聚酰亚胺薄膜的改性、分类及其在电子行业中的应用
聚酰亚胺的改性研究新进展

聚酰亚胺的改性研究新进展聚酰亚胺的改性研究新进展聚酰亚胺(PI)主要有芳香族和脂肪族两大类,脂肪族聚酰亚胺实用性差,实际应用的聚酰亚胺主要是芳香型聚酸亚胺。
这类聚合物有着卓越的机械性能,介电性能,耐热、耐辐射及耐腐蚀等特性。
应用极其广泛。
聚酰亚胺的不足之处是不溶不熔、加工成型难、成本高等。
随着社会和科技的发展,对PI的需求量越来越多,对其性能要求越来越高,对其研究越来越深入,近年来,通过组成、结构改造,共聚、共混等方法改性,大量新型聚酰亚胺高分子材料被合成出来,本文归纳了近十年来国内外在聚酰亚胺改性及应用方面的研究情况。
1 分子结构改造分子结构改造主要有引入柔顺性结构单元、扭曲和非共平面结构、大的侧基或亲溶剂基团、杂环、氟硅等特性原子以及主链共聚等方法1.1引入特殊结构单元的聚酰亚胺在二酐或二胺单体中引入柔性结构单元可提高聚酰亚胺的流动性,提高聚酰亚胺的溶解性、熔融性。
其中主要方法是在单体中引入醚链,有人用二酐醚合成出了PI,该 PI可溶于NMP、DMF、DMAc等强极性溶剂[ ;也有人用含有长的醚链的二胺合成出的PI具有良好的溶解性,可在很多有机溶剂中溶解比]。
而在PI中引入扭曲和非共平面结构能防止聚合物分子链紧密堆砌,从而降低分问作用力,提高溶解性。
通过合成具有扭曲结构的二胺【3]和二酐[ 单体而制得的PI 其溶解性大大的增强,不仅溶于强极性溶剂中甚至可以在一些极性比较弱的溶剂THF中溶解,这是仅仅通过引入柔性基团所办不到的。
同样在大分子链上引入大的侧基或亲溶剂基团,可以在不破坏分子链的刚性的情况下有效降低分子链问的作用力从而提高PI的溶解性。
如Liaw 等人[s]用具有大的侧基的联苯基环己基二胺制备P1,由于这类PI中引入了较大的侧基,从而降低聚合物分子链的堆积密度,溶剂分子容易渗入聚合物内,因此具有良好的溶解性能。
1.2 含氟、硅的聚酰亚胺含氟基团的引入,可以增加聚酰亚胺分子链间的距离,减少分子间的作用力,因而可以溶入许多有机溶剂,同时氟原子有较强的疏水性使聚酰亚胺制品的吸湿率很低,而其有较低的摩尔极化率使得PI的介电常数降低 ]。
聚酰亚胺是什么材料

聚酰亚胺是什么材料
首先,聚酰亚胺具有出色的耐热性能。
它的热分解温度通常在400°C以上,
甚至可达到500°C左右,因此在高温环境下仍能保持良好的力学性能,不易软化
变形。
这使得聚酰亚胺在航空航天领域得到广泛应用,例如制造航天器的外壳、航空发动机的零部件等。
其次,聚酰亚胺具有优异的耐化学性能。
它能够抵御大多数有机溶剂的侵蚀,
对酸、碱等化学物质也表现出良好的稳定性,因此在化工领域有着重要的用途,如制造化工管道、储罐、阀门等设备。
此外,聚酰亚胺还具有优异的机械性能。
它的强度和刚度高,具有良好的抗拉伸、抗压缩、抗弯曲等性能,同时具有较低的线性膨胀系数和优秀的尺寸稳定性。
因此,在电子领域,聚酰亚胺被广泛应用于制造印制电路板、芯片载体、电子封装材料等。
总的来说,聚酰亚胺是一种非常优秀的高性能聚合物材料,具有出色的耐热性、耐化学性和机械性能,因此在航空航天、电子、汽车、船舶等领域有着广泛的应用前景。
希望通过本文的介绍,能让大家对聚酰亚胺有一个更加全面和深入的了解。
聚酰亚胺在影像材料与电子成像装置中的应用

The App i a i n l i i n I a ng M a e i la e t o c I a n pa a us lc to ofPo y m de o m gi t ra nd El c r ni m gi g Ap r t L U h qin I S u- a g ,ZHA0 n a Ya -y n ,CHEN a W U o g a g Zh o , Gu — u n
