第一章有理数复习课件[1]

合集下载

第一章有理数复习课课件-人教版(2024)数学七年级上册

第一章有理数复习课课件-人教版(2024)数学七年级上册

-(-2) > -|+2|
1
1
(4)-(+ )和-|- |;
2
3
1
2
1
-(+ )
2
-
1
< -3
<
1
-|- |
3
知识梳理
5. 绝对值
(1)一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的
绝对值,记作| a |,读作“a的绝对值”.
(2)绝对值的性质(非负性).
一个正数的绝对值是它本身;一个负数的绝对值是它的相
13
,0.03,
17
-
1
4
3 ,10,2
2
⋯};
非负整数集合{ 0,10
正整数+0
整数集合{ -7,0,10,正分数集合{ 3.5,
4
2
⋯ };
13
,0.03
17
⋯ };
1
2
非正数集合{ -7,-3.1415,0,- 3 ,负数+0
4
2
⋯}.
知识梳理
3. 数轴
(1) 数轴:规定了原点、正方向和单位长度的直线叫作数轴.
数轴的三要素
(2)数轴的画法:
①画直线,标原点;②标正方向;③选取单位长度,标数.
-4
-3
-2
-1
0
1
2
3
4
知识梳理
(3)在数轴上表示有理数.
画出数轴并表示出下列有理数.
3
4
5
2
2,-3.5, ,- ,3.5
-3.5
-4
-3
3
4
5
2
-2

第1章 有理数(单元复习课件)七年级数学上册(人教版2024)

第1章 有理数(单元复习课件)七年级数学上册(人教版2024)

7. 【2024宁波新视角操作探究题】数轴是一个非常重要的数学
工具,它使数和数轴上的点建立起对应关系,揭示了数与点
之间的内在联系,它是“数形结合”的基础.小锦在草稿纸上
画了一条数轴(如图) 进行操作探究.
操作一:
(1)折叠纸面,若使1表示的点与-1表示的点重合,则-3
表示的点与
3 表示的点重合;
易错点三 数轴上点的位置不确定而漏解
例 3.在数轴上与表示-3的点相距10个单位长度的点表示的数是
.
正解:
当与-3相距10个单位长度的点在-3的右侧时,
-3+10=7;
当与-3相距10个单位长度的点在-3的左侧时,
-3-10=-13.
故答案为7 或-13.
错解剖析:
在数轴上与-3相距10个单位长度的点有可能在-3的右侧也有可能在-3的左
的数为 -6
.

5. 【新视角结论开放题】已知数轴上点 A 表示的数是-1,点 B
在点 A 的左侧,则点 B 表示的数可能是 -4(答案不唯一)
.

6. 画出数轴,并在数轴上表示下列各数,再将这些数用
“<”连接起来.

-4,1 ,3,-(-0.5),-|-2|.

解: 如图所示.

由数轴得,-4<-|-2|<-(-0.5)<1 <3.

025,-1



(3)正有理数:

,+15%,101,3.14,0.618

(4)非正整数:
0,-2 025 ;
(5)非负数:




,0,+15%,101,3.14,0.618

七年级上第一章有理数复习课课件ppt

七年级上第一章有理数复习课课件ppt

a
a
综合练习1:
(1)若(x-1)2+|y+4|=0,则3x+5y=____ (2)若|a-3|+ |3a-4b|=0,则-2a+8b=____
(3)|3-|+|4- |=____
(4)已知|x|=3,|y|=2,且x<y,则x+y=____
综合练习2:
已知有理数a、b、c在数轴上的位置如图, 化简|a|-|a+b|+|c-a|+|b+c|
整数 分数
正整数 负整数
0 正分数 负分数
正数 0
负数
3:有理数的分类
1, -0.1, -789, 25, π, 0, -20, -3.14, 200%, 6/7
正整数集{ 1, 25, 200%,
…}
负整数集{ -789,-20 正分数集{ 6/7
…} …}
负分数集{ -0.1, -3.14 正有理数集{ 1, 25,200%,6/7 负有理数集{ -0.1,-789, -20,-3.14
…} …} …}
自然数集{ 1, 25, 0, 200%
…}
有理数集 {1, -0.1, -789, 25, 0, -20, -3.14, 200%, 6/7…}
非负整数集{ 1, 25, 0, 200%,
…}
3:有理数的分类
判断:
(1)整数一定是自然数(×) (2)自然数一定是整数(√ )
填空:
3) 对任何有理数a,︱a︱一定是非负数.
6:绝对值
判断:
(1)|5|=|-5|
(√ )
(2)|-0.3|=|0.3|
(√ )
(3)|3|>0

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.

