消隐工作原理
第四章组合逻辑电路的分析与设计

=1
S
C = AB 画出逻辑电路图。 画出逻辑电路图。
S = AB + AB = A ⊕ B
&
C
2.全加器——能同时进行本位数和相邻低位的进位信号的加法运算。 全加器 能同时进行本位数和相邻低位的进位信号的加法运算。
由真值表直接写出逻辑表达式,再经代数法化简和转换得: 由真值表直接写出逻辑表达式,再经代数法化简和转换得:
每一个输出变量是全部或部分 输入变量的函数: 输入变量的函数: L1=f1(A1、A2、…、Ai) 、 L2=f2(A1、A2、…、Ai) 、 …… Lj=fj(A1、A2、…、Ai) 、
4.1 组合逻辑电路的分析方法
分析过程一般包含4个步骤: 分析过程一般包含4个步骤:
例4.1.1:组合电路如图所示,分析该电路的逻辑功能。 组合电路如图所示,分析该电路的逻辑功能。
第四章 组合逻辑电路的分析与设计
组合逻辑电路的概念: 组合逻辑电路的概念: 电路任一时刻的输出状态只决定于该时刻 各输入状态的组合,而与电路的原状态无关。 各输入状态的组合,而与电路的原状态无关。
组合电路就是由门电路组合而成, 组合电路就是由门电路组合而成 , 电路中没有记 忆单元,没有反馈通路。 忆单元,没有反馈通路。
= Ai Bi + ( Ai ⊕ Bi )C i- 1
S i = Ai ⊕ Bi ⊕ C i 1
C i = Ai Bi + ( Ai ⊕ Bi )C i- 1
根据逻辑表达式画出全加器的逻辑电路图: 根据逻辑表达式画出全加器的逻辑电路图:
& Ai Bi Ci-1 =1 Si ≥1 =1 Ci
Ai Bi Ci-1 CI ∑ CO Si Ci
4.3.3 译码器
CR6842_45应用指导V1.2

CR6842 应用指导书 应用指导书
3).当系统工作在满载的情况下,如果系统出现可听及的异音时,请检查系统是否工作正常,如果你确 认无误,请检查芯片的 FB 端的电压波形是否较平滑,如果发现较大的干扰请检查系统的 PCB layout 是 否合理,对于较小的干扰可通过外加滤波网络进行抑制,如图 1.7.2 中的 RFB 及 CFB 组成的低通滤波器, 这里 RFB, CFB 的取值不宜过大,比如 47 Ohm,1000 PF;根据系统的实际情况,RFB 可以为 0 Ohm。 RFB,CFB 的取值会影响系统的环路稳定,一般 CFB 的取值建议要≤4700PF。
f PWM =
1742 ( KHz ) R1 ( K Ω)
图 1.6 频率设置电路 虽然 CR6842 推荐系统 PWM 的工作频率范围可为 45K~100KHz,但是芯片系统性能优化主要是被设计 在 50KHz~65KHz 的应用范围, 在应用时请注意。 在 PCB layout 时应尽可能使 RI 的接地端靠近芯片的 Pin 1 GND 端,以便减少干扰。
图 1.2.1 整流前启动
图 1.2.2 整流滤波后启动
图 1.2.3 OCP 补偿功能的启动
3、系统的启动时间: 系统的启动时间:
上面两种启动方式当电源上电开机时通过启动电阻 RIN 给 VDD 端的电容 C1 充电,直到 VDD 端口电 压达到芯片的启动电压 VTH(ON)(典型值 16.5V)时芯片才被激活并且驱动整个电源系统正常工作。在图 1.3.2 中系统的最大启动延迟时间满足如下运算关系:
应用领域 应用领域: 领域:
* 电池充电器 * 数码产品适配器 * LCD 显示器/TV 电源 * 开放式电源 * 384X 替代 * 兼容:SG6842J&LD7552&OB2269 &SG6841 & OB2268
电子扫描原理

