高中数学综合检测题 (3)
(必考题)高中数学高中数学选修2-1第一章《常用逻辑用语》检测题(包含答案解析)(3)

一、选择题1.下列命题中,真命题是( )A .命题“若a b >,则22ac bc >”B .命题“若a b =,则a b =”的逆命题C .命题“当2x =-时,2560x x ++=”的否命题D .命题“终边相同的角的同名三角函数值(三角函数值存在)相等”的逆否命题 2.下列命题错误的是( )A .命题“若p 则q ”与命题“若q ⌝,则p ⌝”互为逆否命题B .命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”C .∀ 0x >且1x ≠,都有12x x+> D .“若22am bm <,则a b <”的逆命题为真3.设a ,b ,c +∈R ,则“1abc =”是a b c+≤++”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要的条件 4.设0a >,0b >.下列说法正确的是( )A .2ln 2ln a b a b +<+则a b >B .2ln 2ln a b a b +<+则a b <C .2ln 2ln a b a b -<-则a b >D .2ln 2ln a b a b -<-则a b <5.9k >是方程22194x y k k +=--表示双曲线的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6.若命题“0x R ∃∈,200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]2,6B .()2,6C .(][),26,-∞+∞D .()(),26,-∞+∞7.下列命题中正确的是( )A .“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的充分不必条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a 、b 、c 为非零向量,则“a b a c ⋅=⋅”是“b c =”的充要条件D .p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++> 8.若函数()sin f x x x =,则对a ,,22b ππ⎛⎫∈- ⎪⎝⎭,不等式()()f a f b >成立的一个充要条件是( )A .a b >B .a b <C .a b >D .22a b > 9.已知条件:12p x +>,条件:q x a >,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( )A .[)1,+∞B .[)1,-+∞C .(],1-∞D .(],3-∞ 10.已知x 、y R ∈,则“221x y +<”是“()()110x y -->”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.条件甲:关于x 的不等式 sincos 1a x b x +>的解集为空集,条件乙:1a b +≤,则甲是乙的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 12.已知2:11x p x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( )A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞ 二、填空题13.给出如下四个命题:①把二进制数(2)110011化为十进制数,结果为51;②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变,方差不变;③从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立;④若“p q ∧”为假命题,则p 、q 均为假命题.其中正确的命题的序号是________. 14.已知命题p :任意[1,2]x ∈,20x a -≥,命题q :存在x ∈R ,2220x ax ++=.若命题p 与q 都是真命题,求实数a 的取值范围________.15.已知集合261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,3{|log ()}1B x x a ≥=+,若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________.16.已知命题:p x R ∀∈,210x mx ++≥;命题()0:0,q x ∃∈+∞,000x e mx -=,若p q ∨为假命题,则实数m 的取值范围是_______________;17.设2:8120x x α-+>,2:x m m β-≤,若β是α的充分非必要条件,则实数m 的取值范围是_______________.18.若命题“[]01,1x ∃∈-,20030x x a ++>”为假命题,则实数a 的取值范围是______. 19.已知a R ∈ ,则“16a =”是“两直线1:210l x ay +-=与()2:3110l a x ay ---=平行”的___________条件(填“充分非必要”、“必要非充分”、“充要”、“既不充分也不必要”). 20.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,则实数m 的最大值为__________.三、解答题21.已知:46p x -≤,2:2240q x x --≤,若p q ∨为真,p q ∧为假,求实数x 的取值范围.22.已知p :27100x x -+<,q :22430x mx m -+<,其中0m >.(1)若4m =且p q ∧为真,求x 的取值范围;(2)若q ⌝是p ⌝的充分不必要条件,求实数m 的取值范围.23.设命题p :实数x 满足22430x ax a -+<,命题q :实数x 满足|3|1x -<. (1)若1a =,且p q ∨为真,求实数x 的取值范围;(2)若0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.24.已和知集合()(){}20A x x a x a=--<,集合211x B x x ⎧⎫=<⎨⎬-⎩⎭,命题:p x A ∈,命题:q x B ∈.(1)当实数a 为何值时,p 是q 的充要条件;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.25.已知条件:p 对任意[3,4]x ∈,不等式2223x m m -≥-恒成立;条件:q 当[0,1]x ∈时,函数221m x x a =-++.(1)若p 是真命题,求实数m 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.26.已知条件4:11p x ≤--,条件22:q x x a a +<-,且q ⌝的一个充分不必要条件是p ⌝,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据不等式的性质和四种命题的关系判断各选项.【详解】A .当0c 时,22ac bc >不成立,A 错;B .命题“若a b =,则a b =”的逆命题是若a b =,则a b =,错误,也可能是=-a b ;C .命题“当2x =-时,2560x x ++=”的否命题是若2x ≠-,则2560x x ++≠,错误,3x =-时,也有2560x x ++=;D .命题“终边相同的角的同名三角函数值(三角函数值存在)相等”是真命题,逆否命题也故选:D .【点睛】关键点点睛:本题考查命题真假的判断,四种命题之间互为逆否的命题同真假,因此原命题的为真只能判断逆否命题为真,而逆命题和否命题的真假不确定,需写出逆命题,否命题进行判断.这也告诉我们当一个命题难以判断真假时可考虑判断其逆否命题的真假. 2.D解析:D【分析】对给出的四个选项分别进行判断可得结果.【详解】对于选项A ,由逆否命题的定义可得,命题“若p 则q ”的逆否命题为“若q ⌝,则p ⌝”,所以A 正确.对于选项B ,由含量词的命题的否定可得,命题“x ∃∈R, 20x x ->”的否定是“R ∀∈,20x x -≤”,所以B 正确.对于选项C ,当0x >且1x ≠时,由基本不等式可得12x x+>.所以C 正确. 对于选项D ,命题“若a b <,则22am bm <”当0m =时不成立,所以D 不正确. 故选D .【点睛】由于类似问题考查的内容较多,解题的关键是根据每个命题对应的知识解决,要求对相关知识要有一个整体性的掌握,本题考查综合运用知识解决问题的能力.3.A解析:A【分析】证充分性时,利用“1”的代换,通过基本不等式论证,必要性时,取特殊值即可.【详解】因为1abc =,所以222c b a c a b a b c +++++=≤++=++,当且仅当1a b c ===,取等号,故充分,当4a b c ===a b c≤++,故不必要, 故选:A.【点睛】本题主要考查逻辑条件涉及了基本不等式,还考查了运算求解的能力,属于中档题. 4.B解析:B举反例说明C,D 不成立,再根据函数2ln x y x =+单调性,进而确定选项.【详解】 因为311123112ln12ln 2,2ln 2ln ,ee e e -<--<-所以CD 不成立; 因为2ln x y x =+在(0,)+∞上单调递增,所以由2ln 2ln a b a b +<+得a b <, 故选:B【点睛】本题考查利用函数单调性判断命题真假,考查基本分析判断能力,属基础题.5.B解析:B【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->,∴方程22194x y k k +=--表示双曲线, 反之,若已知方程22194x y k k +=--表示双曲线, (9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件. 故选:B .【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用6.A解析:A【分析】因为原命题是假命题,其否定为真命题,问题可转化为0x R ∀∈,200230x mx m ++-≥恒成立,故由0∆≤即可求出m 的取值范围.【详解】因为命题“0x R ∃∈,200230x mx m ++-<”为假命题,故其否定:“0x R ∀∈,200230x mx m ++-≥”为真命题,故224(23)8120m m m m ∆=--=-+≤,解得26m ≤≤,故实数m 的取值范围是[2,6].故选:A【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想. 7.D解析:D【分析】由两直线平行与系数的关系式求得m 判断A;由线面垂直的判定定理判断B ;由平面向量的数量积的运算判断C ;写出特称命题的否定判断D ,综合可得答案.【详解】解:由直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行⇔223203220m m m m m ⎧+--=⎨-+--≠⎩()()()(),可得52m ±=,故可得:“12m =”是“直线()2310m x my +++=与直线()()2230m x m y -++-=相互平行”的既不充分也不必条件,故A 错误;直线l 垂直平面α内无数条直线不一定有直线垂直平面,故“直线l 垂直平面α内无数条直线”不是“直线l 垂直于平面α”的充分条件,故B 错误; a 、b 、c 为非零向量,由“a b a c ⋅=⋅”不能得到“b c =”,反之由“b c =”能够得到“a b a c ⋅=⋅”,故“a b a c ⋅=⋅”是“b c =”的必要不充分条件,故C 错误;p :存在x ∈R ,2220130x x ++≤.则p ⌝:任意x ∈R ,2220130x x ++>,故D 正确;故选:D.【点睛】本题主要考查命题真假的判断,涉及全称命题与特称命题的否定的书写、充分必要条件的判断等知识点,属于中档题.8.D解析:D【分析】先分析函数的奇偶性,由导数得出函数的单调性,利用这两个性质求解.【详解】()sin f x x x =,()sin()sin ()f x x x x x f x -=--==,()f x 是偶函数,()sin cos f x x x x '=+,在02x π≤<时,()0f x '≥,()f x 递增, 所以22()()()()f a f b f a f b a b a b >⇔>⇔>⇒>.故选:D.【点睛】本题考查函数的奇偶性与单调性,用函数的这两个性质求解不等式.本题还考查了导数与单调性的关系.掌握用导数研究不等式的方法是解题关键.9.A解析:A【分析】由题意,可先解出p ⌝:31x -≤≤与q ⌝:x a ≤,再由p ⌝是q ⌝的充分不必要条件列出不等式即可得出a 的取值范围.【详解】 由条件:12p x +>,解得1x >或3x <-,故p ⌝:31x -≤≤,由条件:q x a >得q ⌝:x a ≤,∵p ⌝是q ⌝的充分不必要条件,∴1a ≥,故选:A .【点睛】本题以不等式为背景考查充分条件必要条件的判断,考查了推理判断能力,准确理解充分条件与必要条件是解题的关键.10.A解析:A【分析】根据充分条件、必要条件的定义结合不等式的性质判断即可.【详解】由221x y +<,可得11x -<<,且11y -<<,则可得到()()110x y -->,故充分性成立;反之若()()110x y -->,可取2x y ==,显然得到不等式221x y +<不成立,故必要性不成立.故选:A .【点睛】本题考查充分不必要条件的判断,同时也涉及了不等式基本性质的应用,考查推理能力,属于中等题.11.A解析:A【分析】分别求出条件甲、乙所对应的,a b 的关系式,比较两个关系式所表示的图形,可得出结论.【详解】由题意,当0a b 时,不等式 sincos 1a x b x +>的解集为空集,当,a b 不都为0时,()sin cos a x b x x ϕ+=+,sin ϕ=,22cos a a b ϕ=+.因为()22sin 1a b x ϕ++>的解集为空集,所以221a b +≤,即221a b +≤.如下图,221a b +≤表示以原点为圆心,半径为1的圆及其内部,1a b +≤表示为圆内接正方形及其内部,所以甲是乙的必要不充分条件. 故答案为:A.【点睛】本题考查充分性与必要性的判断,考查三角函数的恒等变换,考查不等式表示的平面区域,考查学生的计算能力与推理能力,属于中档题.12.A解析:A【分析】由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案.