudin ⁎,A.L.Etter,R.PenelleUniversitéde Paris Sud,ICMMO,UMR CNRS 8182,Laboratoire de Physico-Chimie de l'Etat Solide,bâtiment 410,91405Orsay Cedex,FranceReceived 29August 2006;accepted 18September 2006AbstractThe crystallographic texture and microstructure of an electrolytic tough pitch copper have been investigated by Electron Back Scattered Diffraction (EBSD)after cold wire drawing (reduction in area between 52%and 94%)and after primary recrystallization.The material presents a deformation texture composed of major 〈111〉and minor 〈100〉fibers.The evolution of the quality index of the Kikuchi patterns shows that the stored energy is lower in the 〈100〉fiber than in the 〈111〉fiber.Then,after recrystallization,the volume fraction of the 〈100〉fiber increases at the expense of the other texture components.The study of the grain boundary nature shows that the recrystallization twin fraction decreases with increasing strain.It is shown that this evolution is the consequence of the grain size reduction.©2006Elsevier Inc.All rights reserved.Keywords:Copper;Wire drawing;Recrystallization;Twin;EBSD1.IntroductionThe recrystallization development of copper (or alloys with similar recrystallization behavior such as Ni alloys)is now quite well known.Indeed recent studies [1–3]have examined and explained different steps of the recovery and recrystallization processes and their influence on the microstructure and the texture development.So,it is now well known that to grow,a nucleus needs to have a sufficient size that can be attained by dis-location cell recovery,see Ref.[4].For copper,when the strain amount is low,all grains,i.e.all orientations,have the same probability to grow,and the recrystallization texture becomes isotropic because of the twinningmechanism which involves the formation of new orientations.For a high amount of strain produced by cold rolling,the {100}〈001〉cube orientation dynam-ically recovers during deformation.Then,this compo-nent quickly develops at the expense of the deformed matrix.Consequently the recrystallization texture is essentially composed of the cube component plus its twin orientation.In all cases,when the nucleus has reached a “critical ”size,it grows at the expense of the deformed matrix by bulging.This is possibly due to the large stored energy difference between the nucleus and the matrix [5].Let us finally note that a nucleus can twin during the first stages of its growth [6]and several twin generations may be observed before complete recrystal-lization [7,8].This short-term recrystallization behavior clearly shows the great importance of the twinning mechanism,which is still not well understood.Materials Characterization 58(2007)947–952⁎Corresponding author.Tel.:+33169157983.E-mail address:Thierry.Baudin@lpces.u-psud.fr (T.Baudin).1044-5803/$-see front matter ©2006Elsevier Inc.All rights reserved.doi:10.1016/j.matchar.2006.09.009In the present study,EBSD measurements have been performed on wires after different cold drawn reductions and also after recrystallization.This study focuses on the twin boundary volume fraction in order to understand the formation of the recrystallized microstructure.2.Experimental detailsThe material classified as Electrolytic Tough Pitch (ETP)contains a minimum copper concentration of 99.99%,i.e.the impurities level is less than100ppm(the impurity content of this material is given in Table1).The copper wires were industrially hot rolled(8mm diameter)and then cold drawn.The identity,the section reduction,the final diameter after deformation and the true strain of each wire are given in Table2.After working,the copper wires were annealed at260°C for10min in an oil bath.The EBSD measurements on the deformed and re-crystallized samples were performed on an SEM (Scanning Electron Microscope)equipped with a W-filament.The OIM™software was used to analyze the orientation maps.3.Results and discussion3.1.Deformed specimensThe wire-drawn texture in copper and some alloys can be described as a combination of the〈111〉and〈100〉fibers[9].By neutron diffraction experiments,Gerber et al.[9]have shown from orientation distribution func-tion calculations that the intensity of the〈111〉fiber increases with increasing strain.The〈100〉fiber is less intense than the〈111〉fiber,but the intensity related to the〈100〉ideal position tends to increase with increasing strain.These results are consistent with those described in the literature.Indeed,it has been shown that the〈111〉fiber is a stable orientation in the deformed state[10], while the〈100〉component is obtained as the result of a combined dynamic recovery and recrystallization pro-cess[11].Gerber et al.