三角高程测量计算

合集下载

全站仪三角高程测量方法

全站仪三角高程测量方法

全站仪三角高程测量方法应用全站仪进行三角高程测量的新方一、三角高程测量的传统方法如图一所示,设A,B为地面上高度不同的两点。

已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。

此主题相关图片如下:图中:D为A、B两点间的水平距离а为在A点观测B点时的垂直角i为测站点的仪器高,t为棱镜高HA为A点高程,HB为B点高程。

V为全站仪望远镜和棱镜之间的高差(V=Dtanа)首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。

为了确定高差hAB,可在A点架设全站仪,在B 点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+i-t故HB=HA+Dtanа+i-t(1)这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。

因此,只有当A,B两点间的距离很短时,才比较准确。

当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。

这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。

我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点:1、全站仪必须架设在已知高程点上2、要测出待测点的高程,必须量取仪器高和棱镜高。

二、三角高程测量的新方法如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。

如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。

首先由(1)式可知:HA=HB-(Dtanа+i-t)(2)上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。

但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。

从(2)可知:HA+i-t=HB-Dtanа=W(3)由(3)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的.而且可以计算出它的值W。

(完整版)三角高程测量

(完整版)三角高程测量

32
2020年8月9日星期日
四、偏心误差系数的测定
基本原理:因为相对观测竖角(绝对值) 的平均值可消除竖盘偏心的影响,因此也可 通过相对观测的竖角来反映偏心误差。
测定步骤 1.为了减小竖盘指标差的影响,在平坦 地区选择两个相距约50m的固定点A、B, 在两点上竖立标尺,如图10-8所示。
33
2020年8月9日星期日
α=(R–L-180°)/2
=(278°12′24″- 81°47′36″- 180°)
= + 8°12′24″
12
2020年8月9日星期日
对高度角式注记,竖直角的计算 当竖直角为仰角时(参考前面的示意图)
α左 = L - 0° α右 = 180°- R α= (L – R + 180°)/2 (a) 当竖直角为俯角时
竖盘指标水准管
竖盘指标水准 管微动螺旋
6
图中3号螺旋为 竖盘指标水准管 微动螺旋
2020年8月9日星期日
2.竖盘的注记形式 顺时针,逆时针。
望远镜水平时,竖盘读数为90°的整倍数。
竖盘逆时针注记(盘左高度角式)
7
2020年8月9日星期日
竖盘顺时针注记(盘左天顶距式)
8
2020年8月9日星期日
3.竖角的表示形式
• 计算竖直角:各按三丝所测得的L和R分别计算出相应
的竖角,最后取平均值为该竖角的角值。
22
2020年8月9日星期日
五、指标差的检验与校正
1.测定指标差 盘左、盘右瞄准同一明显目标,观测多个测回 求得指标差。 2.求出盘左或盘右的正确读数(读数减指标 差)。 3.微调竖盘指标水准管,使竖盘位于正确读数。 4.调节竖盘水准管校正螺丝,使气泡居中。

