正弦和余弦转换
正切和余弦的转换公式

正切和余弦的转换公式
关于正切和余弦的转换公式,确实有很多的内容需要去认识与掌握。
首先,让我们一起回顾一下它们的本质。
正切是一种三角函数,它的定义是取某一点到原点经
过的直线与x轴的夹角的正弦函数的比值。
而余弦则是取某一点到原点经过的直线与x轴的夹角的余弦函数的比值。
显而易见,正切与余弦之间是相互关联的一对函数,它们之间存在着一种转换关系。
根据对正切与余弦的初步理解,可以得出它们转换的关系:正切与余弦之间的
转换公式为:tan(x)= sin(x)/cos(x)。
其中,x 为任意角度,tan(x)表
示x角度的正切值,sin(x)表示x角度的正弦值,cos(x)表示x角度的余弦值。
此外,我们还可以对此公式进行推广,由此推出正弦与余弦函数之间的转换关系:sin(x)= cos(x)*tan(x)。
这里的x仍然是任意角度,sin(x)表示x
角度的正弦值,cos(x)表示x角度的余弦值,tan(x)表示x角度的正切值。
以上我们剖析了正切与余弦函数之间转换的关系,这对于我们掌握和分析三角
函数有着非常重要的意义。
同时,在常数计算机、数理统计、概率论中,正切与余弦的转换也有着广泛的应用。
正弦转换成余弦的公式

正弦转换成余弦的公式1. 正弦与余弦的基本概念嘿,大家好!今天我们来聊聊一个很有意思的话题——正弦和余弦。
听起来有点数学,但别担心,我们会让它变得简单有趣。
首先,正弦和余弦都是三角函数,它们在我们生活中可是无处不在的哦!想象一下你在游乐园的过山车,正弦就像是你向上冲的时候,余弦则是你俯冲下来的瞬间。
两者相辅相成,一起让我们的人生旅程更加精彩。
如果你问我,正弦和余弦的关系到底是什么?我告诉你,它们就像一对好朋友。
正弦是“对边/斜边”,而余弦则是“邻边/斜边”。
那么,这俩家伙怎么转换呢?别急,我们慢慢来。
2. 转换公式2.1 公式揭晓好啦,现在进入正题。
正弦转换成余弦的公式就是——“sin(x) = cos(90° x)”。
这个公式就像是一个魔法咒语,轻轻一念,正弦变余弦,咻——就到了!也就是说,如果你知道了某个角度的正弦值,你可以通过这个公式轻松找到余弦值。
是不是简单得让人想拍手?比如说,如果你有一个30°的角,那么你可以这么算:sin(30°) = cos(90° 30°) = cos(60°)。
根据三角函数的值,我们知道sin(30°) = 1/2,cos(60°)也正好是1/2,这样的巧合是不是让人感到惊讶呢?2.2 生活中的应用那么,这个公式有什么用呢?在我们的日常生活中,正弦和余弦出没的地方可多着呢。
无论是建筑设计、音响效果,还是计算轨道,都离不开这两个小家伙。
想象一下,当你在听音乐时,那些旋律的高低起伏,其实就是正弦波和余弦波在你耳边跳舞呢!这就是数学与艺术的完美结合!3. 记忆小窍门3.1 小技巧接下来,我想给大家分享一些记忆这个公式的小窍门。
其实,记住“sin(x) = cos(90° x)”就像记住一首歌的旋律一样。
你可以把它编成一个顺口溜:“正弦对应余弦,角度差个九十度”。
简单吧?在朋友面前一抖这段小口诀,准能引来一阵掌声,嘿嘿。
正余弦转换公式

诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan^2αsin3α=3sinα-4sin^3αcos3α=4cos^3α-3cosα3tanα-tan^3αtan3α=——————1-3tan^2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———122sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=—-[cos(α+β)-cos(α-β)]2For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。
正弦余弦换算公式-弦值换算公式

