浅谈氨氮和亚硝酸盐对金鱼的危害

合集下载

氨氮污染对水产养殖的危害及处理技术分析

氨氮污染对水产养殖的危害及处理技术分析

氨氮污染对水产养殖的危害及处理技术分析氨氮污染是水产养殖中常见的环境问题之一。

氨氮主要来自于养殖废水和饲料残渣,如果不及时处理和控制,会给水产养殖业产生危害。

本文将分析氨氮污染对水产养殖的危害,并介绍一些常见的处理技术。

氨氮污染对水产养殖的危害主要包括以下几个方面:1. 水质恶化:氨氮是一种常见的水体污染物,高浓度的氨氮会使水体的氧含量降低,造成水体富营养化和缺氧状况,对水生生物的生长和繁殖产生不利影响。

2. 水生生物受损:高浓度的氨氮会对水生动物的呼吸系统造成损害,导致鱼类和虾蟹等养殖物种的营养摄取和生长受到限制。

3. 养殖效益下降:氨氮污染会使鱼类和虾蟹等养殖物种的免疫力下降,易患病死亡,减少养殖产量和经济效益。

1. 生物方法:利用一些生物物种来降解和吸收氨氮,例如利用硝化细菌对氨氮进行硝化转化,将其转化为无害的亚硝酸盐和硝酸盐。

也可以通过放养一些具有氨氮利用能力的水生植物,如水稻苗和苔藓等,通过吸收氨氮来净化养殖水体。

2. 物理-化学方法:采用一些物理或化学手段来处理氨氮污染。

通过通风和曝气等方法,将水中的氨氮气化释放到大气中;利用吸附剂、离子交换剂等物质来吸附和去除水中的氨氮。

3. 循环农业技术:养殖废水中含有的氨氮可以用作农田的有机肥料,通过养殖废水的循环利用,减少氨氮的排放和污染,实现农田和水产养殖的良性循环。

4. 水质监测和管理:建立水质监测系统,定期对养殖水体的氨氮浓度进行监测,及时发现和处理氨氮污染问题。

加强养殖环境管理,控制养殖规模和密度,合理调整饲养方式和投喂量,减少废水和饲料残渣的排放和浪费。

氨氮污染对水产养殖产生的危害不可忽视。

通过采取适当的处理技术,合理管理养殖环境,可以有效降低氨氮污染带来的影响,提高水产养殖的产量和质量。

最新养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

最新养殖水体中PH值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施

养殖水体中P H值、氨氮、亚硝酸盐等指标的变化对鱼的影响及防治措施酸碱度(即pH值) 对鱼的影响池水是鱼类的生活环境,其酸碱度(即pH值)是鱼池水质的主要指标,它对鱼的生长、发育和繁殖等,有着直接或者间接的影响。

鱼类最适宜在中性或微碱性的水体中生长,其pH值为7.8~8.5。

但在pH值6~9时,仍属于安全范围。

不过,如果pH值低于6或高于9,就会对鱼类造成不良影响。

鱼类在养殖过程中,如果pH过高或过低,不仅会引起水中一些化学物质的含量发生变化,甚至会使化学物质转变成有毒物质,对鱼类的生长和浮游生物的繁殖不利,还会抑制光合作用,影响水中的溶氧状况,妨碍鱼类呼吸。

如果pH值过高,鱼类生活在酸性环境中,水体中磷酸盐溶解度受到影响,有机物分解率减慢,物质循环强度降低,使细菌、藻类、浮游生物的繁殖受到影响,而且鱼鳃会受到腐蚀,使鱼的血液酸性增强,降低耗氧能力,尽管水体中的含氧量较高,但鱼会浮头,造成缺氧症,还会使鱼不爱活动,新陈代谢急剧减慢,摄食量减少,消化能力差,不利于鱼的生长发育。