全站仪三角高程的高差计算公式

全站仪三角高程的高差计算公式

全站仪三角高程的高差计算公式全站仪三角高程测量是一种常用的测量地面点高程的方法,而其中的高差计算公式可是关键所在。

咱先来说说全站仪三角高程测量到底是咋回事。

想象一下,你站在一个地方,拿着全站仪,对着另一个你想知道高程的点瞄啊瞄。

这中间就涉及到很多角度和距离的测量。

在全站仪三角高程测量中,高差计算公式就像是一个神秘的密码,能帮咱们解开两个点之间高程的差异。

那这个神秘的高差计算公式到底是啥呢?它通常可以表示为:$h = D \times \tan\alpha + i - v$ 。

这里面的“h”就是咱们要找的高差啦,“D”呢是两点之间的水平距离,“α”是观测的竖直角,“i”是仪器高,“v”是目标高。

给您讲讲我之前在实际工作中的一次经历。

那次我们要测量一个山坡上几个点的高程,这山坡可不好爬,杂草丛生的。

我带着全站仪吭哧吭哧地就上去了,心里想着可一定要把这测量任务完成好。

我小心翼翼地架好仪器,认真地瞄准目标点,测量出水平距离、竖直角,然后按照高差计算公式算高差。

可一开始,我把仪器高和目标高弄混了,结果算出来的高差那叫一个离谱。

我就纳闷了,咋和预想的差这么多呢?后来仔细一检查,哎呀,原来是这个小细节出错啦。

重新测量计算之后,终于得到了准确的高差,那一刻心里别提多有成就感了。

在实际应用这个公式的时候,有几个要点得特别注意。

首先就是测量数据要准确,哪怕有一点点偏差,算出来的高差可能就差之千里。

比如说测量水平距离,得保证仪器的精度,测量的时候要稳稳的,不能手抖。

还有竖直角的测量,要精确瞄准,可不能马虎。

另外,仪器高和目标高的测量也不能马虎。

仪器高就是全站仪望远镜轴中心到地面点的垂直距离,测量的时候要量准。

目标高呢,就是目标点上的标杆或者反射棱镜的中心到地面点的垂直距离。

总之,全站仪三角高程的高差计算公式虽然看起来不复杂,但要想用好它,得到准确的高差,就得在测量过程中一丝不苟,认真对待每一个数据。

就像我那次在山坡上的测量,如果不是后来仔细检查纠正错误,这测量结果可就没法用啦。

全站仪三角高程的高差计算公式

全站仪三角高程的高差计算公式

全站仪三角高程的高差计算公式在测量工作中,全站仪三角高程测量是一种常用的高程测量方法。

它具有操作简便、效率高、精度能满足一定要求等优点,在地形起伏较大的地区应用广泛。

要准确进行全站仪三角高程测量,就必须掌握其高差计算公式。

首先,我们来了解一下全站仪三角高程测量的基本原理。

全站仪三角高程测量是通过测量两点之间的水平距离、垂直角以及仪器高和目标高,来计算两点之间的高差。

其高差计算公式的推导基于几何原理。

假设我们有 A、B 两点,A点为测站点,B 点为观测点。

在 A 点安置全站仪,测量出 A 点到 B 点的水平距离 D(也就是斜距在水平面上的投影),以及在 A 点观测 B点时的垂直角α(通常观测的是天顶距,然后通过 90 度减去天顶距得到垂直角)。

同时,我们还需要知道 A 点的仪器高 i 和 B 点的目标高 v。

那么,全站仪三角高程测量的高差计算公式可以表示为:h =D × tanα + i v + f其中,h 表示 A、B 两点之间的高差;D × tanα 这一项称为“直觇高差”,它是通过水平距离和垂直角计算得到的高差;i 是A 点的仪器高,即全站仪横轴中心到测站点地面的高度;v 是 B 点的目标高,即观测目标点的标志中心到地面的高度;f 则是球气差改正数。

接下来,我们详细说一说球气差改正数 f。

由于地球曲率和大气折光的影响,实际测量得到的高差与理论高差之间存在差异,这个差异就需要通过球气差改正来消除。

球气差改正数 f 的计算公式为:f = 043 × D²/ R其中,R 为地球平均曲率半径,一般取值为 6371km。

在实际测量中,如果两点之间的距离较短,球气差的影响较小,可以忽略不计。

但当距离较长时,忽略球气差改正会导致较大的误差。

再说说仪器高 i 和目标高 v 的测量。

仪器高的测量通常是使用小钢尺从全站仪横轴中心量至测站点地面标志点。

目标高的测量则是从观测目标点的标志中心量至地面。

三角高程测量的计算公式

三角高程测量的计算公式

三角高程测量的计算公式三角高程测量是地理测量中常用的一种方法,用于测量地面上的点的高程。

本文将介绍三角高程测量的计算公式,并解释其原理和应用。

三角高程测量是基于三角法原理的一种测量方法。

它利用三角形的一些特性和测量数据,通过计算可以得到被测点的高程。

三角高程测量适用于各种地形条件,无论是平原、山地还是高原,都可以通过三角高程测量来确定各个点的高程。

三角高程测量的计算公式如下:h = H + d * tan(a)其中,h表示被测点的高程,H表示参考点的高程,d表示两个测点之间的水平距离,a表示两个测点之间的夹角。