【详解】解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<,∴:11p x -<<,由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件;当3a >时,解得:q x a >或3x <,满足条件;当3a <时,解得:3q x >或x a <,∴13a ≤<,综上:1a ≥,故选:A .【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.①③【分析】①根据二进制与十进制的关系转换后可判断②利用均值与方差的计算公式可判断③根据事件的关系判断④根据且的真假判断【详解】对于①正确;对于②将一组数据中的每个数据都加上或减去同一个常数后平均值解析:①③【分析】①根据二进制与十进制的关系转换后可判断,②利用均值与方差的计算公式可判断,③根据事件的关系判断,④根据“且”的真假判断.【详解】对于①543210(2)11001112120202121251=⨯+⨯+⨯+⨯+⨯+⨯=正确;对于②,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,均值改变,方差不变,错误;对于③,从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,“至多一个红球”为“一红一白或两白”,“都是红球”为“两红”,则事件“至多一个红球”与“都是红球”互斥且对立,正确;对于④,若“p q ∧”为假命题,则p ,q 至少有一个为假命题,则④不正确;答案:①③.【点睛】方法点睛:本题命题的真假判断,解题时需对每个命题进行判断,要求掌握相应的知识,考查的知识点较多,属于中档题.14.【分析】分别根据命题为真命题得到和或再计算得到答案【详解】即恒成立即;存在即解得或综上所述:故答案为:【点睛】本题考查了根据命题的真假确定参数范围意在考查学生的计算能力和转化能力属于常考题型解析:(,-∞【分析】分别根据命题为真命题得到1a ≤和a ≥a ≤. 【详解】[1,2]x ∈,20x a -≥,即2a x ≤恒成立,即{}2min 1a x ≤=;存在x ∈R ,2220x ax ++=,即2480a ∆=-≥,解得a ≥a ≤综上所述:a ≤故答案为:(,-∞.【点睛】 本题考查了根据命题的真假确定参数范围,意在考查学生的计算能力和转化能力,属于常考题型.15.(-∞0【分析】由集合AB 得到元素的范围根据x ∈A 是x ∈B 的必要不充分条件知即可求得a 的范围【详解】由得x2-x -6≥0即x≤-2或x≥3∴A ={x|x≤-2或x≥3}由得x +a≥3即x≥3-a 则B解析:(-∞,0]【分析】由集合A 、B 得到元素的范围,根据“x ∈A ”是“x ∈B ”的必要不充分条件知B A ,即可求得a 的范围【详解】 由261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,得x 2-x -6 ≥ 0 即x ≤-2或x ≥ 3∴ A ={x |x ≤-2或x ≥ 3}由31log ()x a ≥+,得x +a ≥ 3,即x ≥ 3-a ,则B ={x |x ≥ 3-a }由题意知:B A∴ 3-a ≥ 3,得a ≤ 0.故答案为:(-∞,0]【点睛】本题考查了必要条件,应用必要条件与对应集合间的包含关系解不等式,求参数范围 16.【分析】先求出命题为真命题时的取值范围以及当命题为真命题时的取值范围由为假命题可知两个命题均为假命题由此可求得实数的取值范围【详解】若命题为真命题则解得;若命题为真命题则关于的方程在上有解则令其中则 解析:()(),22,e -∞-【分析】先求出命题p 为真命题时m 的取值范围,以及当命题q 为真命题时m 的取值范围,由p q ∨为假命题可知两个命题均为假命题,由此可求得实数m 的取值范围.【详解】若命题p 为真命题,则240m ∆=-≤,解得22m -≤≤;若命题q 为真命题,则关于x 的方程0x e mx -=在()0,∞+上有解,则x e m x =. 令()x e f x x =,其中0x >,则()()21x x e f x x-'=. 当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()1f x f e ≥=,则m e ≥.因为命题p q ∨为假命题,则命题p 、q 均为假命题,则22m m m e ⎧-⎨<⎩或, 所以,2m <-或2m e <<.因此,实数m 的取值范围是()(),22,e -∞-. 故答案为:()(),22,e -∞-.【点睛】 本题考查利用复合命题的真假求参数,同时也考查了利用导数研究函数的零点问题,考查计算能力,属于中等题.17.【分析】根据是的充分非必要条件可知集合是集合的真子集由集合之间的包含关系再求参数范围即可【详解】对集合:解得;对集合:解得;因为是的充分非必要条件可知集合是集合的真子集故可得或解得或故故答案为:【点 解析:21m -<<【分析】根据β是α的充分非必要条件,可知集合β是集合α的真子集,由集合之间的包含关系,再求参数范围即可.【详解】对集合α:28120x x -+>,解得()(),26,x ∈-∞⋂+∞;对集合β:2x m m -≤,解得22,x m m m m ⎡⎤∈-++⎣⎦;因为β是α的充分非必要条件,可知集合β是集合α的真子集,故可得22m m +<,或26m m -+>,解得()2,1m ∈-或m ∈∅,故()2,1m ∈-.故答案为:21m -<<.【点睛】本题考查由充分非必要条件,推出集合之间的关系,以及根据集合关系求参数范围的问题,属综合基础题.18.【分析】由原命题为假命题则命题的否定为真命题再根据一元二次不等式恒成立求出参数的取值范围【详解】解:由题意命题为假命题则为真命题令则对恒成立因为的对称轴为则在上单调递增则只需即可即解得即故答案为:【 解析:(],4-∞-【分析】由原命题为假命题,则命题的否定为真命题,再根据一元二次不等式恒成立求出参数的取值范围.【详解】解:由题意,命题“[]01,1x ∃∈-,20030x x a ++>”为假命题, 则[]1,1x ∀∈-,230x x a ++≤为真命题,令()23g x x x a ++=,则对[]1,1x ∀∈-,()0g x ≤恒成立,因为()23g x x x a ++=的对称轴为32x =-,则()g x 在[]1,1x ∈-上单调递增, 则只需()10g ≤即可,即40a +≤,解得4a ≤-,即(],4a ∈-∞-.故答案为:(],4-∞-.【点睛】本题考查一元二次不等式恒成立问题,属于中档题.19._充分非必要【解析】【分析】由两直线l1:x+2ay ﹣1=0与l2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值再由充分必要条件的判定得答案【详解】解:由两直线l1:x+2ay ﹣1=0与l2:(3a解析:_充分非必要【解析】【分析】由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值,再由充分必要条件的判定得答案.【详解】解:由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行,可得()23101310a a a a ⎧---=⎨-+-≠⎩ ,即a =0或a =16 . ∴“a =16”是“两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行”的充分非必要条件.故答案为充分非必要.【点睛】本题考查充分必要条件的判定,考查两直线平行与系数的关系,是基础题.20.【分析】根据题意转化为利用可将函数进行换元利用对勾函数求函数的最大值【详解】当时又设设当时取得最大值若为真命题即的最大值是5故填:5【点睛】本题考查了根据全称命题的真假求参数取值范围的问题考查了转化 解析:5【分析】根据题意转化为()2max log 4log 2x m x ≤+,利用21log 2log x x =,可将函数进行换元,利用对勾函数求函数的最大值.【详解】当[]2,8x ∈时,[]2log 1,3x ∈ 又21log 2log x x = ,设[]2log 1,3x t =∈ ,设24log 4log 2x y x t t=+=+ 当1t =时,取得最大值max 5y =.若[]2"2,8,log 4log 2"x x m x ∃∈≤+为真命题,()2max log 4log 2x m x ≤+ ,即5m ≤,m ∴的最大值是5.故填:5.【点睛】本题考查了根据全称命题的真假,求参数取值范围的问题,考查了转化与化归的思想,若存在0x ,使()0m f x ≤,即()()max m f x ≤,若0x ∀,使()0m f x ≤恒成立,所以()()min m f x ≤,需注意时任意还是存在问题.三、解答题21.(][)6,104,2--【分析】 解不等式46x -≤和22240x x --≤,由题意得出p 、q 一真一假,然后分情况讨论,进而可求得实数x 的取值范围.【详解】 解不等式46x -≤,即646x -≤-≤,解得210x -≤≤;解不等式22240x x --≤,解得46x -≤≤. :210p x ∴-≤≤,:46q x -≤≤,因为p q ∨为真,p q ∧为假,所以p 、q 一真一假,若p 真q 假,则(]6,10x ∈;若q 真p 假,则[)4,2x ∈--.综上所述,实数x 的取值范围是(][)6,104,2--. 【点睛】本题考查利用复合命题的真假求参数的取值范围,同时也考查了绝对值不等式和一元二次不等式的求解,考查运算求解能力,属于中等题.22.(1)45x <<;(2)523m ≤≤ 【分析】(1)由p q ∧为真,可知,p q 都为真,进而求出命题,p q ,可得到答案;(2)先求出命题,p q ,由q ⌝是p ⌝的充分不必要条件,可得p 是q 的充分不必要条件,进而可列出不等式,求出实数m 的取值范围.【详解】由27100x x -+<,解得25x <<,所以p :25x <<,又22430x mx m -+<,且0m >,解得3m x m <<,所以q :3m x m <<.(1)当4m =时,q :412x <<,因为p q ∧为真,所以,p q 都为真,所以45x <<.(2)因为q ⌝是p ⌝的充分不必要条件,所以p 是q 的充分不必要条件,因为p :25x <<,q :3m x m <<,所以2350m m m ≤⎧⎪≥⎨⎪>⎩,解得523m ≤≤. 【点睛】本题考查一元二次不等式的解法,考查利用复合命题的真假求参数的范围,考查充分不必要条件的应用,考查学生的计算求解能力与推理能力,属于中档题.23.(1)(1,4);(2)4,23⎡⎤⎢⎥⎣⎦. 【分析】(1)分别求解当命题p 命题q 为真时x 的取值范围,在分“p 真q 假”和“q 真p 假”两种情况求对应的实数x 的取值范围即可.(2)根据0a >再因式分解求得命题p :3a x a <<,再根据p ⌝是q ⌝的充分不必要条件可知p ⌝对应的集合是q ⌝对应的集合的子集,再根据集合区间端点的位置关系求出实数a 的取值范围即可.【详解】(1)由22430x ax a -+<得()(3)0x a x a --<,当1a =时,13x <<,即p 为真时,(1,3)x ∈.由|3|1x -<,得131x -<-<,得24x <<,即q 为真时,(2,4)x ∈.若p q ∨为真,则p 真或q 真,所以实数的取值范围是(1,4).(2)由22430x ax a -+<得()(3)0x a x a --<,0,a >3a x a ∴<<.由|3|1x -<,得131x -<-<,得24x <<.设{|3},A x x a x a =≤≥或{|24}B x x x =≤≥或,若p ⌝是q ⌝的充分不必要条件,则A 是B 的真子集,故0234a a <≤⎧⎨≥⎩, 所以实数a 的取值范围为4,23⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查了根据充分与必要条件求解参数的范围问题.需要根据参数的范围求解对应的集合区间,再根据区间端点的位置关系列式求出参数的范围.属于中档题.24.(1)1a =-;(2)(]1,1-.【分析】(1)化简B ,根据p 是q 的充要条件可得A B =,根据A B =列式可得结果; (2)将p 是q 的充分不必要条件转化为A 是B 的真子集,然后按照a 与2a 的大小关系分类讨论得到A ,根据真子集关系列式可得结果.【详解】(1)211x x <-,即211011x x x x +-=<--,有()()110x x -+<,解得11x -<<, 故{}11B x x =-<<,因为p 是q 的充要条件,所以A B =,故()()20x a x a --<的解集也为()1,1-,所以211a a =-⎧⎨=⎩,即1a =-; (2)因为p 是q 的充分不必要条件,所以A 是B 的真子集,当2a a <,即0a <或1a >时,{}2A x a x a =<<,由A 是B 的真子集可得211a a >-⎧⎨<⎩,解得10a -<<;当2a a =,即1a =或0时,A =∅,符合题意;当2a a >,即01a <<时,{}2A x a x a =<<,由A 是B 的真子集可得211a a ⎧-<⎨<⎩,解得01a <<,综上所述:实数a 的取值范围是11a -<≤.、【点睛】结论点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.25.(1)[]1,4-;(2)[]1,3-.【分析】(1)把命题p 转化为当[3,4]x ∈时,2min (22)3x m m -≥-,即可求解;(2)根据二次函数的性质,求得[1,4],[,1]A B a a =-=+,根据p 是q 的必要不充分条件,得到B 是A 的真子集,列出不等式组,即可求解.【详解】(1)由题意,对任意[3,4]x ∈,不等式2223x m m -≥-恒成立,即当[3,4]x ∈时,2min (22)3x m m -≥-,又由3x =时,min (22)4x -=,即243m m ≥-,解得14m -≤≤,即实数m 的取值范围[]1,4-.(2)对于命题q :当[0,1]x ∈时,函数221m x x a =-++,当[0,1]x ∈时,函数2221(1)[,1]m x x a x a a a =-++=-+∈+,记[1,4],[,1]A B a a =-=+,因为p 是q 的必要不充分条件,所以B 是A 的真子集,可得114a a ≥-⎧⎨+≤⎩且“=”不能同时成立,解得13a -≤≤, 经验证,当1,3a =-时满足题意,所以实数a 的取值范围[]1,3-.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.26.[1,2]-【分析】先求出条件,p q 对应的x 取值范围,再根据题意可得p 是q 的一个必要不充分条件,由集合关系即可求出.【详解】 由411x ≤--,得:31p x -≤<, 由22x x a a +<-,得[]()(1)0x a x a +--<, 当12a =时,:q ∅;当12a <时,:(1,)q a a --;当12a >时,:(,1)q a a --. 由题意得,p 是q 的一个必要不充分条件, 当12a =时,满足条件; 当12a <时,则[)(1,)3,1a a ---,得11,2a ⎡⎫∈-⎪⎢⎣⎭; 当12a >时,[)(,1)3,1a a ---得1,22a ⎛⎤∈ ⎥⎝⎦. 综上,[1,2]a ∈-.【点睛】本题考查根据条件的关系求参数,属于基础题.。