同时,偏酸性水体会引发鱼病,导致由原生动物引起的鱼病大量发生,如鞭毛虫病、根足虫病、孢子虫病、纤毛虫病、吸管虫病等。

如果pH值过低,在5~6.5之间,又极易导致甲藻大量繁殖,对鱼的危害也较大。

pH值对鱼类繁殖也有影响。

pH值不适宜,亲鱼性腺发育不良,妨碍胚胎发育。

若pH值在6.4以下或9.4以上,则不能孵出鱼苗。

若pH值过低,可使鱼卵卵膜软化,卵球扁塌,失去弹性,在孵化时极易提前破膜。

若pH值在5~6.5之间,又遇适宜的温度条件(22℃~32℃),饲养的鱼种还极易得“打粉病”。

由于池水酸碱度对鱼类的生长、发育和繁殖都有密切关系,所以,要经常对池水作pH值检测,并根据检测的结果,采取必要的相应措施,以保证池水的pH值正常。

水的硬度对养鱼的影响硬度作为一项水质指标对水草的生长有很重要的影响,但总是弄不明白什么是软水和硬水?什么是GH和KH?硬度是如何分级的?对水草有何影响?水怎么会有软硬之分呢?这裡所说的软硬并不是物理性能上的软硬,而是根据水中所溶解的矿物质多寡来划分的,多了水就“硬”,少了水就“软”,硬水有许多缺点,使用时有不少麻烦。

氨氮对养鱼的危害、预防、解决方案

氨氮对养鱼的危害、预防、解决方案

解读水中杀手“氨”养鱼要先养水,而养水的核心是培养硝化菌来分解水中的毒素。

水中毒素一般是指氨和亚硝酸盐,它们都属于剧毒,可以造成鱼的慢性中毒或者急性死亡。

这两种毒素被称为水中的第一杀手,只需要极少量就会造成鱼的暴毙。

鱼是病从鳃入,氨和亚硝酸盐的慢性中毒会破坏鱼体组织的免疫系统,降低抵抗力。

第一节“氨”一、氨的产生途径:1、鱼的呼吸:鱼通过腮部可以直接将体内产生的氨排出体外。

2、鱼的尿液:鱼的尿液中含有氨。

3、有机物被异营菌分解后的代谢产物:鱼的粪便、残饵、死鱼等有机物被异营菌分解后,其代谢产物为氨,这是氨的主要来源。

二、氨的危害:氨对鱼类的毒害反映非常强,在很低的浓度下即可使许多鱼类产生中毒症状,甚至死亡。

氨对鱼类的毒害情形根据浓度和鱼类的不同会有所差异,大致情况如下:在较低浓度下:鱼类可以忍受一段时间,但长此以往会慢性中毒。

氨会干预鱼类渗透调节系统,破坏鱼鳃的粘膜层,减低血红素携带氧气能力。

鱼类慢性中毒症状表现有:常在水面喘气,鳃转为紫色或暗红,比较容易瞌睡,食欲不振,老停留在缸底不活动,鱼鳍或体表出现异常血丝等。

在低浓度下:氨会和其他疾病一同加速鱼类死亡。

在略高浓度下:会直接破会鱼类皮肤和肠道粘膜,造成体表和内部器官出血,同时伤害大脑和中枢神经系统,鱼类会因急性中毒迅速死亡。

三、氨的中毒机理:毒素通过鱼的呼吸作用,由鳃进入血液,会使其丧失输氧能力,出现组织缺氧,窒息而死。

四、氨中毒的症状:鱼出现窜游现象,并时而出现下沉、侧卧、痉挛等症状。

呼吸急促,大口挣扎,死前眼球突出。

鳃盖部分张开,鳃丝呈紫红色或紫黑色。

鱼鳍舒展,根基出血,体色变浅,体表粘液增多。

打开腹腔,血液不凝,血色发暗,紫而不红,肝脾肾的颜色呈紫色。

五、氨的存在形式:水中的氨有两种不同的形式:一种是分子形态存在的“氨”(NH3);另一种是以离子形态存在的“铵”(NH4+)。

氨有剧毒,铵无毒。

一般氨测试所测的是氨和铵的总浓度,有时候测试出总浓度非常高,但鱼却很健康,这是因为水中铵的比例大,而有毒的氨(NH3)的百分比很小的原因。

水产养殖水体中亚硝酸盐、氨氮、pH值等带来的危害

水产养殖水体中亚硝酸盐、氨氮、pH值等带来的危害

水产养殖水体中亚硝酸盐、氨氮、pH值等带来的危害作为连续六年成为渔业科技入户的老指导员,本人深刻体会到养殖水体中亚硝酸盐、氨氮、硫化氢、pH值、化学耗氧量等含量的高低将决定着水质的好坏。