[9]have then assumed that the volume fraction of recovered and/or recrystallized〈100〉grains in the deformed state increases for the highest strain level.This hypothesis is verified from the volume fraction calculated from EBSD measurements(Fig.1a). This figure shows the increase of the〈100〉fiber volume fraction when the strain amount increases and Fig.1b shows that the white points(good Quality Index—QI) correspond to the recovered or recrystallized grains of the〈100〉fiber.Let us note that the quality of the Kikuchi patterns is too bad to estimate the〈111〉fiber volume fraction.The QI distribution can be used to estimate relative values of the stored energy,which is the driving force for recrystallization[4],in the two different fibers.Fig.2 shows that the QI factor is greater for the〈100〉fiber than for the〈111〉fiber(with a15°spread).Then,the stored energy is lower in the first fiber than in the second.This result has already been observed from neutron diffraction measurements[12].Finally,it is interesting to note that the stored energy difference(Fig.2)between these two fibers increases with the amount of strain.This gives to the〈100〉grains the ability to grow at the expense of the matrix during recrystallization,especially after high strain.3.2.Recrystallized specimensFig.3shows the microstructural evolution along the radius of the different wires.The grain size is calculated excluding twins and it appears that the grain size de-creases when the strain amount increases(Fig.4a). Moreover,no significant change(small increase for the A sample)of the grain size is observed along the sample radius(Fig.4b)except for the last point of each curve which corresponds to points at the periphery of the wire. In this particular area,a shear strain can modify the recrystallization mechanisms and thus the grain size.Table1Chemical composition of copper given in ppm(in weight)ElementC O Si S Cl Fe Co Ni Zn As Se Sn Pb2.31700.033.20.02 2.80.030.090.170.010.030.030.26 Table2Diameter,section reduction and true strain of the A,B,C and D cold-drawn wiresSample name Diameter after reduction(mm)Section reduction(%)TruestrainA 5.54520.73B 4.2472 1.27C 2.5790 2.27D 1.9394 2.84948T.Baudin et al./Materials Characterization58(2007)947–952The development of recrystallization textures in wire-drawn fcc metals has been reviewed by several authors [9,13].At high reduction level,the wire-drawn texture evolves during recrystallization to a major 〈100〉fiber.The EBSD measurements (Fig.5a)allow us to verify the increase of the 〈100〉fiber volume fraction as a function of the strain amount.Let us note that no particular evolution of the 〈100〉fiber volume fraction was ob-served along the wire radius for the A and B specimenswhile the 〈100〉fraction of C and D specimens increases (Fig.5b).However,let us further remark that this increase is only due to the value estimated at the wire periphery which can be submitted to a different strain path than the other points.The microstructures present many twins character-ized by Σ3grain boundaries.A decrease of the twin fraction is observed when the strain amount increases (Fig.6a).The change of twin volume fraction along the radius is presented in Fig.6b.Regarding the three last Figs.4a,5a and 6a ,it is worth trying to link the twin evolutions with the grain size and/or the 〈100〉fiber fraction changes.Indeed,first,it can be seen that the decrease of twin fraction as a function of the reduction section could be associated with the decrease of the grain size but also might be related to the increase of the 〈100〉fiber fraction.In order to separate the influence of these two para-meters,their evolutions along the specimen radii can be useful.Indeed,at a first glance,it appears that the twin evolution (Fig.6b)is easier to correlate to the grain size (Fig.4b)than to the 〈100〉fiber fraction (Fig.5b).This assumption is further supported if we focus on the specimens A and C at 0.5mm from the wire center.In these two areas,the 〈100〉fiber fraction is similar (18%),but the grain size is quite different with 10.2μm diameter for A and 8.4μm for C.Consequently,it appears that the drop of Σ3grain boundary fraction (about 43%to 50%)between these two areas is related to the grain size.Once more,the decrease in twinning at the end of the curves corresponds fairly well to the grain size decrease.For each sample,the small (b 10μm)and large (N 10μm)grains were separated in the microstructure.For each grain partition,the twin fraction was calculated.As an example,Fig.7shows,for the center of the D sample,the orientation maps ({hkl}plan distributioninFig.2.Quality index evolution for the two 〈100〉and 〈111〉fibers.(a)Sample A and (b)sampleD.Fig.1.(a)V olume fraction of the 〈100〉fiber as a function of the section reduction.