发成 功 聚酰 亚胺 薄膜 , 实ห้องสมุดไป่ตู้ 产业 化 。 并
业等 领域 。 开始 时 , 主要 用于 绝缘 薄膜 等 领域 。 后来 , 随着 世界 科 学技 术 的迅 猛发 展 ,特 别是 全球进 入 信 息化 时代 , 层宇 宙 空 间的开 发进 入一 个 新 的阶段 , 外 地 球人 类 努力 探求 绿 色环 保新 能 源 以来 ,世界 范 围 内聚 酰亚 胺及 其 薄膜 的研 发更 以迅 猛 之势 取得 长足
2 1年 0l
第 2期
影
像
技
术
技 术 开 发 与 研 究
聚 酰 亚胺 在 影 像 材 料 与 电子 成 像 装 置 中的应 用
刘 书 强 ’赵 艳 艳 陈 朝 。 吴 国 光 , , ,
( . 津 美迪 亚 影 像 材 料 有 限 公 司 , 津 1天 天 302 020
2 中科 院 理 化 技 术 研 究所 , 京 1 0 9 . 北 0 1 0:
(.ini Me i I aigMaei s o Ld Taj 0 2 0 1 aj da m gn t a . t, ini 3 0 2 ; T n rlC , n
聚酰亚胺的发展状况及应用2cankao

《电介质材料最新进展》论文题目:聚酰亚胺的发展状况及应用班级:高分子08-1班姓名:李晓白学号:0802030118指导教师:张明艳聚酰亚胺的发展状况及应用摘要:聚酰亚胺(Polyimide,PI)是由含二酐和二胺的化合物逐步反应聚合而成的分子主链上含有亚胺环的一类聚合物,聚酰亚胺分子有结构十分稳定的芳杂环,使其具有其他高分子材料无法比拟的优异性能,尤其是耐低温、高温的性能,本文将围绕聚酰亚胺的国内外进展和在各领域的应用进行论述。
关键词:聚酰亚胺、材料、电介质聚酰亚胺是目前为止热稳定性较高、力学性能较好、机械强度较高的电介质材料。
聚酰亚胺具有较好的介电性能:103Hz下介电常数3.4,介电损耗仅0.004~0.007,介电强度100~300KV/mm,而且在很宽广的温度范围和频率范围内仍能保持在很高的水平。
介电常数在室温至4K的整个温度范围内变化很小,约在3.0~3.2之间,介质损耗因数在室温至4.2K的温度范围内随温度的降低而下降,在范围内变化,薄膜材料的击穿电压随低温下降的变化很少。
可见聚酰亚胺是一种综合电气性能较好的绝缘材料,将对它的研究、开发与利用列入21世纪最有希望的工程塑料之一,对聚酰亚胺进行研究有很强的实用价值[l]。
随着温度升高,它们强度变化小,且具有较强的抗蠕变能力,较好的摩擦性能,优异的绝缘性能;化学性质也稳定,不溶于有机溶剂,耐辐射性较好等。
聚酰亚胺可以用作塑料、复合材料、薄膜、胶粘剂、纤维、泡沫、液晶取向剂、分离膜、光刻胶等。
聚酰亚胺的这些优良性能使其成为在许多领域不可替代的材料。
因此,在保持聚酰亚胺优良特性的同时,增加聚酰亚胺材料在有机溶剂中的溶解能力及降低其刚性以改善它的加工性能,是聚酰亚胺研究的重要课题。
一、聚酰亚胺材料的国内外发展概况1.1国外发展概况作为材料的聚酰亚胺己有四五十年的历史,在性能和合成上有突出优点的聚酰亚胺作为结构材料和功能材料的优点已被人们充分认识,至今为止研究应用也很广泛。
聚酰亚胺是什么材料

聚酰亚胺是什么材料
聚酰亚胺是一种高性能工程塑料,具有优异的物理和化学性能,被广泛应用于
航空航天、汽车、电子、化工等领域。
聚酰亚胺具有高温稳定性、耐腐蚀性、机械强度高等特点,因此备受工程师和设计师的青睐。
首先,聚酰亚胺的化学结构决定了其优异的性能。