在养殖过程中,这些指标过高,将对养殖的水产品带来很大的危害。

现简单介绍一下它们形成的原因、危害和处理方法,供参考。

一、形成原因1、亚硝酸盐是氨转化为硝酸盐过程中的中间产物,在养殖水体中由于大量的投饵而留下的残饵,水体中水生动物的大量排泄物的累积和水体使用消毒剂将有益和有害的细菌统统杀灭,氧气供应不足,造成大量积累的氨消化过程受阻,形成养殖中的水中的氨氮和亚硝酸盐含量偏高。

2、硫化氢在缺氧条件下,由残饵或粪便中的含硫有机物经厌氧细菌分解而产生。

硫化氢科与水底泥中的金属盐结合形成金属硫化物,致使池底变黑。

二、造成危害1、当水中亚硝酸盐浓度积累到0.1mg/l后,亚硝酸盐对水体中养殖的鱼、虾、蟹产生危害。

其作用机理主要是通过鱼、虾、蟹的呼吸作用由鰓丝进入血液,鱼、虾、蟹红细胞数量和血红蛋白的数量逐渐减少,血液载氧能力逐渐减低,出现组织缺氧,此时水生动物聂食降低,鰓组织出现病变,呼吸困难、骚动不安或反应迟钝,从而导致鱼、虾、蟹缺氧甚至窒息死亡。

2、当养殖水体中氨氮含量超过0.2 mg/时,氨氮将对鱼、虾、蟹造成危害,其危害相似鱼亚硝酸盐,氨氮毒性当池水的pH值及水温有密切关系,一般情况下,温度和pH值越高,毒性越强。

3、硫化氢有臭蛋味,但当养殖水体中硫化氢的浓度在0.1mg/以上时会对水产动物产生刺激、麻醉和影响鱼类呼吸作用。

4、pH值低可使鱼、虾、蟹血液中的pH值下降,消弱其血液载氧能力,尽管水中的溶解氧较高,还是造成鱼、虾、蟹生理缺氧症,经常浮头且生长受阻或患病,pH值过高则可能腐蚀鱼、虾、蟹鰓部组织,使鱼、虾、蟹等失去吸收能力而大量死亡。