高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。
第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。
高中数学3试题及答案

高中数学3试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()。
A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 已知集合A={1,2,3},集合B={2,3,4},则A∩B等于()。
A. {1,2,3}B. {2,3}C. {1,2,4}D. {2,3,4}3. 若函数f(x)=2x+3,g(x)=x^2-1,则f(g(1))的值为()。
A. 4B. 5C. 6D. 74. 已知等差数列{a_n}的首项a_1=2,公差d=3,则a_5的值为()。
A. 14B. 17C. 20D. 235. 函数y=x^2-4x+3的顶点坐标为()。
A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)6. 已知直线l的方程为x+2y-3=0,点P(1,2)到直线l的距离为()。
A. 1/√5B. √5C. 2√5D. 3√57. 圆的方程为(x-2)^2+(y+3)^2=16,圆心坐标为()。
A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)8. 已知向量a=(3,-4),向量b=(2,1),则向量a与向量b的夹角θ的余弦值为()。
A. 1/√5B. -1/√5C. 1/√17D. -1/√179. 函数y=|x-1|+|x+2|的值域为()。
A. [0,∞)B. [1,∞)C. [3,∞)D. [2,∞)10. 已知等比数列{a_n}的首项a_1=1,公比q=2,则a_4的值为()。
B. 16C. 32D. 64二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-6x+8,求f(-1)的值为______。
12. 函数y=1/x的反函数为______。
13. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形ABC的面积为______。
14. 已知复数z=2+3i,求z的模为______。
2023届福建省南平市(三模)高中毕业班第三次质量检测数学试题及答案

南平市2023届高中毕业班第三次质量检测数学试题〈考试时间:120分钟满分:150分考试形式:闭卷〉注意事项2I.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致-2.回答选择题时,逃出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其官答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第I 卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的囚个选项中,只有一项是符合题目要求的.l附合A={x l x 2-4<0},B={-2λ以2},则AnB=( )A .{-2,2}B {-1,0}c.[-1,0,1]。
{O,I}2.己知== l+i.则i(二I )=()A.-IB.Ic.-l+iD.l+i3. 已知l 正方形ABCD 的边长为I.点Mi削AB+BC=2A页,则|而|=(A .- B.IFG-2C D ..fi.4.2023年3月II 日,“探索一号”科考船搭载11“奋斗者”9载入潜水然因满完成网际首次环大洋洲载人深潜科考任务,顺利jgfnl 三亚.本次航行有两个突出的成就,一是到达了东南印度洋的帮阿受蒂那深渊,二是到达了瓦浆比.热恩!Ur 深渊,并且在这两个海底深渊都:i£行了勘探和采集.如阁l J;h “奋斗者”号楼想阁,其球舱可以抽象为自|饿和1囚校的组合体,其书h截丽虫al到2所示,则该模型对t舱体和、为〈8con如因l1Jl240ir A.-B .102ir -3c.旦旦3D.旦旦3i已知函数f(x)=2叫{J)X + 王l (C J > 0)的倒象的相邻两条对称轴间的距离为乙型。
()\.6 )A.f (x )的Jlill!IJ;I,f8./(x)n:[号音]上叫增c.!(机附于点(号。
高中数学选修三综合测试题考点大全笔记(带答案)

高中数学选修三综合测试题考点大全笔记单选题1、某校团委决定举办“鉴史知来”读书活动,经过选拔,共10名同学的作品被选为优秀作品,其中高一年级5名同学,高二年级5名同学,现从这10个优秀作品中随机抽7个,则高二年级5名同学的作品全被抽出的概率为( ) A .112B .13C .12D .34 答案:A分析:用X 表示抽到高二年级同学的作品数,P (X =5)=C 55⋅C 52C 107,即可得到答案.从10个作品中抽7个,用X 表示抽到高二年级同学的作品数, 则P (X =5)=C 55⋅C 52C 107=112.故选:A .2、设0<a <12,0<b <12,随机变量ξ的分布则当a 在(0,2)内增大时,( )A .E(ξ)增大,D(ξ)增大B .E(ξ)增大,D(ξ)减小C .E(ξ)减小,D(ξ)增大D .E(ξ)减小,D(ξ)减小 答案:D分析:求得a,b 之间的关系,再求出E (ξ),D (ξ)讨论其单调性即可判断. 因为分布列中概率之和为1,可得a +b =12,∴E (ξ)=−12+b =−12+(12−a)=−a ,∴当a 增大时,E (ξ)减小, 又由D (ξ)=(−1+a )2×12+(0+a )2×a +(1+a )2×b =−(a +12)2+54, 可知当a 在(0,12)内增大时,D (ξ)减小. 故选:D.3、某同学用收集到的6组数据对(x i ,y i )(i =1,2,3,4,5,6)制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线l 1的方程:y ̂=b 1̂x +a 1̂,相关系数为r 1,相关指数为R 12:经过残差分析确定点E 为“离群点”(对应残差过大的点),把它去掉后,再用剩下的5组数据计算得到回归直线l 2的方程:y ̂=b 2̂x +a 2̂,相关系数为r 2,相关指数为R 22.则以下结论中,正确的是( )①r 1>0,r 2>0;②b 1̂>0,b 2̂>0;③b 1̂>b 2̂;④R 12>R 22A .①②B .①②③C .②④D .②③④ 答案:B分析:根据散点图逐项进行判断即可.①:由散点图可知,x,y 之间是正相关关系,所以r 1>0,r 2>0,故①正确;②③:由散点图可知,回归直线的斜率是正数,且l 1的斜率大于l 2的斜率,所以b 1̂>0,b 2̂>0,b 1̂>b 2̂,故②③正确;④:由散点图可知,去掉“离群点”E 后,相关性更强,拟合的效果更好,所以R 12<R 22,故④错误;故选:B.4、某一电子集成块有三个元件a ,b ,c 并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为45,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为( ). A .1231B .48125C .1625D .16125答案:A分析:记事件A 为该集成块能够正常工作,事件B 为仅有一个元件出现故障,进而结合对立事件的概率公式得P (A )=124125,再根据条件概率公式求解即可.解:记事件A 为该集成块能够正常工作,事件B 为仅有一个元件出现故障, 则A 为该集成块不能正常工作,所以P (A )=1−P(A)=1−(15)3=124125,P (B )=C 31(45)215=48125, 所以P (B |A )=P (AB )P (A )=48124=1231故选:A5、为考察一种新药预防疾病的效果,某科研小组进行动物实验,收集整理数据后将所得结果填入相应的2×2列联表中,由列联表中的数据计算得K 2≈9.616.参照附表,下列结论正确的是( ) 附表:” B .在犯错误的概率不超过0.1%的前提下,认为“药物无效” C .有99%以上的把握认为“药物有效” D .有99%以上的把握认为“药物无效” 答案:C分析:根据K 2与参考值比较,结合独立性检验的定义,即可判断;解:因为K 2≈9.616,即7.879<K 2<10.828,所以有99%以上的把握认为“药物有效”. 故选:C .6、播种用的一等小麦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子.用一、二、三、四等种子长出的穗含50颗以上麦粒的概率分别为0.5,0.15,0.1,0.05,则这批种子所结的穗含50颗以上麦粒的概率为( )A .0.8B .0.832 5C .0.532 5D .0.482 5 答案:D分析:设从这批种子中任选一颗是一、二、三、四等种子的事件分别是A 1,A 2,A 3,A 4,利用全概率公式P (B )=∑P (A i )P (B |A i )4i=1即可求出.设从这批种子中任选一颗是一、二、三、四等种子的事件分别是A 1,A 2,A 3,A 4,则它们构成样本空间的一个划分.设B =“从这批种子中任选一颗,所结的穗含50颗以上麦粒”,则: P (B )=∑P (A i )P (B |A i )4i=1=95.5%×0.5+2%×0.15+1.5%×0.1+1%×0.05=0.4825. 故选:D.7、有8位学生春游,其中小学生2名、初中生3名、高中生3名.现将他们排成一列,要求2名小学生相邻、3名初中生相邻,3名高中生中任意两名都不相邻,则不同的排法种数有( ) A .288种B .144种C .72种D .36种 答案:B分析:利用捆绑法和插空法可求得结果.第一步,先将2名小学生看成一个人,3名初中生看成一个人,然后排成一排有A 22种不同排法;第二步,将3名高中生插在这两个整体形成的3个空档中,有A 33种不同排法;第三步,排2名小学生有A 22种不同排法,排3名初中生有A 33种不同排法.根据分步计数原理,共有A 22A 33A 22A 33=144种不同排法.故选:B小提示:方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.8、有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立B .甲与丁相互独立 C .乙与丙相互独立D .丙与丁相互独立 答案:B分析:根据独立事件概率关系逐一判断P(甲)=16,P(乙)=16,P(丙)=536,P(丁)=636=16, ,P(甲丙)=0≠P(甲)P(丙),P(甲丁)=136=P(甲)P(丁), P(乙丙)=136≠P(乙)P(丙),P(丙丁)=0≠P(丁)P(丙), 故选:B小提示:判断事件A,B 是否独立,先计算对应概率,再判断P(A)P(B)=P(AB)是否成立 多选题9、一袋中有大小相同的4个红球和2个白球,下列结论正确的是( ) A .从中任取3个球,恰有1个白球的概率为35B .从中有放回地取球6次,每次任取1个球,恰好有2个白球的概率为40243C .从中不放回地取球2次,每次任取1个球,则在第一次取到的是红球条件下,第二次再次取到红球的概率为25D .从中有放回地取球3次,每次任取1个球,则至少有一次取到红球的概率为2627 答案:AD分析:利用古典概型的概率公式判断A 选项,利用二项分布判断B 、D 选项,利用条件概率判断C 选项. 解:一袋中有大小相同的4个红球和2个白球, 对于A :恰有1个白球的概率为P =C 42⋅C 21C 63=6×220=35,故A 正确.对于B :6次试验中取到白球的次数X 服从二项分布,即X~B(6,13),所以P(X =2)=C 62⋅(13)2⋅(1−13)4=80243,故B 错误.对于C :在第一次取到红球后,第二次再次取到红球的概率为35,故C 错误.对于D :3次试验中取到红球的次数Y 服从二项分布,即Y~B(3,23),所以P(Y ≥1)=1−P(Y =0)=1−(1−23)3=2627,故D 正确. 故选:AD .10、老杨每天17:00下班回家,通常步行5分钟后乘坐公交车再步行到家,公交车有A,B 两条线路可以选择.乘坐线路A所需时间(单位:分钟)服从正态分布N(44,4),下车后步行到家要5分钟;乘坐线路B所需时间(单位:分钟)服从正态分布N(33,16),下车后步行到家要12分钟.下列说法从统计角度认为合理的是()已知X~N(μ,σ2)时,有P(|X−μ|≤σ)≈0.6827,P(|X−μ|≤2σ)≈0.9545,P(|X−μ|≤3σ)≈0.9973.A.若乘坐线路B,18:00前一定能到家B.乘坐线路A和乘坐线路B在17:58前到家的可能性一样C.乘坐线路B比乘坐线路A在17:54前到家的可能性更大D.若乘坐线路A,则在17:48前到家的可能性超过1%答案:BC分析:根据题意乘坐线路A一共步行10分钟,乘坐线路B一共步行17分钟,结合题意及正态分布的对称性分析运算.=0.99865<1若乘坐线路B,18:02前能到家的可能性为P≈1−1−0.99732∴乘坐线路B,18:00前不可能一定能到家,A错误;=0.97725乘坐线路A在17:58前到家的可能性P≈1−1−0.95452乘坐线路B在17:58前到家的可能性P≈1−1−0.9545=0.977252∴乘坐线路A和乘坐线路B在17:58前到家的可能性一样,B正确;乘坐线路A在17:54前到家的概率P=0.5=0.84135>0.5乘坐线路B在17:54前到家的可能性P≈1−1−0.68272∴乘坐线路B比乘坐线路A在17:54前到家的可能性更大,C正确;=0.00135<0.01,D错误;乘坐线路A,则在17:48前到家的可能性P≈1−0.99732故选:BC.11、下列说法正确的的有()A.已知一组数据x1,x2,x3,⋯,x10的方差为3,则x1+2,x2+2,x3+2,⋯,x10+2的方差也为3B.对具有线性相关关系的变量x,y,其线性回归方程为ŷ=0.3x−m,若样本点的中心为(m,2.8),则实数m 的值是4C .已知随机变量X 服从正态分布N (μ,σ2),若P(X >−1)+P (X ≥5)=1,则 μ=2D .已知随机变量X 服从二项分布B (n,13),若E (3X +1)=6,则n =6答案:AC分析:根据方差的定义可判断A ;根据样本点在回归直线上求得m 的值可判断B ;根据P(X >−1)+P (X ≥5)=1可得P (X ≥5)=P (X ≤−1),由对称性求出对称轴可得μ的值可判断C ;根据二项分布方差的公式以及方差的性质可判断D ,进而可得正确选项. 