聚酰亚胺分子中含有酰亚胺
基团,这种特殊的结构使得聚酰亚胺具有优异的热稳定性和耐化学腐蚀性。
在高温下,聚酰亚胺仍然能够保持其原有的性能,不会发生软化或变形,因此被广泛应用于高温环境下的零部件制造。
此外,聚酰亚胺还具有优异的电性能,因此在电子领域也有着重要的应用价值。
其次,聚酰亚胺的机械性能也非常优异。
聚酰亚胺具有高强度和刚性,同时又
具有较高的韧性和抗疲劳性,因此在航空航天和汽车领域被广泛应用于制造结构件和功能件。
与此同时,聚酰亚胺还具有较低的摩擦系数和良好的自润滑性能,使得其在摩擦磨损领域也有着重要的应用。
此外,聚酰亚胺还具有良好的耐化学腐蚀性和耐老化性。
在化工领域,聚酰亚
胺被广泛应用于制造耐腐蚀设备和管道,能够有效地抵抗酸碱等腐蚀介质的侵蚀,保证设备的长期稳定运行。
同时,聚酰亚胺还具有良好的耐紫外线性能和耐气候老化性能,能够在恶劣的户外环境下长期使用。
总的来说,聚酰亚胺作为一种高性能工程塑料,具有优异的物理和化学性能,
被广泛应用于航空航天、汽车、电子、化工等领域。
其优异的热稳定性、机械性能、耐化学腐蚀性和耐老化性能,使得其在各个领域都有着重要的应用价值。
随着科技的不断进步,相信聚酰亚胺在更多领域将会有着更广泛的应用。
聚酰亚胺及其薄膜在航空航天中的应用_吴国光

聚酰亚胺及其薄膜在航空航天中的应用吴国光(天津天感感光材料公司,天津 300220)摘 要:聚酰亚胺及其复合材料是耐热级别最高的高分子材料。
加之具有很强的防紫外线、抗辐射能力,在航空航天、空间技术领域发挥重要作用。
本文介绍了其在航空航天器的结构材料、太阳能电池、液晶显示等领域中近年来国内外的一些科研成果。
阐明应加快包括聚酰亚胺在内的高性能材料研发速度的观点。
关键词:聚酰亚胺;薄膜;航空航天;结构材料;太阳能电池;液晶显示中图分类号:TQ31文献标识码:A 文章编号:1009-5624-(2012)01-0028-07收稿日期:2011-10-31作者简介:吴国光(1943-),男,天津人,高级工程师,主要从事聚酯薄膜及其涂层,数码影像耗材及特种高分子材料研发。
E-mail:guijiangli130@126.com1 引言聚酰亚胺(PI)及其薄膜不仅具有优良的机械与电气特性,而且具有良好的耐高、低温性能,特别是抗辐射能力。
聚酰亚胺在航空、航天中发挥重要作用。
例如,以其为主体的复合材料是最耐高温的结构材料之一,广泛应用于航空、航天器及火箭部件中。
聚酰亚胺及其薄膜在航天器的太阳能电池;各种保温部件;遥感摄影及其显示器件和众多电子装置元件,如柔性印刷电路板(FPC)等诸多领域中发挥重要作用。
尤其是在加强航天器抗击太阳风暴的能力中起到重要作用。
近几年来,包括我国在内的世界航天大国和国外电子强国加紧对新型聚酰亚胺及其衍生物制品的研发和在空间技术领域的应用研究。
2 在轻体结构材料中的应用航空、航天器所用结构材料除要求高耐热、防辐射外还要求重量轻,强度好,首选聚酰亚胺及其衍生物。
例如,美国的超音速客机设计,大量的结构材料选用聚酰亚胺复合材料[1]。
2.1 质轻发泡结构体日本昭和飞机工业公司与ュニチカ公司联合发明了在发泡体与结构体内壁之间,即使是复杂形状的情况下也具有良好粘接力,并且是容易加工的发泡体制造方法。
聚酰亚胺的改性及应用进展
聚酰亚胺(PI)是分子主链中含有酰亚胺环状 结构的环链高聚物 , 是半梯形结构的杂环化合物 。 PI 最早出现在 1955 年 Edw ardas 和 Robison 的一 篇专利中[ 1] 。 由于这类 高聚物具有突 出的耐热 性 、优良的机械性能 、电学性能及稳定性能等 , 其 各类制品如模塑料 、复合材料 、粘合剂 、分离膜等 已广泛应用于航空航天 、电子工业 、光波通讯 、防 弹材料以及气体分离等诸多领域 。