另外,水中的pH值过高或过低,均会造成水中的微生物活动受到抑制,有机物不能分解。

氨氮污染对水生生物的威胁及防范措施

氨氮污染对水生生物的威胁及防范措施

氨氮污染对水生生物的威胁及防范措施氨氮污染是水体中较为常见的一种污染物,对水生生物产生严重威胁。

本文将详细介绍氨氮污染对水生生物的威胁,并提出相应的防范措施。

一、氨氮污染对水生生物的威胁1. 对鱼类的危害:当水体中的氨氮浓度超过水生生物耐受范围时,会导致水中氧含量降低,直接影响鱼类的呼吸作用,甚至导致鱼类窒息而死亡。

2. 对浮游生物的影响:氨氮污染会导致浮游生物的繁殖能力下降,进而影响食物链的正常运转。

同时,浮游生物是水生生物的重要食物来源,其受到污染会直接影响上层生物的生存状况,从而破坏了水生生态系统的稳定性。

3. 影响底栖生物:水体中的氨氮污染会使水环境的pH值下降,导致底栖生物栖息地受到破坏,无法维持其正常生活活动,如筑巢、觅食等,从而威胁其生存状况。

二、防范措施1. 加强监测:建立完善的水质监测体系,对水体中的氨氮浓度进行定期检测,以及时发现和及时处理污染源,避免污染进一步扩大。

2. 限制农业用肥:加强对农业用肥的管理,控制农业面源污染的发生。

对于农户使用肥料的种类、数量以及施肥的时间和方式等进行指导,确保合理用肥,避免肥料的过度积累和流失,减少氨氮的排放。

3. 加强城市污水处理:城市污水中的氨氮是重要的污染来源之一,加强城市污水处理厂的建设和运行,确保污水经过合格的处理后排放。

对于一些老旧污水处置设施,应加强改造和升级,以提高处理效果。

4. 鼓励生态修复:通过鼓励生态修复,增加湿地等自然生态系统的面积,提高水体的自净能力,加强氨氮的吸附和降解作用。

同时,进一步完善湿地保护政策,杜绝湿地破坏行为。

5. 加强宣传教育:加强对公众的环保意识教育,提高人们对氨氮污染的认知。

加强对农民、工厂主、居民等不同群体的环保教育,引导他们采用清洁生产方式和绿色生活方式,共同为减少氨氮污染做出努力。

在保护水生生物蓝色家园的过程中,氨氮污染的防范是至关重要的。

通过加强监测、限制农业用肥、加强城市污水处理、鼓励生态修复和加强宣传教育等措施,可以有效减少氨氮污染的发生,保护水生生物的生态环境,实现人与自然和谐相处。

饲养水质中有害物质分析

饲养水质中有害物质分析

饲养水质中有害物质分析提供最专业、最全的养鱼技术支持服务我们知道了有害物质的常见种类,那么我们必须知己知彼,才能更好的保护好我们的爱鱼。

1、氨氮(nh4)来源:剩余残饵和排泄物中含有的生物蛋白通过水浸泡发生氨化作用而产生,致死浓度约0.2——2.0mg/l;有效处理方法:换水、清洗/更换老化滤材;2、硝酸盐(no3)来源:残饵、排泄物与硝化菌产生反应后的产物(硝化菌屎?呵呵);硝酸盐通常不会致死。

3、亚硝酸盐(no2)来源:硝酸盐浓度高到一定程度会产生反硝化作用,形成亚硝酸盐,no2毒性强烈,很多时候鱼出现状况都与亚硝酸盐有关,可成家养鱼杀手,低量中毒,高量致死,致死浓度:0.2——2.0mg/l;有效处理方法:换水、清洗/更换老化滤材;4、余氯(hclo)漂白类残留物来源:余氯是水经过加氯消毒,接触一定时间后,水中所余留的有效氯;有效处理方法:(1)水质稳定剂、余氯中和剂、净水剂(不推荐),(2)充分困水(推荐);5、其他有害物质除上述4种有害物质外的其余有害物质,比较常见,比较有可能的有:(1)酒精;酒精对鱼的伤害是非常大的,我一个同事家请客,朋友们贪玩,倒了一杯啤酒到缸里,然后。

就没有然后了。

所以,千万别好奇,千万管好损友的手!(2)杀虫剂;喷洒杀虫剂、敌敌畏等等化学杀虫剂通常会对缸里的鱼产生极大的伤害,曾经有案例是家里喷了杀虫剂,没有遮盖鱼缸顶的透气孔,于是全缸覆没。

(3)新缸残留的有害化学物质;新缸出厂,没有经过消毒或硝化作用,通常会残留一些有害物质,因此,新缸消毒或长时间养水是非常必要的。

爱养鱼必关注关注本账号,可进入手机端最火爆的养鱼论坛!和众多鱼迷互动交流!提供最专业、最全的养鱼技术支持服务。

水产养殖pH-氨氮-亚硝酸盐详解

水产养殖pH-氨氮-亚硝酸盐详解

氨氮、pH、亚硝酸盐详解一、氨氮:1、鱼塘中氨氮来源:氨氮主要来源是沉入鱼塘底部的饲料残饵、鱼类排泄物、肥料和动植物死亡的遗骸。

其中,鱼类的含氮排泄物中约80%-90%为氨氮,其多少主要取决于饲料中蛋白质含量和投喂量。

2、影响氨氮毒性的因素:氨氮毒性强弱不仅与总氨量有关,且与他存在的形式也有一点关系,离子氨(nh4+)不易进入鱼体,毒性也小,而非离子状态的nh3-n毒性强,当他通过鳃、皮膜进入鱼体时,不但增加鱼体排除氨氮的负担,且氨氮在血液中浓度较高时,鱼血液中的ph相对升高,从而影响鱼体内多种酶的活性。

研究表明,当分子氨(nh3-n)浓度越高,越可降低apk(血清碱性磷酸酶)和lsz(血清溶菌酶)的活力,其活力异常变化,反应机体代谢功能失常和组织机能损伤,因而导致鱼体不正常反应,表现为行动迟缓、呼吸减弱、丧失平衡能力、侧卧、食欲减退,甚至由于改变了内脏器官的皮膜通透性,渗透调节失调,引起充血,呈现与出血性败血症相似的症状,并影响生长。

另外,氨氮毒性与池水的ph及水温有密切关系。

一般情况下,温度和ph 越高,毒性越强。

这也是鱼类为什么在夏季、当池水中ph超过8.5时,易发生氨中毒的原因所在。

3、怎么控制池水中氨氮浓度:----科学开关增氧机,保证底层溶氧充足----有条件的可定期换水,加注新水----后期泼沸石粉和活性碳,新兴这边一般沸石粉30-40斤一亩,活性炭4-6斤一亩,活性炭可以吸附部分氨氮----使用微生物制剂,特别是光合菌,新兴船岗新岗峡村养殖户简清帮,8月份帮他下过一次,有明显效果。