对于A :设x 1,x 2,x 3,⋯,x 10的平均数为x ,方差为D (x ), 则x =x 1+x 2+⋯+x 1010,D (x )=110[(x 1−x )2+(x 2−x )2+⋯+(x 10−x )2]=3,所以x 1+2,x 2+2,x 3+2,⋯,x 10+2的平均数为x +2,所以方差为110[(x 1+2−x −2)2+(x 2+2−x −2)2+⋯+(x 10+2−x −2)2] =110[(x 1−x )2+(x 2−x )2+⋯+(x 10−x )2]=D (x )=3,故选项A 正确; 对于B :因为线性回归直线过样本点中心,所以2.8=0.3m −m ,可得m =−4, 故选项B 错误;对于C :因为随机变量X 服从正态分布N (μ,σ2),所以对称轴为X =μ,又P (X >−1)+P (X ≥5)=1, 而P (X >−1)+P (X ≤−1)=1,所以P (X ≥5)=P (X ≤−1), 则μ=5+(−1)2=2,故选项C 正确;对于D :因为X 服从二项分布B (n,13),所以E (X )=13n ,所以 E(3X +1)=3E(X)+1=3×n3+1=6,则n =5,故选项D 错误.故选:AC. 填空题12、有人发现,多看手机容易使人近视,下表是调查机构对此现象的调查数据: 单位:人答案:有分析:计算卡方,与10.828比较大小,得出结论. 由题中数据可得,K 2= 168×(20×42−38×68)258×110×88×80≈11.377>10.828,所以有99.9%的把握认为近视与多看手机有关系.所以答案是:有13、一个盒子里装有7个大小、形状完成相同的小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为1,2,3,从盒子中任取4个小球,其中含有编号为3的不同取法有________种. 答案:30解析:从反面考虑,总数为C 74,不含有编号为3的总数为C 54,即得解. 从反面考虑,总数为C 74,不含有编号为3的总数为C 54, 所以含有编号为3的总数为C 74−C 54=30.所以答案是:30. 小提示:方法点睛:1 、排列组合问题的解题步骤:仔细审题→编程→列式→计算.2 、编程的一般方法一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.3 、解排列组合问题,要排组分清(有序排列,无序组合),加乘有序(分类加法,分步乘法). 14、已知随机变量X 的概率分布为P (X =n )=a n (n+1)(n =1,2,3,⋅⋅⋅,10),则实数a =______.答案:1110分析:根据给定条件利用随机变量分布列的性质列式计算作答. 依题意,P (X =n )=a(1n −1n+1),由分布列的性质得∑P(X =n)10n=1=a[(1−12)+(12−13)+⋯+(110−111)]=10a 11=1,解得a =1110,所以实数a=1110.所以答案是:1110解答题15、在核酸检测中, “k合1”混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为111.设X是检测的总次数,求X的分布列与数学期望E(X).(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)答案:(1)①20次;②分布列见解析;期望为32011;(2)E(Y)>E(X).分析:(1)①由题设条件还原情境,即可得解;②求出X的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出两名感染者在一组的概率,进而求出E(Y),即可得解.(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X可以取20,30,P(X=20)=111,P(X=30)=1−111=1011,则X的分布列:所以E(X)=20×11+30×11=11;(2)由题意,Y 可以取25,30, 两名感染者在同一组的概率为P 1=20C 22C 983C 1005=499,不在同一组的概率为P 2=9599,则E(Y)=25×499+30×9599=295099>E(X).。
2024学年高中数学选择性必修第二册(人教B版2019)全册综合检测(Word练习)(全解全析)

全册综合检测(时间:120分钟满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量X 的分布列如下表,则P (|X -1|=1)=()X 012P141214A.18B.14C.38D.12解析:选D依题意,得P (|X -1|=1)=P (X =0)+P (X =2)=14+14=12.2.4名同学分别报名参加学校的手工、绘画、机器人设计三个校本课程,每人限报其中一个课程,不同报名方案的种数是()A .81B .64C .24D .16解析:选A ∵每名同学都有3种报名方案,∴四名同学共有3×3×3×3=81(种)报名方案.3.为调查某企业环境污染整治情况,得到了7组成对数据如下表所示:由上表中数据求得Y 关于x 的回归直线方程为Y ^=-0.475x +a ,据此计算样本点(2,5.2)处的残差(残差=实际值-预测值)为()A .-0.25B .0.25C .0.15D .-0.15解析:选D由题表中数据可得x =17(1+2+3+4+5+6+7)=4,y =17(6.1+5.2+4.5+4.7+3.8+3.4+3.1)=4.4.将样本中心(4,4.4)代入Y ^=-0.475x +a ^得a ^=6.3,Y ^=-0.475x +6.3.因此当x =2时,Y ^=-0.475×2+6.3=5.35,所以样本点(2,5.2)处的残差为5.2-5.35=-0.15.4.有甲、乙、丙、丁、戊五位同学排队,若丙在甲、乙的中间(可不相邻),则不同的排法有()A .20种B .40种C .60种D .80种解析:选B满足条件的排法可分步完成,第一步,从五个位置中任取三个位置,并将甲、乙、丙排入其中,有C35A22=20种方法,第二步,将丁、戊排入余下的两个位置,有A22=2种方法,由分步乘法计数原理可得共有40种排法.5.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是35和13,在这个问题已被正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为()A.4 15B.11 15C.2 11D.3 11解析:选D设事件A表示“甲能正确解答该问题”,事件B表示“乙能正确解答该问题”,事件C表示“这个问题被正确解答”,则P(A)=35,P(B)=13,故P(C)=P(AB)+P(A B)+P(AB)=35××13+35×13=1115.所以在这个问题已被正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为P=P(AB)P(C)=35×131115=311.6.流感病毒分为甲、乙、丙三型,甲型流感病毒最容易发生变异,流感大流行就是甲型流感病毒出现新亚型或旧亚型重现引起的.根据以往的临床记录,某种诊断甲型流感病毒的试验具有如下的效果:若以A表示事件“试验反应为阳性”,以C表示事件“被诊断者患有甲型流感”,则有P(A|C)=0.9,P(A|C)=0.9.现对自然人群进行普查,设被试验的人患有甲型流感的概率为0.005,即P(C)=0.005,则P(C|A)=()A.9 208B.19 218C.1 22D.7 108解析:选A因为P(A|C)=0.9,所以P(A|C)=1-P(A|C)=0.1.因为P(C)=0.005,所以P(C)=0.995.所以P(C|A)=P(AC)P(A)=P(A|C)·P(C)P(A|C)·P(C)+P(A|C)·P(C)=0.9×0.0050.9×0.005+0.1×0.995=9208.7.已知ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则P(ξ=1)=()A.1 11B.411C.611D.711解析:选C若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有C18C23对相交棱,因此P(ξ=0)=C18C23C212=8×366=411;若两条棱平行,则它们之间的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C212=111,于是P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611.8.若(x2+x+2y)5的展开式中x4y2的系数为M展开式中各项系数和为N,则M,N大小关系为()A.M>N B.M<NC.M=N D.无法确定解析:选B(x2+x+2y)5=[(x2+x)+2y]5,T k+1=C k5·(x2+x)5-k·(2y)k=2k·C k5(x2+x)5-k·y k.令k=2,则(x2+x)3的展开式的通项公式为T′k′+1=C k′3·(x2)3-k′·x k′=C k′3·x6-k′,令6-k′=4,得k′=2,所以M=22C25·C23=120.又N=27=128,所以M<N.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.一个不透明箱子中有大小形状均相同的2个红球,2个白球,从中不放回地任取2个球,每次取1个.记事件A i为“第i次取到的球是红球(i=1,2)”,事件B为“两次取到的球颜色相同”,事件C为“两次取到的球颜色不同”,则()A.A1与A2互斥B.P(A2)=12C.P(A1|C)=12D.A1与B相互独立解析:选BCD A1与A2可以同时发生,即两次取到的都是红球,则A1与A2不互斥,故A错误.箱子中有大小形状均相同的2个红球,2个白球,则P(A2)=2×1+2×24×3=12,故B正确.P(C)=2×2+2×24×3=23,P(A1C)=2×24×3=13,则P(A1|C)=P(A1C)P(C)=1323=12,故C正确.P(A1)=12,P(B)=1-P(C)=13,P(A1B)=2×14×3=16,则有P(A1)P(B)=P(A1B),所以A1与B相互独立,故D正确.10.已知随机变量X 的概率密度函数为φ(x )=12πa e-(x -b )22a 2(a >0,b >0),且φ(x )的极大值点为x =2a ,记f (k )=P (X <k ),g (k )=P (X >k +a ),则()A .X ~N (b ,a )B .X ~N (2a ,a 2)C .f (a )=g (2a )D .f (2a )+g (2a )=f (a )+g (a )解析:选BCD根据已知可得,μ=b ,σ=a .因为φ(x )的极大值点为x =2a ,所以有b =2a ,所以X ~N (2a ,a 2),故A 错误,B 正确.由A 分析可知,μ=2a .又f (a )=P (X <a ),g (2a )=P (X >2a +a )=P (X >3a ),根据正态分布的对称性,可知P (X <a )=P (X >3a ),所以f (a )=g (2a ),故C 正确.因为μ=2a ,所以f (2a )=P (X <2a )=12,g (a )=P (X >2a )=12.所以f (2a )+g (2a )=12+f (a )=f (a )+g (a ),故D 正确.11.已知(n ≥3,n ∈N +)的展开式中,第3项的二项式系数是第2项的二项式系数的3倍,则()A .n =7B .展开式中有理项有2项C .第4项为-358x54D .第3项二项式系数最大解析:选ABC 第3项的二项式系数是第2项的二项式系数的3倍,故有C 2n =3C 1n ,即n (n -1)2×1=3n ,化简整理得n 2-7n =0,解得n =7或n =0(舍),故A 正确.T r +1=C r 7(x )7-=C x 7-r 2x -r 4C x 14-3r 4.当r =2和r =6时,14-3r 4为整数,故当r =2和r =6时,展开式为有理项,故B 正确.T 4=C x 14-3×34=-358x 54,故C 正确.令f (r )=C r 7,根据二项式系数性质可知当r =3或r =4时,二项式系数C r7最大,即第4或第5项的二项式系数C r 7最大,故D 错误.12.某中学共有三栋女生宿舍楼,分别为1号楼、2号楼、3号楼,学校在本周安排了甲、乙、丙、丁、戊5名女教师去这三栋宿舍楼协助宿管阿姨值守,每栋宿舍楼至少安排一名教师,每名教师只能去其中一栋楼,则下列说法正确的是()A .共有300种不同的安排方法B.若其中1号楼需要有两名教师去,则共有60种不同的安排方法C.若甲、乙两名教师不能去同一栋宿舍楼,则共有114种不同的安排方法D.若学校新购入25个相同型号的灭火器,准备全部分配给这三栋女生宿舍楼作为应急使用,每栋宿舍楼至少6个,则共有15种不同的分配方法解析:选BC5名教师按1∶1∶3去到三栋楼有C35A33种方法;按1∶2∶2去到三栋楼有C25C23A22·A33种方法,因此不同的安排方法种数是C35A33+C25C23A22·A33=60+90=150,A错误;安排2名教师去1号楼,不同的安排方法种数是C25C23A22=60,B正确;甲、乙两名教师去同一栋宿舍楼,另3名教师去另两栋楼有C23A33种,另3名教师去三栋楼有C13A33种,则不同的安排方法种数是C23A33+C13A33=36,由选项A知,共有150种不同安排方法,所以甲、乙两名教师不能去同一栋宿舍楼,安排方法种数是150-36=114,C正确;每栋宿舍楼先放5个灭火器,再将余下10个灭火器排成一排,在9个间隙中插入2块板子,有C29=36种,D错误.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(1+x)(2-x)4的展开式中x2的系数为________.(用数字作答)解析:(1+x)(2-x)4=(2-x)4+x(2-x)4,所以展开式中x2的系数为C24·22-C14·23=-8.答案:-814.现有6个三好学生名额,计划分到三个班级,则恰有两个班分到三好学生名额的概率为________.解析:将6个三好学生名额分到三个班级,有3种类型:第一种是只有一个班分到名额,有3种情况,第二种是恰好有两个班分到名额,由隔板法知有C15C13=15种情况,第三种是三个班都分到了名额,由隔板法得有C25=10种情况,则恰有两个班分到三好学生名额的概率为15 28 .答案:15 2815.某种品牌手机的使用寿命ξ(单位:年)服从正态分布,且使用寿命不少于3年的概率为0.78,使用寿命不少于7年的概率为0.22.某人同时购买了3部该种品牌的手机,则在5年内这3部手机至少有2部手机能正常使用的概率为________.