第5期
孙 自淑 , 等 .聚酰亚胺的改性及应用进展
· 55 ·
溶解 , 造成加工困难 。此外 , 分子中苯环与羰基的 共轭使 PI 在可见光范围内有吸收 , 带有黄色或红 褐色 。因而对象负性双折射光学补偿膜 、光导 、波
导等需要无色透明的应用领域 , 一般的 P I 难以满 足需要[ 6] 。
M atsuura 等人[ 19] 制备了含氟共聚酰亚胺 , 发 现随着共聚物中氟含量增加 , P I 膜的颜色由明黄
逐渐变 为无色 。 研究 表明氟原子有 很强的电负 性 , 可以破坏 PI 分子链中具有发色功能的共轭结 构 , 同时 CF 3 等基团的引入破坏了分子的平面结 构 , 从而减少分子内或分子间电荷转移络合物的 形成 , 使 PI 对可见光的吸收发生兰移 , 颜色变浅 。
研究发现 , 单靠用柔性单体提高分子链柔顺 性制备可溶性 P I 是不够的 , 破环分子链结构的规 整性以减少 P I 的结晶倾向也是至关重要的 。 方 法为 :在分子链中引入体积较大的非对称结构 , 扭 曲的非平面结构或芯形分子 , 也可在侧链上引入 较大基团等 。
杜宏 伟[ 9] 等 人 选 用 三 苯 二 醚 四 酸 二 酐
性的同时提高聚酰亚 胺的溶解性引 起了人们的 关注 。
PI膜
4.化学性质 聚酰亚胺化学性质稳定。聚酰亚胺不需要 加入阻燃剂就可以阻止燃烧。一般的聚酰 亚胺都抗化学溶剂如烃类、酯类、醚类、 醇类和氟氯烷。它们也抗弱酸但不推荐在 较强的碱和无机酸环境中使用。
5. 聚酰亚胺薄膜的用途
PI膜的用途很广泛, 目前国内外使用量较大的几个行业分 别是:风电及高铁、柔性线路板、高温标签及保护胶带、 发热元件
风电以及高铁行业
柔性线路板行业
高温标签及保护胶带行业
发热元件行业
国内外PI膜市场情况
国内的生产商大约有30多家, 主要分布在天津,江苏以 及深圳;国外主要有美国的杜邦, 日本的钟渊,韩国的 SKC 和台湾达迈。 国内对PI膜的消耗行业主要是胶带,手机等电子产品, 以及电磁线行业;国外主要是电子产品以及风电、高铁和 宇航行业。 国内PI膜的综合质量低于美国,日本, 接近于韩国和台 湾, 但是价格比国外低20%-40%。目前中国的产量是最 大的。
绝缘材料之聚酰亚胺薄膜
简介
1.包括均苯型聚酰亚胺薄膜和联苯型聚酰亚胺薄膜 两类。
聚酰亚胺薄膜是一种新型的耐高温有机聚合物薄膜 , 是由 均苯四甲酸二酐(PMDA)和二氨基二苯醚(ODA)在极强性 溶剂二甲基乙酰胺(DMAC)中经缩聚并流涎成膜,再经亚胺 化而成.它是目前世界上性能最好的薄膜类绝缘材料,具有 优良的力学性能 、 电性能 、 化学稳定性以及很高的抗辐 射性能、 耐高温和耐低温性能 (-269 ℃至 400 ℃ )。我国 60 年代末可以小批量生产聚酰亚胺薄膜,现在已广泛应 用于航空、航海、宇宙飞船、火箭导弹、原子能、电子电 器工业等各个领域。
大世代面板聚酰亚胺配向膜材料关键技术及发展方向
大世代面板聚酰亚胺配向膜材料关键技术及发展方向大世代面板聚酰亚胺(polyimide)配向膜材料是一种广泛应用于液晶显示器(LCD)和有机电激发光(OLED)屏幕制造中的重要材料。
其作用是帮助液晶分子或发光分子在显示器中形成特定的取向结构,从而提高显示效果。
关键技术:1. 聚酰亚胺材料合成:大世代面板配向膜需要具备高度的热稳定性、光学透明性和机械强度。
因此,关键技术是合成具有这些优良性能的聚酰亚胺材料。
2. 高效的涂布技术:大世代面板配向膜需要以高均匀性和高精度涂布在玻璃基板或聚合物基板上。