三、电子扫描原理如前所述,将一幅图像上各像素点的不同明暗程度转化为顺序传送的相应电信号,以及将这些顺序传送的电信号再重现为一幅平面图像的过程(即图的分解与复合),都是借助于电子扫描来实现的。
在摄像管与显像管中,电子束按一定规律在靶面上或屏幕上运动就可以完成摄像和显像的扫描过程。
在电视系统中,电子束的扫描采用匀速、单向直线扫描方式,即扫描的速度是均匀的,扫描的轨迹是直线,只在单一方向传递图像信息。
由电路分析可知,运动的电子(电子束)通过电场或磁场时,会受到电场或磁场的作用而发生运动方向的改变,电子束通过电场产生的运动方向的改变称为静电偏转,电子束通过磁场产生的运动方向的改变称为磁偏转。
电视摄像管和显像管均采用磁偏转方式,即在管壳外都安置有偏转线圈以产生偏转磁场。
电子束的扫描方式有两种,下面分别来介绍。
1.逐行扫描电子束从上到下一行接一行地扫过整幅(帧)画面称为逐行扫描。
这种扫描分成两个方向,从显像管外看:自上而下的扫描称垂直扫描,也称场扫描。
在逐行扫描中,一幅图像一场扫完,帧和场无区别。
自左到右的扫描称为水平扫描,也称行扫描。
(1)水平扫描在图1-9(a)中,当给一对上下放置的行偏转线圈中通以图(b)所示的行锯齿波电流iH 时,在行偏转线圈中产生的磁场可用右手定律确定,即“四指顺着线圈中的电流方向,大拇指的指向为磁场方向”。
当电子枪射出的电子通过该磁场时,依左手定则,即“拇指与四指垂直,磁力线穿过手心,四指代表电流方向,拇指代表电子的偏转方向”。
则电子束将在水平方向偏转。
图1-9 水平扫描工作原理图例在上图中,设锯齿波电流为负最大值a时,依左手定则,电子束应偏向屏幕的最左边a处(此时电流的方向及磁场方向应与上图相反),电流由a 到b 变化时,流过偏转线圈的电流幅度逐渐减小,因而形成的磁场相应减小,导致电子束的偏转角度减小。
到b 点时,锯齿波电流为零,因而磁场为零,电子束不偏转,射向屏幕的最中央。
由b 到c锯齿波电流从零逐渐增大(此时电流及磁场的方向与图中一致),因而偏转线圈中形成的磁场也逐渐增强,但磁场方向与前面相反,导致穿过它的电子束向右继续偏转,且偏转角逐渐增大,至c点达到最大,即到达屏幕最右边。
数字电路CD4511的原理(引脚及功能)

CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。
可直接驱动LED显示器.CD4511 是一片 CMOS BCD—锁存/7 段译码/驱动器,引脚排列如图 2 所示.其中a b c d 为BCD 码输入,a为最低位。
LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。
BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平。
另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。
LE是锁存控制端,高电平时锁存,低电平时传输数据。
a~g是 7 段输出,可驱动共阴LED数码管.另外,CD4511显示数“6”时,a段消隐;显示数“9”时,d段消隐,所以显示6、9这两个数时,字形不太美观图3是 CD4511和CD4518配合而成一位计数显示电路,若要多位计数,只需将计数器级联,每级输出接一只 CD4511 和LED 数码管即可。
所谓共阴 LED 数码管是指 7 段 LED 的阴极是连在一起的,在应用中应接地。
限流电阻要根据电源电压来选取,电源电压5V时可使用300Ω的限流电阻.用CD4511实现LED与单片机的并行接口方法如下图:CD4511 引脚图其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。
LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入DCBA 状态如何,七段均发亮,显示“8”。
它主要用来检测数码管是否损坏。
LE:锁定控制端,当LE=0时,允许译码输出。
LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值.A1、A2、A3、A4、为8421BCD码输入端.a、b、c、d、e、f、g:为译码输出端,输出为高电平1有效。
外围器件的工作原理与应用

4、功能逻辑图
5、真值表
6、接线图
(三)74LS244
1、芯片功能 ---八进制缓冲/线路驱动器(高阻) 2、芯片引脚图
3、逻辑图
4、功能表
(四)精密温度传感器
1、特性:
LM35D
LM35系列是精密集成电路温度传感器,它们的输 出电压与摄氏温度线性成比例,因而 LM35有优于用开 尔文标准的线性温度传感器,LM35无需外部校准或微 调来提供±1/4℃的常用的室温精度,在-55~+150℃ 温度范围内为±3/4℃,LM35的额定工作温度范围为55~+150℃,同时LM35C在-40℃到+110℃之间(-10℃ 用于改进度)。
LT 指示灯测试端 4 BI/RBO (逆程)消隐端 端码输出端9--源自154、解码器输出的数字符号
5、解码器工作原理(图1) 6、实际应用的电路接线图(图2)
图1
图2
(二)74LS164
1、芯片功能 ---串行输入,并行输出 2、芯片引脚图 完成串转并功能
3、芯片引脚说明
A、B(第1、2脚)为串行数据输入端,2个引脚按逻辑与运算 规律输入信号,共一个输入信号时可并接。 T(第8脚)为时钟输入端,可连接到串行口的TXD端。每一个 时钟信号的上升沿加到T端时,移位寄存器移一位,8个时钟脉 冲过后,8位二进制数全部移入74LS164 中 R(第9脚)为复位端,当R=0时,移位寄存器各位复0,只 有当R=1时,时钟脉冲才起作用。 Q1…Q8(第3-6和10-13引脚)并行输出端分别接LED显示器的 h g f e d c b a 各段对应的引脚上。 在给出了8个脉冲后,最先进入74LS164的第一个数据到达了 最高位,然后再来一个脉冲会有什么发生呢?再来一个脉冲, 第一个脉冲就会从最高位移出,因此,可以多个74LS164首尾串 接,实现多为LED显示。
现代设计方法参考答案