解析:由题意知P(ξ≥3)=0.78,P(ξ≥7)=0.22,所以P(ξ<3)=P(ξ>7)=0.22,所以正态分布曲线的对称轴为ξ=5,即P(ξ≤5)=12,即1部该种品牌的手机在5年内能正常使用的概率为12.所以这3部手机中至少有2部手机能正常使用的概率为C+C=12.答案:1216.一离散型随机变量X 的分布列为X 0123P0.1abc其中a ,b 为变数,c 为正常数,且当a =b ≠0时方差D (X )有最大值,则c 的值为________.解析:由题意得,a +b +c =0.9,E (X )=a +2b +3c =0.9+b +2c ,E (X 2)=a +4b +9c =0.9+3b +8c ,D (X )=E (X 2)-[E (X )]2=0.9+3b +8c -(0.9+b +2c )2=-b 2+(1.2-4c )b +0.09+4.4c -4c 2.∴当b =0.6-2c 时有最大值,此时1.2-4c +c =0.9,解得c =0.1.答案:0.1四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)(1)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7,对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数;(2)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求b a.解:(1)根据二项式定理可知,f (x )=(1+x )m +(1+x )n 的展开式的通项为T r +1=C r m ×1m -r×x r +C r n ×1n -r ×x r =(C r m +C r n )x r ,r 0,1,2,…,min {m ,n }.根据题意,得C 1m +C 1n =7,即m +n =7,①f (x )中的x 2的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n =7-m ,代入上式得x 2的系数为m 2-7m +21+354,故当m =3或m =4时,x 2的系数最小.当m =3,n =4时,x 3的系数为C 33+C 34=5;当m =4,n =3时,x 3的系数为C 34+C 33=5.故当x 2系数最小时,x 3的系数为5.(2)由题意可得a =C 48=70.(1+2x )8展开式的通项为T r +1=C r 8×18-r ×(2x )r =2r ·C r 8·x r .设第r +1项的系数最大,r 8·2r ≥C r +18·2r +1,r 8·2r ≥C r -18·2r -1,≥5,≤6.又r ∈N +,所以r =5或6,此时b =25×C 58=1792,所以ba=179270=1285.18.(12分)中国国家流感中心3月2日发布的2023年第8周流感检测周报称:本周南、北方省份流感病毒检测阳性率继续上升.某医院用甲、乙两种疗法治疗流感患者,为了解两种治疗方案的效果,现随机抽取105名患者,调查每人的恢复期,得到如下列联表.(注:恢复期大于7天为恢复期长)恢复期长恢复期短甲1045乙2030(1)是否有95%的把握认为恢复期长短与治疗方案有关;(2)现按分层随机抽样的方法,从采用乙治疗方案的样本中随机抽取10人,从这10人中再随机抽取3人,求其中恢复期长的人数X的分布列和均值;(3)假设甲方案治疗的恢复期为Y,统计发现Y近似服从正态分布N(5,1),若某患者采用甲方案治疗,则7天后是否有大于95%的把握恢复健康?请说明理由.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(χ2≥x0)0.10.050.0100.001 x0 2.706 3.841 6.63510.828若ξ~N(μ,σ2),则P(μ-σ<ξ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544(μ-3σ<ξ<μ+3σ)=0.9974.解:(1)由题意可得如下列联表:恢复期长恢复期短总计甲104555乙203050总计3075105因为χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=105×(10×30-45×20)255×50×30×75=33655≈6.11>3.841,所以有95%的把握认为恢复期长短与治疗方案有关.(2)由分层随机抽样得,抽取恢复期长的为4人,恢复期短的为6人.根据题意X的可能取值为0,1,2,3,则P(X=0)=C36C310=20120=16,P(X=1)=C14C26C310=60120=12,P(X=2)=C24C16C310=36120=310,P(X=3)=C34C310=4120=130,所以X的分布列为X0123P 1612310130E(X)=0×16+1×12+2×310+3×130=1.2.(3)因为Y~N(5,1),所以μ=5,σ=1.又因为P(5-2<Y<5+2)=0.9544,所以7天后有大于95%的把握恢复健康.19.(12分)为了解汉服体验店广告支出和销售额之间的关系,在洛阳洛邑古城附近抽取7家汉服体验店,得到了广告支出与销售额数据如下:体验店A B C D E F G广告支出/万元3468111516销售额/万元6101517233845对进入G体验店的400名游客进行统计得知,其中女性游客有280人,女性游客中体验汉服的有180人,男性游客中没有体验汉服的有80人.(1)请将下列2×2列联表补充完整,依据小概率值α=0.001的独立性检验,能否认为体验汉服与性别有关联?性别是否体验汉服总计体验汉服没有体验汉服女180280男80总计400(2)设广告支出为变量x(单位:万元),销售额为变量y(单位:万元),根据统计数据计算相关系数r,并据此说明可用线性回归模型拟合y与x的关系(若|r|>0.75,则线性相关程度很强,可用线性回归模型拟合);(3)建立y 关于x 的回归方程,并预测广告支出为18万元时的销售额(精确到0.1).参考数据及公式:错误!2i =727,错误!2i =4648,错误!i y i =1827,14≈3.74,10≈3.16,7≈2.64,解:(1)根据题意,列联表完成如下.性别是否体验汉服总计体验汉服没有体验汉服女180100280男4080120总计220180400根据列联表数据,经计算得χ2=400×(180×80-100×40)2280×120×220×180≈32.516>10.828=x 0.001.根据小概率值α=0.001的独立性检验,认为体验汉服与性别之间有关联,此推断犯错误的概率不超过0.001.(2)由数据可知,x =17(3+4+6+8+11+15+16)=9,y =17(6+10+15+17+23+38+45)=22,r =错误!=1827-7×9×22727-7×924648-7×222=441160·1260=44112014≈0.98.因为0.98>0.75,所以线性相关程度很强,可用线性回归模型拟合y 与x 的关系.(3)由数据及公式可得b ^=错误!=441160≈2.8,a ^=y -b ^x=22-2.8×9=-3.2,故y 关于x 的回归直线方程为y ^=2.8x -3.2.当x =18万元时,销售额预计为y ^=2.8×18-3.2=47.2万元.20.(12分)随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题.为了了解公众对“延迟退休”的态度,某校课外研究性学习小组对某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:年龄[20,25)[25,30)[30,35)[35,40)[40,45)人数45853年龄[45,50)[50,55)[55,60)[60,65)[65,70]人数67354年龄在[25,30),[55,60)的被调查者中赞成人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.(1)求年龄在[25,30)的被调查者中选取的2人都是赞成的概率;(2)求选中的4人中,至少有3人赞成的概率;(3)若选中的4人中,不赞成的人数为X,求随机变量X的分布列和数学期望.解:(1)设“年龄在[25,30)的被调查者中选取的2人都赞成”为事件A,所以P(A)=C23 C25=3 10 .(2)设“选中的4人中,至少有3人赞成”为事件B,所以P(B)=C23C12C11C25C23+C13C12C22C25C23+C23C22C25C23=12.(3)X的可能取值为0,1,2,3所以P(X=0)=C23C22C25C23=110,P(X=1)=C13C12C22+C23C12C11C25C23=25,P(X=2)=C22C22+C13C12C12C11C25C23=1330,P(X=3)=C22C12C11C25C23=115.所以X的分布列为X0123P110251330115E(X)=0×110+1×25+2×1330+3×115=2215.21.(12分)已知外形完全一样的某品牌电子笔6支装一盒,每盒中的电子笔次品最多一支,每盒电子笔有次品的概率是1 10 .(1)现有一盒电子笔,抽出两支来检测.①求抽出的两支均是正品的概率;②已知抽出的两支是正品,求剩余产品有次品的概率.(2)已知甲、乙两盒电子笔均有次品,由于某种原因将两盒笔完全随机的混合在了一起,现随机选3支电子笔进行检测,记ξ为选出的3支电子笔中次品的数目,求ξ的分布列和期望.解:(1)①记事件A :该盒有次品;事件B :抽出的两支均是正品,则P (A )=110,P (B |A )=C 25C 26=1015=23,P (B |A )=1,∴P (B )=P (A )P (B |A )+P (A )·P (B |A )=110×23+910×1=2930.②P (A |B )=P (A )P (B |A )P (B )=110×232930=229.(2)由题意知,两盒笔中共有10支正品,2支次品,∴ξ所有可能的取值为0,1,2,P (ξ=0)=C 310C 312=120220=611,P (ξ=1)=C 210C 12C 312=90220=922,P (ξ=2)=C 110C 22C 312=10220=122.∴ξ的分布列为E (ξ)=0×611+1×922+2×122=1122=12.22.(12分)一企业生产某种产品,通过加大技术创新投入降低了每件产品成本,为了调查年技术创新投入x (单位:千万元)对每件产品成本y (单位:元)的影响,对近10年的年技术创新投入x i 和每件产品成本y i (i =1,2,3,…,10)的数据进行分析,得到如图所示的散点图,并计算得x =6.8,y =70,错误!1x i3,错误!1x 2i =1.6,错误!y i x i=350.(1)根据散点图可知,可用函数模型y =b x +a 拟合y 与x 的关系,试建立y 关于x 的回归方程;(2)已知该产品的年销售额m (单位:千万元)与每件产品成本y 的关系为m =-y 210+2y +100.该企业的年投入成本除了年技术创新投入,还要投入其他成本10千万元,根据(1)的结果回答:当年技术创新投入为何值时,年利润的预报值最大?(注:年利润=年销售额-年投入成本)参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线方程y ^=b ^x +a ^的斜率和截距的最小二乘估计公式分别为b ^=错误!,a ^=y -b ^x .解:(1)令u =1x,则y 关于u 的回归直线方程为y ^=b ^u +a ^,则y =70,u =110错误!1x i =0.3,错误!2i =错误!1x 2i=1.6,错误!i y i =错误!y ix i=350.由题意可得b ^=错误!=350-2101.6-0.9=200,a ^=y -b ^u =70-200×0.3=10.所以y ^=200u +10.所以y 关于x 的回归方程为y ^=200x+10.(2)由(1)得y =200x +10可得x =200y -10,y >10.所以年利润M =m -x -10=-y 210+2y +100-200y -10-10=-(y -10)210+200y -10+100=-(y -10)210+100y -10+100y -10+100≤-33(y -10)210·100y -10·100y -10+100=-30+100=70,当且仅当(y -10)210=100y -10,即y =20时,年利润M 取得最大值,此时x =20020-10=20.所以当年技术创新投入为20千万元时,年利润的预报值最大。
2024届陕西省城固县第一中学高三第一次综合检测试题数学试题
2024届陕西省城固县第一中学高三第一次综合检测试题数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 2.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( ) A .方差B .中位数C .众数D .平均数3.已知集合1,2,3,4,6{}5,A =的所有三个元素的子集记为123,,,*,n B B B B n N ⋯∈.记i b 为集合i B 中的最大元素,则123n b b b b +++⋯+=( ) A .45B .105C .150D .2104.如图,ABC ∆内接于圆O ,AB 是圆O 的直径,,//,,,DC BE DC BE DC CB DC CA =⊥⊥22AB EB ==,则三棱锥E ABC -体积的最大值为( )A .14B .13C .12D .235.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=)A .1624B .1024C .1198D .15606.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )A .22B .23C .4D .267.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A .3B .2(51)-C .45D .48.正方体1111ABCD A B C D -,()1,2,,12i P i =是棱的中点,在任意两个中点的连线中,与平面11A C B 平行的直线有几条( )A .36B .21C .12D .69.已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的部分图象如图所示,则38f π⎛⎫=⎪⎝⎭( )A .264- B .264+ C .624- D .622+ 10.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .11.若()*13n x n N x x ⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项,且n 的最小值为a ,则22aaa x dx --=⎰( )A .36πB .812πC .252πD .25π12.集合{2,1,1},{4,6,8},{|,,}A B M x x a b b B x B =--===+∈∈,则集合M 的真子集的个数是 A .1个B .3个C .4个D .7个二、填空题:本题共4小题,每小题5分,共20分。