三角函数引诱公式经常应用的引诱公式有以下几组:公式一:设α为随意率性角,终边雷同的角的统一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为随意率性角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:随意率性角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:应用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:应用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=c osαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα引诱公式记忆口诀※纪律总结※上面这些引诱公式可以归纳综合为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不转变;②当k是奇数时,得到α响应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α算作锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限.公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α.180°±α,360°-α地点象限的原三角函数值的符号可记忆程度引诱名不变;符号看象限.各类三角函数在四个象限的符号若何断定,也可以记住口诀“一全正;二正弦;三为切;四余弦”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全体是“-”;第三象限内只有正切是“+”,其余全体是“-”;第四象限内只有余弦是“+”,其余全体是“-”.上述记忆口诀,一全正,二正弦,三正切,四余弦sin(-a)=-sin(a)cos(-a)=cos(a)sin(2π-a)=cos(a)cos(2π-a)=sin(a)sin(2π+a)=cos(a)cos(2π+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tgA=tanA=sinAcosAsin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.积化和差公式 (上面公式反过来就得到了)sin(a)sin(b)=-12⋅[cos(a+b)-cos(a-b)]cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)]sin(a)cos(b)=12⋅[sin(a+b)+sin(a-b)]sin(2a)=2sin(a)cos(a)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)8.其它公式(推导出来的 )a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 个中 tan(c)=ba a⋅sin(a)-b⋅cos(a)=a2+b2cos(a-c) 个中 tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2csc(a)=1sin(a)sec(a)=1cos(a)经常应用的引诱公式有以下几组:公式一:设α为随意率性角,终边雷同的角的统一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为随意率性角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:随意率性角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαcot(-α)=-cotα公式四:应用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:应用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-t anαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα引诱公式记忆口诀※纪律总结※上面这些引诱公式可以归纳综合为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不转变;②当k是奇数时,得到α响应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α算作锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限.公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α.180°±α,360°-α地点象限的原三角函数值的符号可记忆程度引诱名不变;符号看象限.各类三角函数在四个象限的符号若何断定,也可以记住口诀“一全正;二正弦;三为切;四余弦”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全体是“-”;第三象限内只有正切是“+”,其余全体是“-”;第四象限内只有余弦是“+”,其余全体是“-”.上述记忆口诀,一全正,二正弦,三正切,四余弦其他三角函数常识:同角三角函数根本关系⒈同角三角函数的根本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαc osα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考材料链接)结构以"上弦.中切.下割;左正.右余.中央1"的正六边形为模子.(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形随意率性一极点上的函数值等于与它相邻的两个极点上函数值的乘积.(主如果两条虚线两头的三角函数值的乘积).由此,可得商数关系式.(3)平方关系:在带有暗影线的三角形中,上面两个极点上的三角函数值的平方和等于下面极点上的三角函数值的平方.两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ倍角公式⒊二倍角的正弦.余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦.余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα全能公式⒌全能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)全能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))..... .*,(因为cos^2(α)+sin^2(α)=1)再把*分式高低同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可.同理可推导余弦的全能公式.正切的全能公式可经由过程正弦比余弦得到.三倍角公式⒍三倍角的正弦.余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα3tanα-tan^3(α)tan3α=——————1-3tan^2(α)三倍角公式推导附推导:tan3α=sin3α/cos3α=(s in2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)高低同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2si n^3(α)+sinα-2sin^2(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆记忆办法:谐音.联想正弦三倍角:3元减 4元3角(负债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆留意函数名,即正弦的三倍角都用正弦暗示,余弦的三倍角都用余弦暗示.和差化积公式⒎三角函数的和差化积公式α+β α-βsinα+sinβ=2sin—----·cos—---2 2α+β α-βsinα-sinβ=2cos—----·sin—----2 2α+β α-βcosα+cosβ=2cos—-----·cos—-----2 2α+β α-βcosα-cosβ=-2sin—-----·sin—-----2 2积化和差公式⒏三角函数的积化和差公式sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:起首,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2如许,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式今后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分离用x,y暗示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。
正切与余切的转化公式

正切与余切的转化公式
正切与余切是常用于数学中的两个类型的三角函数,它们之间有相互转化的公式。
在三角函数中,它们的关系非常重要,可以用来计算不同类型的三角函数的值。
正弦函数(Sin),余弦函数(Cos)和正切函数(Tan)是相互关联的函数,三角函数的结果可以使用它们来计算。
其中,正切函数tan(x),定义为x对应的弧度值对应的正弦值除以余弦值。
余切函数cot(x),定义为余弦值除以正弦值。
从理论上讲,正切与余切是相互等价的。
这意味着,任何一个函数的值可以通过转换成另外一个函数的值来计算,这称为“正切与余切的转化公式”。
其转化公式为:tan(x) = cot(x) = 1/tan(x) 。
由此可见,正切与余切是一对对立的函数,它们可以互相转化。
因此,从理论上讲,当知道一个三角函数的值时,可以利用正切与余切的转换公式来求出另一个三角函数的值,而无需繁琐的计算步骤。
同时,这对解决特定三角函数问题也是很有帮助的。
总之,正切与余切是理论上相互等价的,它们之间具有转换公式,这意味着可以用它们的转换公式来求解不同的三角函数,而不需要使用大量的计算步骤,这对解决数学问题是非常有用的。
正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与—α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π—α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan →cot,cot→tan。
(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
余切和正弦的转换公式