现代设计方法参考答案1.凸规划对于约束优化问题。
2.可行搜寻方向是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。
3.设计空间:n 个设计变量为坐标所组成的实空间,它是全部设计方案的组合7.黄金分割法:是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值。
8.可行域:满足全部约束条件的设计点,它在设计空间中的活动范围称作可行域一、与文件系统相比,数据库系统的主要特征有哪些?关于数据库系统比照文件系统的优点有:1、提高了数据的共享性,使多个用户能够同时访问数据库中的数据。
2、提高了数据的全都性和完整性。
3、供给数据与应用程序的独立性。
二、常用的牢靠度安排方法有哪三种?各自的安排原则是什么?答:常用的牢靠度三种安排方法和各自的安排原则如下:〔1〕等同安排法:依据系统中各单元〔子系统或零部件〕的牢靠度均相等的原则安排。
〔2〕加权安排法:把各子系统在整个系统中的重要度以及各子系统的简单度作为权重来安排牢靠度。
〔3〕最优安排法:全面考虑各种殷素的影响,承受优化方法安排牢靠度。
三、在有限元分析时,什么状况下适合选择一维、二维、三维单元?(1)当几何外形、材料性质及其它参数能用一个坐标描述时,选用一维单元。
(2)当几何外形、材料性质及其它参数需要用两个相互独立的坐标描述时,选用二维单元。
(3)当几何外形、材料性质及其它参数需要用三个相互独立的坐标描述时,选用三维单元。
四、简述梯度法的根本原理和特点梯度法的根本原理:梯度法又称最速下降法,根本原理是在迭代点四周承受使目标函数值下降最快的负梯度方向作为搜寻方向,求目标函数的微小值。
梯度法的特点:迭代计算简洁,只需求一阶偏导数,所占用存储单元少,对原始点要求不高,在接近微小点位置时收敛速度很慢。
五、什么是牢靠性、牢靠度?二者有何关系?牢靠性是指产品在规定的时间内,在规定的条件下,完成规定功能的力量;牢靠度是指产品在规定的时间内,在规定的条件下,完成规定功能的概率;两者的联系就在于,牢靠度是对产品牢靠性的概率度量。
篮球24秒计时器(数电)

目录摘要 (1)第1章绪论 (2)1.1 毕业设计背景 (2)1.2 设计任务及要求 (2)1.2.1 设计任务 (2)1.2.2 基本要求及目标 (2)第2章电路框图及工作原理 (3)2.1 设计方案 (3)2.2 电路框图 (3)第3章单元电路的设计 (5)3.1 24进制计数器的设计 (5)3.2 数码显示电路的设计 (6)3.3 秒脉冲的设计 (8)3.4 控制开关电路的设计 (10)3.5 报警电路的设计 (10)3.6 整机工作原理 (11)第4章电路仿真 (12)结论 (16)参考文献 (17)附录1 篮球竞赛24秒计时器总电路原理图 (18)附录2 元器件清单 (19)摘要随着电子技术的飞速发展,社会步入了信息时代,人们的生活水平在逐步提高,因而对电子产品提出了更高的要求。
篮球竞赛24秒计时器可用于篮球比赛中对球员持球时间24秒限制。
不仅能进行时间追踪,还具有直接清零、启动、暂停、连续以及光电报警功能,同时采用七段数码管来显示时间,可以方便的实现断点计时功能,当计时器递减到零时,会发出报警信号。
在社会生活中也具有广泛的应用价值。
计时器主要是由计时电路、控制电路、以及译码显示电路3个部分组成。
电路结构简单,功能方便、快捷。
关键字计时器;光电报警;七段数码管;电路第1章绪论1.1 设计意义随着信息时代的到来,电子技术在社会生活中发挥这越来越重要的作用,运用模电和数电知识设计的电子产品成为社会生活中不可缺少的一部分,特别是在各种竞技运动中,定时器成为检验运动员成绩的一个重要工具。
例如,在篮球比赛中,规定了球员的持球时间不能超过24秒,否则就犯规了。
此次设计的“篮球竞赛24秒计时器”就可用于篮球比赛中,用于对球员持球时间24秒限制。
一旦球员的持球时间超过了24秒,它就自动报警从而判定此球员的犯规。
1.2 设计任务及要求1.2.1 设计任务1.显示24秒计时功能。
2.设置外部操作开关控制计时器直接清零、启动、暂停/连续功能。
经典雷达资料-第17章__脉冲多普勒(PD)雷达-2