因此,关键技术是开发高效的涂布技术,如旋涂、喷涂、刮涂等,以确保膜层的均匀性和质量。
3. 表面处理技术:面板配向膜需要具备一定的表面能,以便与液晶分子或发光分子形成较好的相互作用。
关键技术是开发表面处理技术,如等离子体处理、化学修饰等,以改善材料的表面性能。
4. 高精度的取向结构控制技术:大世代面板配向膜需要形成一定的取向结构,以确保液晶分子或发光分子在屏幕中呈现所需的取向特性。
关键技术是开发高精度的取向结构控制技术,如模板法、光照法等,以实现准确的取向控制。
发展方向:1. 高分辨率和高刷新率:随着显示技术的不断进步,人们对面板配向膜的要求越来越高。
未来的发展方向是开发具有更高分辨率和更高刷新率的大世代面板配向膜,以满足高清晰度和平滑运动的需求。
2. 柔性可卷曲屏幕:柔性显示技术越来越受到关注,面板配向膜也需要适应柔性基板的要求。
发展方向是开发具有良好柔性性能的大世代面板配向膜,以实现可弯曲、可卷曲的屏幕制造。
3. 可耐高温和高湿环境:大世代面板配向膜在使用过程中需要具备高耐高温和高湿环境的性能。
发展方向是开发具有更高热稳定性和湿度稳定性的材料,以满足极端环境下的应用需求。
总之,大世代面板聚酰亚胺配向膜材料的关键技术是聚酰亚胺材料合成、高效的涂布技术、表面处理技术和高精度的取向结构控制技术。
未来的发展方向包括高分辨率和高刷新率、柔性可卷曲屏幕、以及耐高温和高湿度环境的性能。
聚酰亚胺f46用途
聚酰亚胺f46用途
聚酰亚胺F46是一种高性能的有机高分子材料,具有优异的耐高温、耐腐蚀、电气绝缘等性能。
根据提供的参考信息,聚酰亚胺F46主要应用于以下几个方面:
1. 薄膜:聚酰亚胺F46薄膜广泛应用于特种工作环境下的电机槽绝缘及电缆绕包材料。
此外,透明的聚酰亚胺F46可制成柔软的太阳能电池板、核潜艇用引出线绝缘密封套、管绝缘槽楔等。
2. 复合材料:聚酰亚胺F46作为最耐高温的结构材料之一,在欧美等发达国家广泛用于航空航天及火箭零部件。
例如,美国的超音速飞机中有50%的结构材料为以塑性聚酰亚
胺为基体树脂的碳纤维增强复合材料。
在国内,聚酰亚胺F46主要用于耐热、高强度的机械零部件,如汽车的热交换元件、仪表、舰船压缩机活塞环、阀片等。
3. 涂料:聚酰亚胺F46在涂料领域主要作为绝缘漆使用,尤其是作为耐高温涂料或用于电磁线。
目前,采用挤出法制造热塑性全芳香型聚酰亚胺绝缘电磁线,并达到优质、高效、低成本的效果。
4. 电气绝缘材料:聚酰亚胺F46可用作高压、超高压电力设备的热收缩绝缘材料、绝缘层压板、电气附件等。
5. 分离膜:聚酰亚胺F46具有优异的分离性能,可用作微滤、超滤、纳滤等分离膜材料。
6. 激光领域:聚酰亚胺F46具有良好的光学性能和激光损伤阈值,可用于激光器件的制造。
7. 航空航天、军事领域:聚酰亚胺F46的高性能使其在航空航天、军事领域具有广泛应用,如用于卫星、飞机等部件的制造。
8. 医疗领域:聚酰亚胺F46具有良好的生物相容性,可用于医疗器材的制造,如支架、导管等。
综上所述,聚酰亚胺F46具有广泛的应用领域,尤其在特种材料、高性能复合材料、绝缘材料等方面具有重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚酰亚胺薄膜的改性、分类及其在电子行业中的应用 摘要 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上 ,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007。而由于其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。由于上述聚酰亚胺在性能上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 首先是在薄膜上的应用:它是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包