2024届重庆市普通高中高三第三次教学质量检测试题考试数学试题
2024届重庆市普通高中高三第三次教学质量检测试题考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R 上函数()f x 满足()()f x f x -=,且对任意的不相等的实数[)12,0,x x ∈+∞有()()12120f x f x x x -<-成立,若关于x 的不等式()()()2ln 3232ln 3f mx x f f mx x --≥--++在[]1,3x ∈上恒成立,则实数m 的取值范围是( ) A .1ln6,126e ⎡⎤+⎢⎥⎣⎦B .1ln3,126e ⎡⎤+⎢⎥⎣⎦C .1ln3,23e ⎡⎤+⎢⎥⎣⎦D .1ln6,23e ⎡⎤+⎢⎥⎣⎦2.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45- 3.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .4.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( )A .i -B .iC .1D .1-6.己知函数()()1,0,ln ,0,kx x f x x x ->⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围是( )A .(),0-∞B .()0,1C .()0,∞+D .10,2⎛⎫ ⎪⎝⎭7.用一个平面去截正方体,则截面不可能是( ) A .正三角形B .正方形C .正五边形D .正六边形8.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<< B .{|e}A B x x =< C .{|0e}A B x x =<<D .{|1e}AB x x =-<<9.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-10.已知i 为虚数单位,实数,x y 满足(2)x i i y i +=-,则||x yi -= ( ) A .1B .2C .3D .511.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值 12.51(1)x x-+展开项中的常数项为 A .1B .11C .-19D .51二、填空题:本题共4小题,每小题5分,共20分。
(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测题(答案解析)(3)
一、选择题1.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率( ) A .112125B .80125C .113125D .1241252.某学习小组有三名男生、三名女生共计六名同学,选出四人进行学业水平测试,这四人中所含女生人数记为η,则η的数学期望为( ) A .1B .32C .2D .33.孔子曰“三人行,必有我师焉.”从数学角度来看,这句话有深刻的哲理,古语说三百六十行,行行出状元,假设有甲、乙、丙三人中每一人,在每一行业中胜过孔圣人的概率为1%,那么甲、乙、丙三人中至少一人在至少一行业中胜过孔圣人的概率为( )(参考数据:3600.990.03≈,3600.010≈,30.970.912673≈) A .0.0027%B .99.9973%C .0D .91.2673%4.设随机变量X 服从正态分布()0,9N ,则()36P X <<=( )(附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+≈,(2)0.9544P X μσμσ+<<+=)A .0.0456B .0.1359C .0.2718D .0.31745.已知某射击运动员射击1次命中目标的概率为0.9,记他在10次独立射击中命中目标的次数为随机变量ξ,则()D ξ=( ) A .0.09B .9C .1D .0.96.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1037.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( ) A .0.72B .0.8C .89D .0.98.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .159.已知随机变量ξ服从正态分布2(4,)N σ,(5)0.89P ξ≤=,则(3)P ξ≤=( ) A .0.89B .0.22C .0.11D .0.7810.已知随机变量X 服从正态分布2(2,)N σ,(4)0.84P X ≤=,则(02)P X ≤≤=( ) A .0.64B .0.16C .0.32D .0.3411.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2312.设随机变量X 的分布列为()()1,2,32iP X i i a===,则()2P X ≥= ( ) A .16B .56 C .13D .23二、填空题13.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,若1()3E X =,则(31)D X +的值是______14.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 15.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是_______.16.某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X ,则X 的数学期望()E X =______.17.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X=0)=,则随机变量X的数学期望E (X )=___________. 18.某篮球运动员投中篮球的概率为23,则该运动员“投篮3次至多投中1次”的 概率是__________.(结果用分数表示)19.已知随机变量ξ服从二项分布,1~(6,)2B ξ,则(23)E ξ+=________,(23)D ξ+=________.20.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若命题:p “2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--<”;③设随机变量~(,)B n p ξ,且()2,()1E D ξξ==,则(1)p ξ==14;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).三、解答题21.因新冠疫情的影响,2020年春季开学延迟,老师采用线上教学.某校高中二年级年级组规定:学生每天线上学习时间3小时及以上为合格,3小时以下为不合格.现从1班,2班,3班随机抽取一些学生进行网上学习时间调查,3个班的人数分别为40人,32人,32人,再采用分层抽样的方法从这104人中抽取13人. (1)应从这3个班中分别抽取多少人?(2)若抽出的13人中有10人学习时间合格,3人学习时间不合格,现从这13人中随机抽取3人.(i )设X 表示事件“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,求事件X 发生的概率.(ii )设Y 表示抽取的3人中学习时间合格的人数,求随机变量Y 的分布列和数学期望. 22.根据某电子商务平台的调查统计显示,参与调查的1 000位上网购物者的年龄情况如图所示.(1)已知[30,40),[40,50),[50,60)三个年龄段的上网购物者人数成等差数列,求,a b 的值;(2)该电子商务平台将年龄在[30,50)内的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1 000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得代金券总和X (单位:元)的分布列与数学期望.23.某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的. (1)若上午某一时段A 、B 、C 三位教师需要使用电脑的概率分别是14、23、25,求这一时段A 、B 、C 三位教师中恰有2位教师使用电脑的概率; (2)若下午某一时段每位教师需要使用电脑的概率都是13,求这一时段办公室电脑数无法满足需求的概率.24.某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若A 项技术指标达标的概率为3,4B 项技术指标达标的概率为89,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设ξ表示其中合格品的个数,求ξ的分布列. 25.从2016年到2019年的某城市方便面销量情况如图所示:(1)根据上表,求y 关于t 的线性回归方程y bt a =+.用所求回归方程预测2020年(5t =)方便面在该城市的年销量;(2)某媒体记者随机对身边的10位朋友做了一次调查,其中3位受访者认为方便面是健康食品.现从这10人中抽取3人进行深度访谈,记ξ表示随机抽取的3人认为方便面是健康食品的人数,求随机变量ξ的分布列及数学期望()E ξ.参考公式:回归方程:y bt a =+,其中121()()()niii ni i t t y y b t t ==--=-∑∑,a y bt =-.参考数据:41()()135.5iii t t y y =--=-∑.26.在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数X 的分布列; (2)取出的3个球中红球个数多于白球个数的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用n 次独立重复试验中事件A 恰好发生k 次概率计算公式能求出该参赛者答完三道题后至少答对两道题的概率. 【详解】解:某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率: 3223441112()()()555125P C =+=.故选:A . 【点睛】本题考查概率的求法,考查n 次独立重复试验中事件A 恰好发生k 次概率计算公式等基础知识,考查运算求解能力,属于中档题.2.C解析:C 【分析】根据题意可知随机变量η的可能取值有1、2、3,计算出随机变量η在不同取值下的概率,列出分布列,进而可求得η的数学期望. 【详解】由题意可知,随机变量η的可能取值有1、2、3,()1346115C P C η===,()223346325C C P C η===,()1346135C P C η===.所以,随机变量η的分布列如下表所示:因此,随机变量η的数学期望为1232555E η=⨯+⨯+⨯=. 故选:C. 【点睛】本题考查随机变量数学期望的计算,一般要列出随机变量的分布列,考查计算能力,属于中等题.3.B解析:B 【分析】先求出一个人在所有行业中都不能胜过孔圣人的概率,再求出三个人在所有行业中都不能胜任孔圣人的概率,用1减去此概率即为所求. 【详解】一个人三百六十行全都不如孔圣人的概率为3600.990.03≈,三个人三百六十行都不如孔圣人的概率为30.030.000027=,所以至少一人在至少一行业中胜过孔圣人的概率为10.0000270.99997399.9973%-==.故选:B . 【点睛】本题考查相互独立事件的概率乘法公式,考查至多至少问题用对立事件解决的方法,属于中档题.4.B解析:B 【分析】由随机变量X 符合正态分布()0,9N ,得0μ=,3σ=,则所求(36)P X <<,即为(2)P X μσμσ+<<+,根据3σ原则,以及正态曲线的对称性即可求值.【详解】因为随机变量X 符合正态分布()0,9N ,则0μ=,3σ=, 所以(36)(2)P X P X μσμσ<<=+<<+, 由()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+=,以及正态曲线的对称性,可知()00.3413P X μσ<<+≈,(02)0.4772P X μσ<<+=,则(36)0.47720.34130.1359P X <<=-=. 故选:B.【点睛】本题考查了正态分布曲线的对称性,两个变量μ和σ的应用,3σ原则,属于中档题.5.D解析:D 【分析】在10次独立射击中命中目标的次数为随机变量ξ,则随机变量(10,0.9)B ξ,利用方差的公式,即可求解. 【详解】由题意,在10次独立射击中命中目标的次数为随机变量ξ,则随机变量(10,0.9)B ξ,所以()100.9(10.9)0.9D ξ=⨯⨯-=,故选D . 【点睛】本题主要考查了二项分布的方差的计算,其中解答根据题意得到在10次独立射击中命中目标的次数服从二项分布是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=, 则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.7.A解析:A 【分析】设一批种子的发芽率为事件A ,则()0.9P A =,出芽后的幼苗成活率为事件B ,则()|0.8P B A =,根据条件概率公式计算即可,【详解】设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.8.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.9.C解析:C 【分析】由随机变量ξ服从正态分布()24,6N ,可得这组数据对应的正态曲线的对称轴4μ=,利用正态曲线的对称性,即可得到结论. 【详解】随机变量ξ服从正态分布()24,6N ,∴这组数据对应的正态曲线的对称轴4μ=,()()35P P ξξ∴≤=≥,()50.89P ξ≤=, ()510.890.11P ξ∴≥=-=, ()30.11P ξ∴≤=,故选C.【点睛】本题主要考查正态分布的性质,属于中档题.