(b)QI map of the D sample and {001}pole figure of the main white points.949T.Baudin et al./Materials Characterization 58(2007)947–952the wire section)of the complete microstructure and for the two associated partitions.Inside these microstruc-tures,it becomes easy to determine the Σ3volume fraction (Fig.8).For all the samples,the Σ3volume fraction is lower in the small grains of the microstructure than in the large grains as expected above.The important point of this study is that the twin fraction is mainly distributed in the large grains.Indeed,it appears that large grains favor twin formation.This conclusion could be used to develop isotropic textures often desired from an industrial point of view to improve physical properties.4.ConclusionsThe results of the present study allow us to discuss some important conclusions which can help in the understanding of the microstructure and the re-crystallization texture formation in cold-drawn copper alloys.During deformation,the 〈100〉grains dynamically recover.In these conditions,the stored energy difference,estimated from the EBSD measurements,between the 〈100〉grains and the matrix (especially the 〈111〉grains)becomes large and favors the nucleation of this texture component during the annealing treatment.Consequently,the minor 〈100〉fiber present in the strained material develops preferentially during the re-crystallization process at the expense of the other tex-ture components.During recrystallization,twinning is an important mechanism which affects the texture development.For a low reduction,all the texture components can develop and then each grain can twin,creatingnewFig.3.Microstructure evolution along the radius of the different samples analyzed by EBSD.950T.Baudin et al./Materials Characterization 58(2007)947–952orientations which increase the random part of the texture.On the contrary,if the reduction is high,the 〈100〉grains grow preferentially and the final texture is mainly composed of this component plus its twin 〈122〉and a random part.The present results show that the Σ3grain boundary fraction decreases with the increasing strain amount.Then,an isotropic texture,which is often industrially desired to obtain isotropic physical properties,can be achieved by recrystallization of low strained specimens.Indeed,this twin volume fraction increase is also directly linked to the grain size increase as shown in the present study.However,it is often necessary to produce flat sheets.Consequently,one can consider the possibility to develop a normal grain growth after primary recrystal-lization,in order to obtained large twinned grains favor-ing the isotropic texture development.AcknowledgementsThe authors are grateful to the Sociétéde Coulée Continue du Cuivre (SCCC)and SociétéLensoise du Cuivre (SLC)for providing the wire-drawn copper.The Ministère de la Recherche Française is acknowledged for the financial support of this project through the Réseau National Matériaux et Procédés (RNMP).References[1]Julliard F.,Ph.D.Thesis,Etude des mécanismes de recristallisa-tion dans l'Invar,alliage Fe –36%Ni.Universitéde Paris XI,Orsay,France;2001.[2]Gerber Ph.,Ph.D.Thesis,Etude des liens entre hétérogénéités dedéformation et mécanismes de recristallisation.Application au cuivre et ses alliages.Universitéde Paris XIII,Villetaneuse,France;2002.[3]Jakani S.,Ph.D.Thesis,Effet des impuretés sur les mécanismesde recristallisation du cuivre tréfilé.Universitéde Paris XI,Orsay,France;2004.[4]Humphreys FJ,Hatherly M.Recrystallization and relatedannealing phenomena.Elsevier;2004.[5]Etter AL,Mathon MH,Baudin T,Branger V ,Penelle R.Influenceof the cold rolled reduction on the stored energy and the recrystallization texture in a Fe –53%Ni alloy.Scr Mater 2002;46:311–7.[6]Julliard F,Baudin T,Penelle R.Formation de la texture derecristallisation cubique dans l'alliage Fe –36%Ni élaborépar voie lingot et par coulée continue en bandes minces.Arch Metall 2000;45:33–45.[7]Gottstein G.Annealing texture development by multipletwinning in fcc crystals.Acta Metall 1984;32:1117–38.[8]Baudin T,Julliard F,Penelle R.Développement de la texture derecristallisation par maclage multiple dans l'Invar (Fe36%Ni).Rev Métall 2003;2:193–202.Fig.5.Evolution of the 〈100〉fiber volume fraction after recrystal-lization (a)as a function of the section reduction and (b)along the radius of the differentsamples.Fig.4.Grain size evolution (a)at the center of the samples with section reduction and (b)along the radius of the different samples.951T.Baudin et al./Materials Characterization 58(2007)947–952[9]Gerber Ph,Jakani S,Mathon MH,Baudin T.Neutron diffractionmeasurements of deformation and recrystallization textures in cold wire-drawn copper.ICOTOM 14,Leuven,Belgium,July 11–15,2005.Mat Sci Forum 2005;495–497:919–24.[10]Dillamore IL,Roberts WT.Preferred orientation in wrought andannealed metals.Metall Rev 1965;10:271–380.[11]Inakazu N,Kaneno Y ,Inoue H.Fiber texture formation andmechanical properties in drawn fine copper wires.ICOTOM 10,Clausthal,Allemagne,September 20–24,1993.Mat Sci Forum 1994;157–162:715–20.[12]Jakani S,Mathon MH,Benyoucef M,Gerber P,Baudin T,de Novion CH.Impurities effects on the stored elastic energy in cold-drawn copper wires.J Neutron Res 2004;12:249–54.[13]Park H,Lee DN.The evolution of annealing textures in 90Pctdrawn copper wire.Metall Mater Trans A Phys Metall Mater Sci 2003;34:531–41.Fig.6.Evolution of Σ3grain boundaries measured (a)at the center of each sample and (b)along the radius of the differentsamples.Fig.7.Orientation maps (distribution of {hkl}plan)of (a)the center of sample D,(b)the small grains and (c)the largegrains.Fig.8.Evolution of Σ3grain boundaries measured in small and large grains of all specimen centers.952T.Baudin et al./Materials Characterization 58(2007)947–952。