----大水面,我指的是50亩以上的鱼塘,可以种植水生植物,这些水生植物可以起到吸附和分解氨氮等有毒物质。

二、亚硝酸盐1、亚硝酸盐怎么来的亚硝酸盐主要是池底有机物在缺氧状态下分解生成,是氨转化为硝酸盐过程中的中间产物,对鱼虾等水生动物具有一定的毒性。

2、亚硝酸盐危害:亚硝酸盐对鱼虾的毒性较强,作用机理主要是使鱼类血液输送氧气的能力下降,亚硝酸盐能促使血液中的血红蛋白转化为高铁血红蛋白,失去和氧结合的能力,一般称为"褐血病"。

氨氮污染对水产养殖的危害及处理技术分析

氨氮污染对水产养殖的危害及处理技术分析

氨氮污染对水产养殖的危害及处理技术分析随着现代工业和城市化的快速发展,水体环境污染问题日益突出,其中氨氮污染是其中一种常见的水体污染物之一。

氨氮是水中的一种重要污染物,主要来源于农业废水、工业废水和城市生活污水等,当水体中的氨氮超过一定浓度时,会对水产养殖造成严重的危害。

本文将从氨氮污染对水产养殖的危害和处理技术两方面展开阐述。

一、氨氮污染对水产养殖的危害1. 影响水产生长发育水产动物对水质的适应能力相对较弱,水中富集的氨氮会对水产动物的生长发育产生不利影响,严重时还会引起大量的死亡。

研究表明,水中氨氮浓度过高会影响水产动物的呼吸、消化和代谢功能,导致营养不良和生长缓慢。

2. 导致水产养殖疾病水体中氨氮过高容易诱发水产动物的疾病,特别是对于鱼类而言,氨中毒是一种常见的疾病。

鱼类在氨氮浓度过高的水中容易受到细菌和寄生虫的感染,导致疾病的发生和传播,进而影响水产养殖的健康发展。

3. 导致水质恶化氨氮是一种有机物质,在水体中会发生降解反应,产生亚硝酸盐和硝酸盐等,这两种物质都是对水产动物有害的物质。

亚硝酸盐对水产动物的神经系统和呼吸系统有强烈毒性,而硝酸盐也会对水产动物的生长和发育产生不良影响。

二、氨氮污染处理技术分析1. 生物法处理生物法是目前常用的氨氮污染处理方法,其利用微生物将氨氮转化为无害的氮气的过程。

常见的生物法包括厌氧处理和好氧处理两种方式,通过控制水体中氧气浓度和微生物的生长环境,达到降解氨氮的目的。

生物法处理氨氮污染的优点是技术成熟、操作简单,但是需要占用一定的土地和维护成本较高。

2. 化学法处理化学法处理氨氮污染主要是通过加入化学药剂将氨氮转化为无害物质,如硝酸盐和氮气。

常用的化学药剂包括活性炭、氧化铁和硫化铁等,这些化学药剂都能有效吸附和氧化水体中的氨氮,从而达到净化水体的目的。

化学法处理氨氮污染的优点是反应速度快,处理效果明显,但是化学药剂的使用成本较高,且还需要考虑对水体中其他物质的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氨氮和亚硝酸盐的危害
对于我们循环水养殖的水体来说,水中的主要危害鱼类健康的物质是氨氮和亚硝酸盐。

在过滤系统尚未建立,或尚未成熟,或运转异常时,这两种物质的存在很让我们烦心。

氨氮对鱼的致死浓度在0.2-2.0㎎/L,小于0.2㎎/L时,会使鱼类的内部器官发生病变、坏死及组织溃烂。

当氨氮中的非离子氨达到0.01-0.02㎎/L时,易破坏鱼鳃的粘膜层,降低血红素携带氧的能力,使鱼类生长缓慢。

当非离子氨浓度达到0.02-0.05㎎/L时,会引发多种疾病,增加死亡;达到0.05-0.2㎎/L时,会破坏养殖鱼类的皮、胃、肠道粘膜,进一步引起内部器官和体表出血;达到0.2-0.5㎎/L时,会引起鱼类急性中毒死亡。