保护通道保护通道的工作原理是通过比较两个并行接收通道的输出,其中一个与主天线连接,另一个与保护天线连接,以判断接收的信号是来自主波束还是来自副瓣[26]~[28]。
保护通道使用宽波束天线,理想上其天线方向图超过主天线的副瓣。
两个信道的回波在同一个距离单元、同一个多普勒滤波器单元中进行比较。
当在保护接收机中的副瓣回波较大时,副瓣回波被抑制(消除);而主波束回波则通过,因为主通道接收的回波较大。
图17.8是保护通道的方框图。
CFAR电路后(在理想条件下,两个通道是相同的)有3个门限,即主通道门限、保护通道门限及主通道与保护通道信号比门限。
这些门限的检测逻辑如图17.8所示。
由于主通道和保护通道比较而产生的消隐将影响主通道的目标检测性能,因此影响的程度是门限设置的函数。
门限设置是由副瓣杂波引起的虚警与主通道检测性能损耗间的折中。
图17.9是一个不起伏目标回波的例子。
图中,纵坐标是最后输出的检测概率,横坐标是主通道中的信噪比(SNR)。
如图17.10所示中的B2是保护通道SNR与主通道SNR之比。
目标位于主波束时,B2值小;而在副瓣峰值时,B2值则大,约为0dB左右。
在该例中,对主波束中目标而言,由于保护通道的消隐作用,因此检测性能损耗0.5dB。
图17.8双通道副瓣消隐器框图图17.9 采用保护通道的检测概率与信噪比之间的关系曲线图17.10 主天线和保护天线的方向图理想情况下,保护天线方向图增益在除主波束方向外的所有方向上都将超过主天线方向图的增益,从而使雷达通过副瓣检测到的目标数最小。
如果不是那样,则如图17.10所示的保护天线方向图上的副瓣峰点处目标回波将在主信道具有较大的检测概率,这将形成虚警。
检波后STC消隐离散副瓣杂波的第二种方法是采用检波后STC[29]。
其逻辑框图如图17.11所示。
基本上,CFAR的输出数据将在距离上相关(解析)3次。
每个相关器采用M/N准则来计算不图17.11单通道副瓣消隐逻辑框图模糊距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消隐工作原理
消隐是一种用于隐藏或掩盖重要信息的技术。
其工作原理是通过对原始文本进行处理,以减少或删除与重要信息相关的特征或内容。
消隐的目的是确保敏感信息不被意外泄漏,同时仍然保留文本的可读性和完整性。
一种常见的消隐方法是使用模糊化技术,通过对文本中的关键词或短语进行模糊处理,将其转化为不易被理解的形式。
这可以通过替换、删减或混淆文本的某些部分来实现。
例如,可以将人名、地点、日期和数字等敏感信息替换为常见的占位符或模糊词汇。
另一种常见的消隐方法是使用加密技术,通过对文本进行加密或编码处理来确保信息的安全性。
这涉及到将文本转换为无法被普通用户解读的形式,只有经过授权的用户才能对其解密并读取内容。
消隐技术还可以通过删除或修剪文本中的特定信息来实现。
例如,可以去除敏感信息的几个字符或单词,以避免直接显示出原始信息。
为了确保消隐技术的有效性和安全性,通常需要进行严格的测试和验证。
这包括评估对文本的影响程度、消隐后文本的可读性、解密或还原原始信息的难度等因素。
总的来说,消隐是一种旨在保护敏感信息的技术,通过对文本
进行处理或转换,以隐藏或模糊重要信息,从而确保信息的安全性和机密性。