材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底板。其次是在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差。再则还可应用在电-光材料中:其用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 聚酰亚胺作为很有发展前途的高分子材料已经得到充分的认识,在绝缘材料中和结构材料方面的应用正不断扩大。在功能材料方面正崭露头角,其潜力仍在发掘中。 关键词:聚酰亚胺;薄膜;低介电常数;电子工业 1.引言 聚酰亚胺(PI)是重复单元中含有酰亚胺基团的芳杂环高分子化合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,如良好的力学性能、耐高温性能、尺寸稳定性、耐溶剂性等,成功应用于航空、航天、电子电器、机械化工等行业。随着微电子工业的不断发展,对相关材料的耐热性能以及介电性能等提出了更高的要求,这为PI材料在微电子领域内的应用起到了极大的推动作用[1]。而随着科技的日新月异与工业技术的蓬勃发展,聚酰亚胺薄膜(Polyimide Film,简称PI)除能符合各类产品的基本物性要求,更具备高强度、高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,可符合轻、薄、短、小之设计要求,是一种具有竞争优势的耐高温的绝缘材料。经过四十多年的发展,已经成为电子、电机两大领域上游重要原料之一,广泛应用于软板、半导体封装、光伏(太阳能)能源、液晶显示器等电子领域,在电机领域应用于航天军工、机械、汽车等各产业绝缘材料[2]。本论文通过介绍聚酰亚胺膜的各种改性方法及研究进展,来进一步认识其在电子行业中的应用。 2.对聚酰亚胺的不同改性尝试 根据Clausius-Mosotti方程,材料的介电常数与其摩尔极化率和摩尔体积密切相关[3]。如果分子的对称性好,在外加电场中不容易被极化,材料就具有较低的介电常数,如有机高分子;若分子变形能力强容易被极化,材料就具有较高的介电常数,如金属离子。因此,要得到低介电常数PI 绝缘材料,一种行之有效的方法就是引入原子序数小的元素,如氟元素,并减少离子键的数目。降低PI 介电常数的方法主要包括引入氟原子降低PI的极化率、引入硅氧烷增大PI 分子的自由体积、引入孔洞降低PI 材料的密度等。事实上,这些方法常常被结合起来使用以达到更好的效果[4]。 2.1 引入氟原子降低PI 的极化率 由于C—F键的偶极极化能力较小,且能够增加分子间的空问位阻,因而引入C—F键可以有效降低介电常数,使得含氟聚酰亚胺(Fluorinated Poly.imide,FPI)在微电子领域的应用相当广泛。人们相继开发出了一系列含有全氟脂肪链、含三氟甲基和六氟丙基、芳氢氟代、含氟侧基以及全氟的聚酰亚胺。其中,以通过在单体化学结构中引入三氟甲基提高含氟量的方法最为常见,这是因为庞大的三氟甲基的引入既能够阻止高分子链的紧密堆积,有效地减少高度极化的二酐单元的分子间电荷传递作用,还能进一步增加高分子的自由体积分数,达到降低介电常数的目的。 