有关正态分布应用的题考查知识点较为清晰,只要熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系,问题就能迎刃而解.10.D解析:D 【解析】∵随机变量ξ服从正态分布2(2,)N σ,2μ=,得对称轴是2x =,(4)0.84P ξ=≤, ∴(4)(0)0.16P P ξξ≥=<=,∴(02)0.50.160.34P ξ≤≤=-=,故选D .11.B解析:B 【详解】∵a ,b ,c 为等差数列,∴2b a c =+,∵1a b c ++=,1113E a c c a ξ=-⨯+⨯=-=,解得16a =,13b =,12c =,∴22215()()39DX E X EX a c ⎛⎫=-=+-= ⎪⎝⎭,故选B . 12.B解析:B 【解析】 由概率和为1,可知1231222a a a++=,解得3a =,()P X 2≥=235(2)(3)666P X P X =+==+=选B. 二、填空题13.5【分析】由离散型随机变量的分布列的性质可知结合数学期望公式和abc 成等差数列列出式子求出各个概率的值以及方差并代入即可【详解】abc 成等差数列又且联立以上三式解得:则故答案为:5【点睛】本题考查随解析:5 【分析】由离散型随机变量的分布列的性质可知, 1a b c ++=,结合数学期望公式和a ,b ,c 成等差数列列出式子,求出各个概率的值以及方差,并代入(31)D X +即可. 【详解】a ,b ,c 成等差数列,2b a c ∴=+, 又1a b c ++=,且1()3E X a c =-+=, 联立以上三式解得:111,,632a b c ===,()22211111151013633329D X ⎛⎫⎛⎫⎛⎫∴=--⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()25(31)3959D X D X +==⨯=,故答案为: 5. 【点睛】本题考查随机变量的分布列以及随机变量的方差的求法,解题时需认真审题,注意使用离散型随机变量的分布列的性质和数学期望的性质,结合等差数列合理运用.14.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计算得到答案. 【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅=⎪ ⎪⎝⎭⎝⎭.故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.15.46【分析】得分不低于300分包括得300分或得400分这两种情况是互斥的根据互斥事件和相互独立事件的概率公式得到答案【详解】解:设同学甲答对第i 个题为事件则且相互独立同学甲得分不低于300分对应于解析:46 【分析】得分不低于300分包括得300分或得400分,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到答案. 【详解】解:设“同学甲答对第i 个题”为事件(1,2,3)i A i =,则()10.8P A =,()20.6P A =,()30.5P A =,且1A ,2A ,3A ,相互独立,同学甲得分不低于300分对应于事件()()()123123123A A A A A A A A A ⋂⋂⋃⋂⋂⋃⋂⋂发生,故所求概率为()()()123123123P P A A A A A A A A A ⎡⎤=⋂⋂⋃⋂⋂⋃⋂⋂⎦⎣()()()123123123P A A A P A A A P A A A =⋂⋂+⋂⋂+⋂⋂ ()()()()()()()()()123123123P A P A P A P A P A P A P A P A P A =++0.80.60.50.80.40.50.20.60.50.46=⨯⨯+⨯⨯+⨯⨯=.故答案为0.46【点睛】本题考查相互独立事件同时发生的概率,考查应用概率知识解决实际问题的能力,是一个综合题,注意对题目中出现的“不低于”的理解16.4【解析】【分析】由题意求得随机变量的取值利用相互独立事件的概率公式求得相应的概率再由期望的计算公式即可求解数学期望【详解】由题意该同学解出题目的个数为随机变量的取值为则所以【点睛】本题主要考查了随解析:4 【解析】 【分析】由题意求得随机变量X 的取值,利用相互独立事件的概率公式,求得相应的概率,再由期望的计算公式,即可求解数学期望. 【详解】由题意,该同学解出题目的个数为随机变量X 的取值为0,1,2X =, 则P(X 0)0.20.40.08==⨯=,P(X 1)0.80.40.20.60.44==⨯+⨯=, P(X 2)0.80.60.48==⨯=.所以E(X)00.0810.4420.48 1.4=⨯+⨯+⨯=. 【点睛】本题主要考查了随机变量的分布列与数学期望的计算,其中解答中正确理解题意,利用相互独立事件的概率计算公式求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.17.【解析】∵P(X =0)==(1-p)2×∴p =随机变量X 的可能值为0123因此P(X =0)=P(X =1)=×()2+2××()2=P(X =2)=×()2×2+×()2=P(X =3)=×()2=因此E 解析:【解析】 ∵P(X =0)=112=(1-p)2×13,∴p =12,随机变量X 的可能值为0,1,2,3,因此P(X =0)=112,P(X =1)=23×(12)2+2×13×(12)2=13,P(X =2)=23×(12)2×2+13×(12)2=512,P(X =3)=23×(12)2=16,因此E(X)=1×13+2×512+3×16=53. 18.【分析】投篮3次至多投中1次包括只投中一次和全部没有投中由投篮3次至多投中1次的概率是求得结果【详解】:投篮3次至多投中1次包括只投中一次和全部没有投中故投篮3次至多投中1次的概率是故答案为【点睛】解析:727. 【分析】“投篮3次至多投中1次”包括只投中一次,和全部没有投中,由“投篮3次至多投中1次”的概率是223333121()()333C C ⋅⋅+⋅ 求得结果. 【详解】:“投篮3次至多投中1次”包括只投中一次,和全部没有投中,故“投篮3次至多投中1次”的概率是2233331217()()33327C C ⋅⋅+⋅=, 故答案为727. 【点睛】本题考查n 次独立重复实验中恰好发生k 次的概率,等可能事件的概率.19.6【分析】根据二项分布的期望和方差公式求出和再根据离散型随机变量的期望和方差的性质可求得结果【详解】∵随机变量服从二项分布所以则故答案为:9;6【点睛】关键点点睛:利用离散型随机变量的期望和方差的性解析:6 【分析】根据二项分布的期望和方差公式求出()E ξ和()D ξ,再根据离散型随机变量的期望和方差的性质可求得结果. 【详解】∵ 随机变量ξ服从二项分布1(6,)2B , 所以1()632E ξ=⨯=,1132)622(D ξ⨯⨯==, 则(23)2()32339E E ξξ+=+=⨯+=,23(23)2()462D D ξξ+=⋅=⨯=.. 故答案为:9;6. 【点睛】关键点点睛:利用离散型随机变量的期望和方差的性质求解是解题关键.20.①③【分析】求出判断①利用存在量词命题否定形式判断②二项分布的期望与方差判断③;三角函数图象变换判断④【详解】解:①函数的一个对称中心为故①正确;②若命题:则命题的否定为:;所以②不正确;③设随机变解析:①③ 【分析】 求出5()012f π-=判断①,利用存在量词命题否定形式判断②,二项分布的期望与方差判断③;三角函数图象变换判断④. 【详解】 解:①5()4cos()0122f ππ-=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;②若命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”;所以②不正确;③设随机变量~(,)B n p ξ,且()2E ξ=,()1D ξ=,可得2np =,(1)1np p -=,可得12p =,4n =则43111(1)12412p C ξ⎛⎫==-⋅= ⎪⎝⎭;所以③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()4y x π=+,不是sin(2)4y x π=+的图象,所以④不正确;故答案为:①③. 【点睛】本题考查命题的真假判断与应用,考查sin()y A x ωϕ=+型函数的图象和性质,命题的否定,期望与方差的求法,属于中档题.三、解答题21.(1)3个班中分别抽取5人,4人,4人;(2)(i )165286,(ii )分布列见解析,数学期望为330143【分析】(1)利用分层抽样的定义按比例进行抽取即可;(2)(i )“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,包括“1人学习时间合格,2人学习时间不合格”“2人学习时间合格,1人学习时间不合格”,且这两个事件间是互斥的,从而可求出所求概率(ii )Y 的可能取值为0,1,2,3,分别求出相应的概率,从而可得随机变量Y 的分布列和数学期望 【详解】解:(1)由题意可知,3个班抽取的人数分别为:403232135,134,134104104104⨯=⨯=⨯=, 所以应从这3个班中分别抽取5人,4人,4人;(2)(i )“抽取的3人中既有学习时间合格的学生,又有学习时间不合格的学生”,包括“1人学习时间合格,2人学习时间不合格”“2人学习时间合格,1人学习时间不合格”,且这两个事件间是互斥的,所以1221103103331313165()286C C C C P X C C ⋅⋅=+= (ii )由题意可知,Y 的可能取值为0,1,2,3,则333131(0)286C P Y C ===,1210331330(1)286C C P Y C ===, 21103313135(2)286C C P Y C ===,310313120(3)286C P Y C ===,所以随机变量Y 的分布列为所以()0123286286286286143E Y =⨯+⨯+⨯+⨯= 【点睛】此题考查分层抽样,考查互斥事件的概率,考查离散型随机变量的分布列,考查计算能力,属于中档题22.(1)0.035,0.025;(2)见解析 【分析】(1)根据题意[)[)[)30,40,40,50,50,60三个年龄段的上网购物者人数成等差数列,列出方程组,即可求解;(2)利用分层抽样的方法,从中取出三人,得出三人所获得代金券的总和X 的取值,求得相应的概率,列出分布列,利用期望的公式,即可求解. 【详解】(1)由题意知[)[)[)30,40,40,50,50,60三个年龄段的上网购物者人数成等差数列,所以(0.0150.0150.010)10120.015a b b a ++++⨯=⎧⎨=+⎩,解得0.035,0.025a b ==.(2)利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人属于潜在消费人群的为4人,从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300,32166433101011(150),(200)62C C C P X P X C C ======,12364433101031(250),(300)1030C C C P X P X C C ======,∴X 的分布列为()150200250300210621030E X =⨯+⨯+⨯+⨯=.【点睛】本题主要考查了离散型随机变量的分布列及数学期望的求解,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题. 23.(1)13;(2)11243【分析】由题意可知A 、B 、C 三位教师中恰有2位教师使用电脑包括三种情况,这三种情况是互斥的,根据相互独立事件和互斥事件的概率公式得到概率;(2)电脑数无法满足需求,即指有4位以上(包括4位)教师同时需要使用电脑,每一种情况满足独立重复实验,代入公式得到结果. 【详解】设甲、乙、丙教师使用电脑的事件分别记为A ,B ,C , 因为各位教师是否使用电脑是相互独立的,∴ 甲、乙、丙三位教师中恰有2位使用电脑的概率是()()()P P ABC P ABC P ABC =++12311232214354354353=⨯⨯+⨯⨯+⨯⨯=; (2)电脑数无法满足需求,即指有4位以上(包括4位)教师同时需要使用电脑,记有4位教师同时使用电脑的事件为M ,有5位教师同时需要使用电脑的实际为N ,()445121033243P M C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()5113243P N ⎛⎫==⎪⎝⎭, ∴所求的概率是()()10111243243243P P M P N =+=+=, 【点睛】本题考查相互独立事件同时发生的概率,考查互斥事件,独立重复实验,重点考查读题能力,运用概率知识解决实际问题的能力,关键是判断概率类型. 24.(1)3536;(2)见解析 【分析】(1)结合对立事件的概率关系可求出至少一项技术指标达标的概率; (2)由题意知,2~4,3B ξ⎛⎫⎪⎝⎭,从而可求出()0P ξ=,(1)P ξ=,()2P ξ=,()3P ξ=,()4P ξ=的值,从而可求出分布列.【详解】(1)设:M 一个工艺品经过检测至少一项技术指标达标,则38()1-11493635P M ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)依题意知2~4,3B ξ⎛⎫ ⎪⎝⎭,则411(0)381P ξ⎛⎫=== ⎪⎝⎭,1314218(1)3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()222421823327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()334213233381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭分布列为:本题考查了独立事件的概率,考查了离散型随机变量的分布列求解.本题关键是求出ξ每种可能取值下的概率.求离散型随机变量的分布列时,第一步写出变量的可能取值,第二步求出每种取值下的概率,第三步写出分布列.25.(1)27.1491.5y t =-+,356万包;(2)分布列详见解析,9()10E ξ=. 【分析】(1)直接利用回归方程公式计算得到答案.(2)ξ的可能值为0,1,2,3,计算概率得到分布列,再计算数学期望得到答案. 【详解】 (1) 2.5t =,462444404385423.754y +++==,()()()()4222221()1 2.52 2.53 2.54 2.55i i t t =-=-+-+-+-=∑,135.527.15b -==-,423.75(27.1) 2.5491.5a =--⨯=,所以27.1491.5y t =-+. 当5t =时,27.15491.5356y =-⨯+=.(2)依题意,10人中认为方便面是健康食品的有3人,ξ的可能值为0,1,2,3,所以37310C 7(0)C 24P ξ===;1237310C C 21(1)C 40P ξ===; 2137310C C 7(2)C 40P ξ===; 33310C 1(3)C 120P ξ===,故分布列为:()012324404012010E ξ=⨯+⨯+⨯+⨯=. 【点睛】本题考查了回归方程,分布列,数学期望,意在考查学生的计算能力和应用能力. 26.(1)详见解析;(2)13. 【分析】(1)优先表示随机变量可能的取值,显然该事件服从超几何分布,由其概率计算公式分别求得对应概率即可列出分布列;(2)事件“红球个数多于白球个数” 可以分解为,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,再由计数原理和古典概型概率公式分别计算概率,最后由相互独立事件的概率计算方式求得答案. 【详解】(1)题意知X 的所有可能取值为0,1,2,3,且X 服从参数为10N =,3M =,3n = 的超几何分布,因此 ()()337310C C 0,1,2,3C k k P X k k -===.所以 ()0337310C C 3570C 12024P X ====, ()1237310C C 63211C 12040P X ====,()2137310C C 2172C 12040P X ====,()3037310C C 13C 120P X ===.故 X 的分布列为 :”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A , 由于事件1A ,2A ,3A彼此互斥,且123A A A A =++, 而()12341310C C 3C 20P A ==,()()27240P A P X ===,()()313120P A P X ===, 所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=. 答:取出的3个球中红球个数多于白球个数的概率为13. 【点睛】本题考查求超几何分布事件的分布列,还考查了相互独立事件的概率的计算,属于中档题.。