余切和正弦的转换公式在咱们数学的奇妙世界里,余切和正弦这两个概念就像一对性格有点特别的小伙伴。
今天咱们就来好好聊聊它们之间的转换公式。
先来说说余切。
余切就是“邻边比对边”,用数学符号表示就是cotθ= 邻边 / 对边。
而正弦呢,是“对边比斜边”,记作sinθ = 对边 / 斜边。
那它们怎么转换呢?这就得引入一个小帮手——余弦。
余弦是“邻边比斜边”,也就是cosθ = 邻边 / 斜边。
通过这几个概念的关系,咱们就能推导出余切和正弦的转换公式啦。
因为cotθ = 邻边 / 对边,而对边 / 斜边= sinθ ,邻边 / 斜边= cosθ ,所以cotθ = cosθ / sinθ 。
就像上次我给班上的同学讲解这个公式的时候,有个小家伙一脸懵,还问我:“老师,这一堆符号看得我头都大啦,这到底有啥用啊?”我笑着跟他说:“你想想看啊,假如咱们要造一座桥,得算出各种角度和长度,这时候这些公式就能派上大用场啦,能保证咱们的桥稳稳当当的。
”咱们再深入一点理解这个转换公式。
比如说,在一个直角三角形里,一个角的正弦值是 0.6,那它的余切值怎么算呢?首先算出余弦值,因为sin²θ + cos²θ = 1 ,所以cosθ = √(1 - sin²θ) = √(1 - 0.6²) = 0.8 。
然后用余弦值除以正弦值,cotθ = 0.8 / 0.6 = 4 / 3 。
在实际解题中,这个转换公式能帮咱们少走很多弯路。
比如有一道题,已知一个角的正弦值,让求它的余切值,如果不掌握这个转换公式,那可就麻烦啦,得重新画图找边的关系,浪费时间还容易出错。
我还记得有一次考试,有一道题就是考查这个转换公式的应用。
大部分同学都掌握得不错,可有几个平时不太认真的同学就丢分了。
我在讲解试卷的时候,着重又把这个公式推导了一遍,看着他们恍然大悟的表情,我心里也踏实了不少。
总之,余切和正弦的转换公式虽然看起来有点复杂,但只要咱们多练习、多应用,就能像掌握骑自行车的技巧一样熟练,在数学的道路上轻松前行。
三角形正弦余弦公式大全

三角形正弦余弦公式大全高中数学的三角形正弦与余弦的公式同学们还记得吗?如果没有总结过,没记住的话,请往下看。
下面是由小编为大家整理的“三角形正弦余弦公式大全”,仅供参考,欢迎大家阅读。
三角形正弦余弦公式大全Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+T anB)/(1-TanA*TanB)Tan(A-B)=(TanA-TanB)/(1+TanA*TanBsin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]拓展阅读:求三角形边长公式三角形边长公式:1、根据余弦定理,有公式:a^2=b^2+c^2-2bc×cosA。
2、根据正弦定理,有公式:a=b*sinA/sinB。
3、根据勾股定理,有公式:a^2+b^2=c^2。
三角形边长的计算方法对于任意一个三角形,已知两角一对边,可以根据正弦定理计算:a=b*sinA/sinB。
正弦定理的公式为a/sinA = b/sinB =c/sinC,根据正弦定理的公式可以解三角形。
对于任意一个三角形,已知两条边与夹角,可以根据余弦定理求出第三条边,有公式:c^2=a^2+b^2-2abcosC、a^2=b^2+c^2-2bccosA、b^2=a^2+c^2-2accosB。
余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
对于直角三角形,可以根据勾股定理求变成,有公式:a^2+b^2=c^2。
如何计算三角形的斜边已知两个直角边,求第三边的方法有已知一个锐角和两直角边,如图所示已知直角三角形一锐角度数,求斜边的方法有正弦定理直接求出还有通过正弦定理算出直角边,再用勾股定理求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦和余弦转换 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦 其他三角函数知识: 同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式 ⒉两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 倍角公式 ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/(1-tan^2(α)) 半角公式 ⒋半角的正弦、余弦和正切公式(降幂扩角公式) sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) 万能公式 ⒌万能公式 sinα=2tan(α/2)/(1+tan^2(α/2)) cosα=(1-tan^2(α/2))/(1+tan^2(α/2)) tanα=(2tan(α/2))/(1-tan^2(α/2)) 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式 ⒍三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) 三倍角公式推导 附推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^2(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 三倍角公式联想记忆 记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”) ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。 和差化积公式 ⒎三角函数的和差化积公式 sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2) sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2) cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2) cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2) 积化和差公式 ⒏三角函数的积化和差公式 sinα ·cosβ=[sin(α+β)+sin(α-β)] cosα ·sinβ=[sin(α+β)-sin(α-β)] cosα ·cosβ=[cos(α+β)+cos(α-β)] sinα ·sinβ=- [cos(α+β)-cos(α-β)] 和差化积公式推导 附推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 精心搜集整理,只为你的需要