水中亚硝酸盐含量在0 .1㎎/L时,鱼体血液中的血红蛋白变成高铁血红蛋白,使血液变成巧克力色,也就是养殖上常说的“褐血病”,使血红蛋白的输氧能力下降,鳃肿胀,摄食减少,生长缓慢,疾病增多。

当浓度达到2.5㎎/L时,鱼体呈中毒状态,呼吸作用下降,体能衰弱,最后暴发疾病而死亡。

氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。

鱼的粪便中含氮有机物很不稳定,容易分解成氨。

因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合
氨。

平时我们测量的是氨氮含量是氨(NH3)和铵离子(NH4+)的总和,其中,铵离子(NH4+)是无毒的,而氨(NH3)对爱鱼是剧毒的,当PH与温度较低时,大部份氨氮以铵离子(NH4+)的形式存在,而当PH值与温度升高后,则会有更多的氨氮以剧毒性的氨(NH3)存在,并呈倍数增长。

因此,当PH值与温度升高后,在同样氨氮含量情况下,更容易造成鱼氨氮中毒,当鱼氨氮中毒后,可以通过降低池水的PH值来减少氨(NH3)的比例。

附一张在不同PH值与温度下有毒氨(NH3)在总氨氮中所占比例图,与鱼友分享,做到心中有数,防止氨中毒。

国家渔业用水要求有毒氨(NH3)含量小于0.02mg/L,实际养殖中很难达到,一般不超过0.2m/L就可以了。

在生产中降氨和减少氨的危害常用的方法有以下几种。

一.改善换水条件,增加换水量这是降氨最有效的办法。

二.在池中一角围栏栽种水生植物如水浮莲或凤眼莲等飘浮植物,可有效地降低水中的氨。

经试验证实当移植的凤眼莲复盖水面达10%时,五天后水中总氨可由8毫克/升降至3毫克/升,降氨效果明显。

三.控制浮游动物数量,可减少水中氨的来源。

有资料介绍,甲壳类每天排出的代谢废物氨为1mg/g;蚤状蚤每天每千克可排出约为5.11克的氨。

因此,适当地放养以浮游动物为食的鱼类,或适时杀灭水蚤可减少水中氨氮的来源。

四.改善水中溶氧状况,可促进氨的硝化使氨转化为硝酸态氮和亚硝酸态氮。

研究表明由硝化细菌和亚硝化细菌形成的硝作用,在溶氧小于5~6毫克/升时,硝化速度随溶氧的增多而加快,硝化作用最适pH=8.4,在温度5~30℃范围内,温度升高硝化作用加快。

测定结果表明,在溶氧多时有效氮以硝酸态氮为主,在缺氧状态下则以氨态氮为主。

因而改善水体的溶氧状况在一定程度上可降低氨含量和氨的危害。

五.利用生物转盘和生物转筒去氨,该设备在工厂化养鱼和特种水产品的养殖中应用较多。

其作用原理是利用生物转盘或转筒上附生的藻类和硝化细菌吸收和转化水中的氨,去除氨的效率可达80%以上。

六.使用斜发沸石粉,利用这一多孔铝硅酸盐具有的较高的离子交换和吸收有毒代谢物的能力降低水中的氨含量。

当池塘中浮游植物同化作用降氨或其它降氨措施无法实施时,可在池塘中施用沸石粉,用量一般为25~50ppm,可达到使氨减少90~97%的良好效果。

而且沸石并不吸收硝酸盐和亚硝酸盐也不影响水质的其它化学指标。

此外在水产动物饲料中添加5%沸石粉也有降低水中的氨含量的作用。

七.利用光合细菌进行水质的改良。

许多研究表明,养殖水质中施用光合细菌,可明显降低底质和水质的有机物含量。

从而减少了矿物质分解产物氨的释放,从这一角度出发,施用光合细菌对降氨也有一定的辅助作用。

养殖池中亚硝酸盐转化的有效措施
养殖池中亚硝酸盐转化的有效措施
养殖水质的好坏,主要看以下几个水质指标:氨态氮、亚硝态氮、硝态氮、pH值、化学耗氧量、硫化氢等七个指标。