第一章 《有理数复习》课件-1

第一章 《有理数复习》课件-1

-3 –2 –1
0
1
2
3
4
1.两个有理数表示较大的数的点离原点的距离较近(× )
2个, 2.与原点的距离为三个单位的点有__ -3 。 +3 和__ 他们分别表示的有理数是__
3.与+3表示的点距离2000个单位的点有2 __个,
2003 1997 他们分别表示的有理数是__ __ 和__ __ 。 5 个单位。 4.+3表示的点与-2表示的点距离是__
8
-4 -(-4)的相反数是 需要更完整的资源请到 新世纪教
育网 -
乘积是1的两个数互为倒数 1)a的倒数是 2)0没有倒数 ; 3)若a与b互为倒数,则ab=1.
例:下列各数,哪两个数互为倒数? 1 1 8, ( ) ,-1,+(-8),1, 8 8
需要更完整的资源请到 新世纪教 育网 -
考点三: 数 轴、相反数、绝对值
数轴是一条直线 √ 直线是数轴 ×
规定了原点、正方向和单位长度的直线 叫数轴。 1.__________________________
-3 –2 –1
0
1
2
3
4
1)在数轴上表示的数, 右边的数总比左边的数大; 2)正数都大于0,负数都小于0; 正数大于一切负数; 3)所有有理数都可以用数轴上 需要更完整的资源请到 新世纪教 的点表示。 育网 -
需要更完整的资源请到 新世纪教 育网 -
0
1
2
3
4
1.一个数的相反数是最小的正整数,那么这个数 是(A)
别忘了
A .–1
B. 1
C .±1
D. 0
0
2.互为相反数的两个数在数轴上位于原点两旁(×) 3.位于原点两旁的数是互为相反数(×) 4. 只要符号不同,这两个数就是相反数(× ) 5.表示相反意义的量的两个数互为相反数(×) 6.若-a=-8,则-a的相反数是

人教版七年级上册 第1章 有理数 章末复习课件(共34张PPT)

人教版七年级上册 第1章 有理数 章末复习课件(共34张PPT)
原点、正方向和单位长度是数轴的三要素,三者缺一不可.
2.数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,
但数轴上的点不都表示有理数,还可以表示其他数,比如π.
3.利用数轴比较有理数的大小:在数轴上,右边的点所对应的数总比左边的点
所对应的数大.因此,正数总大于零,负数总小于零,正数大于负数.
负数的绝对值越小,这个数越大.其中正确的有(
B
A. 1个
D. 4个
B. 2个
C. 3个
)
知识梳理
知识点6:有理数的大小比较
1.两个负数,绝对值大的反而小.
2.正数大于零,零大于负数,正数大于负数.
3.利用数轴:在数轴上,右边的点所对应的数总比左边的点所对应的数大.
对点例题
[例10]有理数a,b在数轴上的位置如图所示,则下列结论一定正确的是
运动距离为1+4=5(cm),此时点 A 的运动时间为5÷1=5(秒);
当点 A 在点 C 的右侧时,点 A 对应的数是4+3=7,则
点 A 的运动距离为7+4=11(cm),此时点 A 的运动时间
为11÷1=11(秒).
综上所述,经过5秒或11秒使 AC =3 cm.
如+5=5,+(-5)=-5.
(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)
就是-3的相反数,因此,-(-3)=3.
对点例题
中小学教育资源及组卷应用平台
1
【例 5】在 2 ,2,4,-2 这四个数中,互为相反数的是(
1
A. 2 与 2
B.2 与-2
1
C.-2 与 2

D.-2 与 4中小学教育资源及组卷应用平台

.