2.2 引入硅氧烷增大PI自由体积 由于聚合物自由体积的增大可以降低单位体积内极性基团的数量,实验中常采用加入硅氧烷如笼型倍半硅氧烷(POSS) 的方式。S.Devaraju 等[5]在由双酚A 醚二胺(BEAD) 和均苯四甲酸二酐(PMDA) 制备得到的PI 中引入OAPS,未加入OAPS 的PI 介电常数为3.34,而OAPS 在体系中质量分数为15% 时,可获得介电常数低至2.68 的POSS-PI 杂化材料。基于分子层面设计的低介电材料可用于集成电路工业,T. Seckin 等[6]将POSS 通过多点连接PI 制备了一种POSS–PI 星形纳米复合材料。包含PI 的POSS–NH2 表现出许多可取的特性,包括低的水吸附性和高的热稳定性。研究表明,在PI 分子主链中适当引入POSS,能使材料的介电常数降低,同时改善其力学性能和热性能。N. Kivilcim 等[7]研究了基于四甲酸二酐和2,5-二氨基吡啶的PI 有机溶剂体系制备高度多孔聚合物–硅杂化材料的方法。3-氨基丙基三乙氧基硅烷(APS) 被用来增强链内的化学成键和跨链间的氢键,能够有效地影响所制备的膜的形态和特性,介电常数随着被SiO2 改性的APS含量的增加而有效降低。 2.3 引入孔洞降低PI密度 对于多孔材料来说,孔隙率越高,则材料密度越低,因而介电常数越低。为此研究人员探索各种致孔方法,引入纳米级的分散孔隙,制备具有纳米微孔的PI 薄膜。材料除了被使用在集成电路中,多孔PI材料还被用于染料敏化太阳能电池中[8]。 贾红娟等[9]将纳米SiO2 加入4,4'- 二胺基二苯醚(ODA) 和PMDA 中,原位缩聚合成PI/SiO2 复合薄膜。用氢氟酸刻蚀SiO2 纳米粒子,形成具有微孔的PI 薄膜。当致孔剂含量为15% 时,薄膜的介电常数从纯PI 的3.54 降低至3.05 (1 kHz)。W. Kim 等[10]通过在垂直的硅纳米线阵列上固化聚酰胺酸溶液后,使用二氟化氙(XeF2) 选择性地蚀刻掉硅纳米线阵列。孔隙的大小和密度是可控的:前者依赖于纳米线直径和蚀刻的持续时间,而孔隙密度由硅纳米线的密度决定。溶胶-凝胶过程也被用来制备含硅PI 杂化膜,Zhang Yihe 等[11] 将PI前驱体和四乙基原硅酸盐在DMAc 中混合,再以氢氟酸蚀刻杂化膜中的SiO2 粒子,所得多孔膜比含硅杂化膜具有相对较低的介电常数。 Zhang Yaoming 等[12]发现加入SiO2 纳米粒子后,PI前驱体溶液在干燥过程中会形成由纯纳米粒子,纯聚合物以及两者混合物构成的三层结构,除去纳米粒子后可以获得多孔PI。Wang Qihua 等[13]也用此法制备了孔径可控的低介电微孔PI 材料,当孔隙率达到37% 时,PI介电常数从4.11下降至2.57。 在实际应用中,研究者更多的是将多种方法相结合以达到更低的介电常数。此外,近年来,也有研究者致力于PI 的高性能化,期望得到既有低介电性又有高力学性能的PI 材料。 3.不同类型的聚酰亚胺薄膜 聚酰亚胺薄膜是目前世界上性能最好的薄膜类绝缘材料之一,具有优良的力学性能、电性能、化学稳定性以及很高的抗辐射性能及耐高温和耐低温性能,在航空航天、国防军工、新型建材、环保消防等领域中发挥着越来越重要的作用。根据不同的应用需求,可将聚酰亚胺薄膜分为几类。 3.1低热膨胀系数聚酰亚胺薄膜 目前,聚酰亚胺薄膜最大的应用领域是挠性印制电路板,其用量占绝缘基膜总用量的85%以上。低热膨胀系数聚酰亚胺具有高强度、高尺寸稳定性以及良好的可加工工艺性,满足挠性印制电路向高密度方向发展的要求,将这种PI膜与铜箔复合制备的无胶黏剂覆铜板,可降低内应力,提高挠性电路板的耐热性和力学性能。