水产养殖水体中,如何让含氮有机物进行有效的转化,以确保养殖水质长期维持良好,是养殖成功的关键之一。

养殖水体中的含氮有机物,在水体中先转为氨态氮,再转为亚硝态氮,最后为硝态氮。

转化过程中,从含氮有机物到氨氮需要的时间不长,从氨态氮到亚硝酸盐的时间较短,但从亚硝酸盐的转化时间比较
长。

一、养殖水体中亚硝酸盐高的原因在整个氮素转化过程中,从含氮有机物到氨
氮需要的时间不长,由多种微生物来担任;从氨氮到亚硝酸盐由亚硝化细菌担任,亚硝化菌的生长繁殖速度为18分钟一个世代,因此其转化的时间不长;从亚硝酸盐到硝酸盐是由硝化细菌担任,硝化菌的生长速度相对较慢,其繁殖速度为18个小时一个世代,因此由亚硝酸盐转化到硝酸盐的时间就长很多。

我们知道,当氨氮的浓度达到高峰时(3~4天),亚硝态氮就开始上升,当亚硝态氮的浓度达到高峰时(3~4天),硝态氮就开始上升。

亚硝态氮的有效分解需要12天甚至更长的时间。

在养殖水体中由于大量的投饵,造成氮素的大量积累。

氮素通过各种微生物的作用,转化为氨氮、亚硝酸盐和硝酸盐,这三种氮素一方面被藻类和水生植物吸收,另一方面硝酸盐在条件成熟的时候通过脱氮作用将硝态氮转化为氮气。

如果水体中达到一定的自净平衡状态,在没有外来的干涉(如没有用消毒剂),那么水的氮循环会比较正常,三态氮会一直维持在稳定的状态。

但是在养殖水体内,由于定期的使用消毒药剂,把有害的和有益的细菌通通杀灭,氧气的供应不足,常常造成硝化过程受阻,这就是水中氨氮和亚硝酸含量高的主要原因,由于氨氮的转化速度较快,因此亚硝酸的问题最为突出。

当然,温度对水体硝化作用也有较大影响,硝化细菌在温度较低时,硝化作用减弱,造成亚硝酸盐积累。

二、亚硝酸盐过高的危害性亚硝酸盐对鱼虾的毒性较强,作用机理主要是通过鱼虾的呼吸作用.由鳃丝进入血液,可使正常的血红蛋白氧化成高价血红蛋白,使运输氧气的蛋白推动氧的功能。

出现组织缺氧从而导致鱼虾缺氧,甚至窒息死亡。

亚硝酸盐还可与仲胺类反应成致癌性的亚硝酸胺类物质,pH值低时有利于亚硝酸胺形成。

很多池塘出现鱼虾厌食现象,亚硝酸盐过高就是主要原因之一。

当亚硝酸盐浓度增高到一定程度,虾类往往出现厌食的现象。

亚硝酸盐中毒后的症状:厌食;游动缓慢,触动时反应迟钝;呼吸急速,经常上水面呼吸;体色变深,鳃丝呈暗红色。

三、亚硝酸盐过高的几种解救措施水体中出现亚硝酸盐过高的现象,应及时采取措施,否则将影响鱼虾的正常生长。

主要的措施有以下几种办法: 1.在池塘中泼洒“亚硝酸盐降解灵”。

它是一种复合化合物,使用方便,安全无毒,效果显著,使用数天后,就可降解。

2.使用臭氧的办法。

3.添加纯种硝化细菌。

限于得到纯种硝化细菌较困难,成本很高,只能局限在水族馆和鱼缸中使用。

4.使用活性碳。

5.在饲料中加大Vc的用量也有一定作用。

四、亚硝酸盐降解灵的作用机理和方法以上5种方法对亚硝酸盐的降解均有一定功效,但考虑到养殖成本及使用便利与否的现实情况,以其中的全池泼洒“亚硝酸盐降解灵”较为有效,“亚硝酸盐降解灵”主要由BS、Al2O3、NaCl及高效吸附剂等合成,可通过吸附及转化作用,使NO2转化为N2从养殖水体中逸成,清除水中亚硝酸态氮的毒性,从而有效降解水体中的亚硝酸盐,同时吸附氨氮及重金属离子,保证养殖水体的健康环境。

通常在5天内可降解0.1ppm,以上,因此效果较为明显。

其应用方法也十分便利,可采取全池泼洒方法,每亩水体(1m水深)泼洒本品500克一次即可。

使用时应加水搅拌成悬浊液后立刻泼洒,不得过夜使用;同时使用本品后须即打开增氧机。

相关文档
最新文档