人教版七年级数学上册 第一章 有理数复习课件(共51张PPT)

01
复习课
有理数
1. 正__整_数__、__零_、__负__整_数统称整数,试举例说明。
2. 正_分__数__、_负__分__数___统称分数,试举例说明。
3. __整__数__、_分__数____统称有理数。
有理数的分类表
整数 有 理 数 分数
正整数 0
自然数
(非负整数)
负整数
正分数 负分数
有理数的分类
②下列说法正确的是( )A A.–1/4的相反数是0.25
B.4的相反数是-0.25
C.0.25的倒数是-0.25,
D.0.25的相反数的倒数是-0.25
③用-a表示的数一定是( D) A.负数 B.正数 C.正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是( A)
A .–1 B. 1 C .±1 D. 0
A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米
的意义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意
义就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20
米,那么-0.05米所表示的高是0.95米.
6.正数、负数在实际生活中的应用
8.05×106
解:⑴ 0.07010 ,精确到 十万分位(或精确到0.00001),
有四个有效数字: 7,0,1,0
⑵ 103.2万 ,精确到 千位
有四个有效数字 1,0,3, 2 (3) 2.4千,精确到 百位, 有二个有效数字2,4
(4) 8.05×106 ,精确到 万位,
有三个有效数字 8,0,5
小测验
1. 22 2 22

七年级数学上册-第一章有理数复习课件-人教新课标版


3. 如果两个数的乘积是负数,和是正数。 那么这两个数的关系是---------( D ) (A)两个都正 (B)两个都负 (C)一正一负 且负的绝对值较大 (D)一正一负且正的绝对值较大
4.如果a>0,b<0,a+b<0,那么下列各式中大小 关系正确的是(D )。
(A)-b<-a<b<a (B)-a<b<a<-b (C)b<-a<-b<a (D)b<-a<a<-b 5.若a<b,则|b-a+1|-|a-b-5|等于( B)。 (A)4 (B)-4 (C)-2a+b+6 (D)不能确定
再根据你对所提供材料的理解,计算:
( 1 ) (1 3 2 2) 42 6 14 3 7
2.有一种“二十四点”的游戏,其游戏的规则是这样的: 任取四个1至13之间的自然数,将这四个数(每个数用且 只用一次)进行加减乘除四则运算,使其结果等于24.
例如对1,2,3,4可作运算:(1+2+3)×4=24.(注意上述运 算与4×(1+2+3)应视作相同方法的运算)
b
a0
c
2、已知 | a - b | 4, 求 (a - b)2 (b a)3的值
三、做一做
1.已知|x+2|与| y-1|互为相反数,求:x+y 的值。
2.若|a|=3,|b|=1,|c|=5,且|a+b|= - (a+b) |a+c|=a+c. 求a-b+c的值。
6、计算
1 1 1 1 1 1 1 1 ........ 1 1
现有四个有理数3,4,-6,10,运用上述规则写出三种不 同方法的运算式,使其结果等于24,运算如下:
(1)______________;

人教版七年级数学上册第一章《有理数》复习PPT课件


2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能

第一章有理数复习课件课件


2.把下列各数填在相应额大括号内:
1,-0.1,-789,|-25|,0,-(+20), 6
-3.14,-590,
7
正整数集{ 1,|-25|
…}
负整数集{ -789,-(+20), -590 …}
正分数集{ 6
7
负分数集{ -0.1,-3.14,
…} …}
正有理数集{
1,|-25|,
6 7
…}
负有理数集{-0.1,-789,-(+20),-3.14,-5…90}
1. 正__整_数__、_零__、_负__整_数_统称整数,试举例说明。
2. 正_分__数_、__负_分__数____统称分数,试举例说明。
3. __整__数_、__分_数_____统称有理数。
有理数的分类表
整数 有 理 数
分数
正整数 (非负整数)
0 负整数
正分数 负分数
1.判断: ①不带“-”号的数都是正数 ( ) ②如果a是正数,那么-a一定是负数 ( ) ③不存在既不是正数,也不是负数的数 ( ) ④0℃表示没有温度 ( )
Ⅱ.定义: 乘积是1的两个数互为倒数.
1)a的倒数是 1(a≠0); 2)0没有倒数 ;a 3)若a与b互为倒数,则ab=1.
下列各数,哪两个数互为倒数?
8, 1 ,-1,+(-8),1, ( 1)
8
8
Ⅲ.绝对值
数a的绝对值几何意义: 数轴上表示数a的点与原点的距离。
1)数a的绝对值记作︱a︱;
再见!
别忘了复习
人有了知识,就会具备各种分析能 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富 培养逻辑思维能力; 通过阅读文学作品,我们能提高文 培养文学情趣; 通过阅读报刊,我们能增长见识, 有许多书籍还能培养我们的道德情 给我们巨大的精神力量,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档