高中数学杨辉三角综合测试题(含答案)
高中数学杨辉三角综合测试题(含答案)选修2-3 1.3.2 杨辉三角与二项式系数的性质一、选择题1.1+(1+x)+(1+x)2+…+(1+x)n的展开式的各项系数之和为()A.2n-1 B.2n-1C.2n+1-1 D.2n[答案] C[解析] 解法一:令x=1得,1+2+22+ (2)=1(2n+1-1)2-1=2n+1-1.解法二:令n=1,知各项系数和为3,排除A、B、D,选C. 2.(x-y)7的展开式中,系数绝对值最大的是()A.第4项 B.第4、5两项C.第5项 D.第3、4两项[答案] B[解析] (x-y)n的展开式,当n为偶数时,展开式共有n +1项,中间一项的二项式系数最大;当n为奇数时,展开式有n+1项,中间两项的二项式系数最大,而(x-y)7的展开式中,系数绝对值最大的是中间两项,即第4、5两项.3.假设x3+1x2n展开式中的第6项的系数最大,那么不含x的项等于()A.210 B.120C.461 D.416[答案] A[解析] 由得,第6项应为中间项,那么n=10.Tr+1=Cr10(x3)10-r1x2r=Cr10x30-5r.令30-5r=0,得r=6.T7=C610=210.4.(2022安徽6)设(1+x)8=a0+a1x+…+a8x8,那么a0,a1,…,a8中奇数的个数为()A.2 B.3C.4 D.5[答案] A[解析] ∵a0=a8=C08=1,a1=a7=C18=8,a2=a6=C28=28,a3=a5=C38=56,a4=C48=70,奇数的个数是2,应选A.5.设n为自然数,那么C0n2n-C1n2n-1+…+(-1)kCkn2n -k+…+(-1)nCnn=()A.2n B.0C.-1 D.1[答案] D[解析] 原式=(2-1)n=1,应选D.6.设A=37+C2735+C4733+C673,B=C1736+C3734+C5732+1,那么A-B=()A.128 B.129C.47 D.0[答案] A[解析] A-B=37-C1736+C2735-C3734+…-1=(3-1)7=128.7.x2+2x8的展开式中x4项的系数是()A.16 B.70C.560 D.1120[答案] D[解析] 考察二项式定理的展开式.设第r+1项含有x4,那么Tr+1=Cr8(x2)8-r(2x-1)r =Cr82rx16-3r,16-3r=4,即r=4,所以x4项的系数为C4824=1120. 8.(2022广东惠州)等差数列{an}的通项公式为an=3n-5,那么(1+x)5+(1+x)6+(1+x)7的展开式中含x4项的系数是该数列的()A.第9项 B.第10项C.第19项 D.第20项[答案] D[解析] ∵(1+x)5+(1+x)6+(1+x)7展开式中含x4项的系数是C4511+C4612+C4713=5+15+35=55,由3n-5=55得n=20,应选D.9.假设n为正奇数,那么7n+C1n7n-1+C2n7n-2+…+Cn-1n7被9除所得的余数是()A.0 B.2C.7 D.8[答案] C[解析] 原式=(7+1)n-Cnn=8n-1=(9-1)n-1=9n-C1n9n-1+C2n9n-2-…+Cn-1n9(-1)n-1+(-1)n-1,n为正奇数,(-1)n-1=-2=-9+7,那么余数为7. 10.(2022江西理,6)(2-x)8展开式中不含x4项的系数的和为()A.-1 B.0C.1 D.2[答案] B[解析] (2-x)8的通项式为Tr+1=Cr828-r(-x)r=(-1)r28-rCr8xr2,那么x4项的系数为1,展开式中所有项的系数之和为(2-1)8=1,故不含x4项的系数之和为0,应选B.二、填空题11.假设(1-2x)2022=a0+a1x+a2x2+…+a2022x2022+a2022x2022(xR),那么(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2022)+(a0+a2022)=________.(用数字作答) [答案] 2021[解析] 令x=0,那么a0=1.令x=1,那么a0+a1+a2+…+a2022+a2022=(1-2)2022=-1.(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2022)+(a0+a2022)=2022a0+(a0+a1+a2+a3+…+a2022)=2022-1=2021.12.(2022北京11)假设x2+1x3n展开式的各项系数之和为32,那么n=________,其展开式中的常数项为________(用数字作答).[答案] 5 10[解析] 令x=1,得2n=32,得n=5,那么Tr+1=Cr5(x2)5-r1x3r=Cr5x10-5r,令10-5r=0,r=2.故常数项为T3=10.13.(2022全国Ⅱ理,14)假设x-ax9的展开式中x3的系数是-84,那么a=________.[答案] 1[解析] 由Tr+1=Cr9x9-r-axr=(-a)rCr9x9-2r得9-2r=3,得r=3,x3的系数为(-a)3C39=-84,解得a=1.14.将杨辉三角中的奇数换成1,偶数换成0,得到如下图的01三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第______行;第61行中1的个数是______.[答案] 2n-1 32[解析] 用不完全归纳法,猜测得出.三、解答题15.设(3x-1)8=a8x8+a7x7+…+a1x+a0.求:(1)a8+a7+…+a1;(2)a8+a6+a4+a2+a0.[解析] 令x=0,得a0=1.(1)令x=1得(3-1)8=a8+a7+…+a1+a0,①a8+a7+…+a2+a1=28-a0=256-1=255.(2)令x=-1得(-3-1)8=a8-a7+a6-…-a1+a0.②①+②得28+48=2(a8+a6+a4+a2+a0),a8+a6+a4+a2+a0=12(28+48)=32 896.16.设(1-2x)2022=a0+a1x+a2x2+…+a2022x2022(xR).(1)求a0+a1+a2+…+a2022的值.(2)求a1+a3+a5+…+a2021的值.(3)求|a0|+|a1|+|a2|+…+|a2022|的值.[分析] 分析题意令x=1求(1)式的值令x=-1求(2)式的值令x=-1求(3)式的值[解析] (1)令x=1,得:a0+a1+a2+…+a2022=(-1)2022=1①(2)令x=-1,得:a0-a1+a2-…+a2022=32022②与①式联立,①-②得:2(a1+a3+…+a2021)=1-32022,a1+a3+a5+…+a2021=1-320222.(3)∵Tr+1=Cr202212022-r(-2x)r=(-1)rCr2022(2x)r,a2k-10(kN*),a2k0(kN*).|a0|+|a1|+|a2|+|a3|+…+|a2022|=a0-a1+a2-a3+…+a2022,所以令x=-1得:a0-a1+a2-a3+…+a2022=32022. 17.证明:(C0n)2+(C1n)2+(C2n)2+…+(Cnn)2=Cn2n. [证明] ∵(1+x)n(1+x)n=(1+x)2n,(C0n+C1nx+C2nx2+…+Cnnxn)(C0n+C1nx+C2nx2+…+Cnnxn)=(1+x)2n,而Cn2n是(1+x)2n的展开式中xn的系数,由多项式的恒等定理得C0nCnn+C1nCn-1n+…+CnnC0n=Cn2n.∵Cmn=Cn-mn(0n),(C0n)2+(C1n)2+(C2n)2+…+(Cnn)2=Cn2n.18.求(1+x-2x2)5展开式中含x4的项.[分析] 由题目可获取以下主要信息:①n=5;②三项的和与差.解答此题可把三项看成两项,利用通项公式求解,也可先分解因式,根据多项式相乘的法那么,由组合数的定义求解.[解析] 方法一:(1+x-2x2)5=[1+(x-2x2)]5,那么Tr+1=Cr5(x-2x2)r(x-2x2)r展开式中第k+1项为Tk+1=Ckrxr-k(-2x2)k=(-2)kCkrxx+k.令r+k=4,那么k=4-r.∵0r,05,且k、rN,r=2k=2或r=3k=1或r=4k=0.展开式中含x4的项为[C25(-2)2C22+C35(-2)C13+C45(-2)0C04]x4=-15x4.方法二:(1+x-2x2)5=(1-x)5(1+2x)5,那么展开式中含x4的项为C05C45(2x)4+C15(-x)C35(2x)3+C25(-x)2C25(2x)2+C35(-x)3C15(2x)+C45(-x)4C05(2x)0=-15x4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共4页
数学综合检测题(三)
(总分:100分 时间:120分钟)
一、选择题(每小题3分,共45分)
1.如果{|2}Axx,那么( )
A. 0A B. {0}A C. A D. {0}A
2. tan690的值为( )
A. 3 B. 33 C. 3 D. 33
3. 函数cosyx是( )
A.偶函数,最大值为1 B.奇函数,最大值为1
C.偶函数,最小值为1 D.奇函数,最小值为1
4.已知函数()lg(1)fxx,那么()fx的定义域是( )
A.R
B.{|1}xx C.{|1}xx D.{|0}xx
5. 已知向量,ab满足2ba,如果(1,1)a,那么b( )
A.-(2,2) B.(-2,-2)
C.(2,-2)
D.(2,2)
6.一个几何体的三视图如图所示,该几何体的体积是( )
A.30 B.40
C.50 D.60
7.不.在不等式326xy表示的平面区域内的一个点是( )
A.(0,0) B.(1,1) C.(2,0) D.(0,2)
8.若1a,则11aa的取值范围是( )
A.[1,) B.[2,) C.[2,2] D.[2,0)(0,2]
9.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( )
A.若α⊥γ,β⊥γ,则α∥β B.若 m⊥α,n⊥α,则m∥n
C.若 m∥α,n∥α,则m∥n D.若 m∥α,m∥β,则α∥β
10.若直线10axy与直线4(3)20xay垂直,则实数a的值为( )
A.-1 B.-4
C.35 D.32
11.如图所示,该程序框图运行后输出的结果为( )
A.1 B.10
C.19 D.28
12.已知等差数列{an}的前n项和为Sn,若a1+ a4+ a7=6,
则S7=( )
A.10 B.14 C.12 D.16
正视图
5
侧视图
3
俯视图
2
(6题图)
(11题图)
是
开始
A=1, S=1
S =S+9
A≤2?
A =A+1
否
结束
输出S
第2页 共4页
13. 在等比数列{an}中,已知119a,59a,则3a( )
A.1 B.3
C.±1 D.±3
14.若PQ是圆229xy的弦,PQ的中点是(1,2),则直线PQ的方程是( )
A.230xy B.250xy C.240xy D.20xy
15.函数()|1|fxax与()(1)gxax的图象没有..交点,则实数a的取值范围是( )
A.(,0) B.1(0,)2 C.[1,) D.1[,1)2
二、填空题(每小题3分,共15分)
16.计算1259log25_______.
17.甲、乙两人下棋,和棋概率为12,乙获胜的概率为13,甲获胜的概率是_______.
18.函数2cos(2)3yx的最小正周期是_______.
19. 一家移动通信公司在某大学对学生每月
的手机话费进行抽样调查,随机抽取了100
名学生,对他们的手机话费情况进行统计
分析,绘制成频率分布直方图(如图所示).
如果该校有大学生10000人,请估计该校
每月话费在[50,70)的学生人数是_______.
20. 在△ABC中,角,,ABC的对边分别是,,abc,若2a,2b,sincos2BB,则角A=___.
三、解答题(共40分)
21.(10分)已知函数3()1fxx.
(1)判断该函数在区间(1,)上的单调性,并给出证明;
(2)求该函数在区间[2,5]上的最大值和最小值.
(19题图)
0 10 30 50 70 90 110 元
0.016
0.0155
0.008
0.006
0.0045
频率
组距
第3页 共4页
22.(8分)在等差数列{an}中,a3=24,a6=18,
(1)求数列{an}的通项公式an;
(2)求数列{an}的前项和Sn.
23.(8分)如图所示,在三棱锥P-ABC中,AB⊥BC,D、E分别是AB、AC的中点,
且PE⊥平面ABC.
(1)求证:BC∥平面PDE;
(2)求证:AB⊥平面PDE.
B
C
A
E
D
P
(23题图)
第4页 共4页
24.(8分)已知函数π()2cos()12fxx,xR
(1)求π()3f的值;
(2)若3cos5,3π(,2π)2,求π()6f的值.
25.(6分)已知定圆22:(3)4Cxy,定直线:360mxy,过点(1,0)A的一条动直线
l与直线m相交于N,与圆C相交于P,Q两点.
(1)当直线l与直线m垂直时,求出N点的坐标,并证明直线l过圆心C;
(2)当||23PQ时,求直线l的方程.