近年来人们开始采用低热膨胀系数的聚酰亚胺与聚酯、聚醚等聚合物的共聚物作为挠性印制电路基板,使聚酯良好的加工性和对金属的优良粘结性与聚酰亚胺优异的耐热性相结合,极大提高了挠性电路板的综合性能,应用前景十分广阔[14]。 例如,用低热膨胀系数聚酰亚胺包覆材料作为半导体元件的保护膜,能克服无机膜的气泡、裂纹发生率和表面光滑性等缺陷,而它本身又具有良好的屏蔽α射线的效果,故可用于大规模集成电路;具有感光性能的SiO2/PI杂化材料,除具有常规PI的优良性能外,还可在材料上直接刻蚀图形,简化工艺步骤。由此可见,具有热膨胀系数较低和力学性能更好的聚酰亚胺膜仍是今后PI研究的重点,以满足航空航天、微电子领域不断发展的更高要求。 3.2高耐热、低介电常数含氟聚酰亚胺材料 刘金刚等[15]以 4,4’(- 六氟异丙基)双邻苯二甲酸二酐(6FDA)作为二酐单体,1,4-双(4-氨基-2-三氟甲基苯氧基)苯( p-6FAPB)、1,1-双(4-氨基苯基)-1(- 3’,5’-双三氟甲基)苯基-2,2,2-三氟乙烷(9FDA)、4(- 3’,5’-双三氟甲基苯基)- 2,6-双(4"-氨基苯基)吡啶(p-DTFAP)以及 4(- 3’,5’-双三氟甲基苯基)-2,6-双(3"-氨基苯基)吡啶(m-DTFAP)作为二胺单体,通过两步缩聚法,合成了4 种高氟含量PI 材料并系统研究了这类材料结构与其性能的关系。 p-DTFAP 与m-DTFAP 两种单体中都含有含氟庞大侧基取代的吡啶单元,吡啶环可与相邻的苯环形成共轭,而庞大的含氟取代结构则可能会降低材料的介电常数,将这两种因素加以统一则有望实现合成兼具耐热与低介电常数两方面要求的新型材料。 3.3超薄聚酰亚胺薄膜 超薄化是PI 薄膜发展的一个重要趋势,其驱动力主要来自宇航、电子等工业对于器件减重、减薄以及功能化的应用需求[16]。在柔性印刷线路板(FPC)领域中,PI 超薄膜主要用作覆盖膜(coverlay 或covercoat,也称保护膜),以保护FPC 线路免受氧化与破坏,以及在FPC制作过程中的表面贴装(SMT)工序中起阻焊作用。如果使用PI 超薄膜则可以有效减小覆盖膜的厚度,进而减小FPC 的厚度。而FPC 的减薄可以使得电子终端产品(如手机、笔记本电脑)的厚度变得更薄,从而增加其便携性。便携式电子产品轻薄化、多功能化的发展趋势,必将使得PI 超薄膜在FPC覆盖膜中的应用越来越广泛。 PI 超薄膜在微电子封装领域中的另外一个典型应用是作为封装基板的基体材料。在有机封装基板中,柔性PI 薄膜基板近年来得到了快速的发展,这主要是由于它具有高耐热、高可靠、耐挠曲、低密度、低介电常数、低CTE、易于实现微细图形电路加工等特性。日本Toyobo 公司开发的XENOMAX®薄膜已经成功应用于封装基板的制造中。该薄膜的分子中含有联苯型骨架结构,因此表现出高弹性模量、超低CTE(3×10-6 /℃,与Si 相似)、低热收缩等特性,同时还具有优异的力学、介电以及阻燃特性。用该薄膜制备的PI 层压板在封装基板应用考核,包括倒装焊、激光通孔、热老化循环等测试中表现出了良好的综合性能。例如,其在经受1000 个-55~125 ℃热循环后仍表现出良好的可靠性。 3.4功能型聚酰亚胺薄膜 随着航空、轨道交通以及电子信息等诸多技术领域日新月异的发展,市场和产品的不断细分以及新兴研究领域的开拓,传统的PI 膜已经不能满足市场的多元化需求。为此,国内外研究人员一方面通过特殊单体来制备具有特殊功能的PI 膜,另一方面通过添加功能型纳米填料来改性传统PI 膜,以满足不同领域对PI 膜的性能要求,这两种手段都取得了一定的进展[17]。