根据这个公式,我们可以通过测量参考点和被测点之间的距离和夹角,再加上参考点的高程,就可以计算出被测点的高程。

这个公式的原理是基于三角形的相似性原理,即两个三角形的对应边的比例相等。

在实际测量中,我们首先需要选择一个参考点,可以是已知高程的点或者固定测量设备的位置。

然后,利用测量仪器测量参考点和被测点之间的水平距离和夹角。

最后,根据测量数据和计算公式,我们可以计算出被测点的高程。

三角高程测量在地理测量中具有广泛的应用。

它可以用于绘制地形图、制作地图、建筑工程设计等。

通过三角高程测量,我们可以快速准确地确定地面上各个点的高程,为地理信息系统的建设和规划提供重要的数据支持。

在实际应用中,三角高程测量需要考虑一些误差因素。

例如,测量仪器的精度、天气条件、地形复杂度等都会对测量结果产生影响。

因此,在测量过程中要注意选择合适的测量仪器、控制测量误差,并进行合理的数据处理和分析。

三角高程测量是一种常用的地理测量方法,通过测量参考点和被测点之间的距离和夹角,再结合计算公式,可以准确地确定被测点的高程。

它在地理信息系统、地形图制作、建筑工程设计等领域具有重要的应用价值。

在实际应用中,我们需要注意测量误差的控制和数据处理,以提高测量结果的精度和可靠性。

通过三角高程测量,我们可以更好地了解地球表面的地形特征,为人类的生活和发展提供有益的信息。

全站仪三角高程测量及计算公式

全站仪三角高程测量及计算公式

全站仪水平‎测量及计算‎公式因为用全站‎仪(附加棱镜)、经纬仪(附加塔尺)测量高程,是根据两点‎间的距离和‎竖直角,应用三角公‎式计算两点‎的高差,用全站仪测‎定高程的方‎法通常称为‎三角高程测‎量(或称测距高‎程)。

用全站仪测‎量高程的特‎点是,精度比用水‎准仪测量低‎,但是这种方‎法简便、灵活,受地形的限‎制小。

因此通常用‎于山区的高‎程测量和地‎形测量。

三角高程测‎量,一般应在一‎定密度的水‎准测量控制‎之下。

通常三角高‎程测量是高‎程控制测量‎的一种补充‎手段,其精度应同‎同等级的水‎准测量相同‎。

当我们采用‎全站仪(光电测距仪‎)进行高程测‎量放样时,如图2-2所示,由于全站仪‎的视线不都‎在一个水平‎面上,而全站仪所‎读读数由正‎负之分,在进行高程‎测量放样计‎算时,我们输入的‎数据必须以‎全站仪所读‎读数实际输‎入,设后视点B‎M的高程为‎H0,在同一测站‎下(全站仪的仪‎器高恒等),放样点的实‎测高程的计‎算公式(以下为棱镜‎高度保持不‎变的放样点‎高程推导公‎式)如下:视线高程H‎视线 = H0-h0 + v放样点高程‎H n = H视线-hn-v =(H0-h0 + v)+ hn-v= H0-h0 + hn当棱镜高度‎改变时,设棱镜改变‎后的高度相‎对与后视时‎的高度改变‎值为w(改变后的高‎度减去棱镜‎初始高度),则放样点的‎的实测高程‎为:Hn = H0-h0 + hn-w。

为避免误差‎因距离的传‎递,各等级的三‎角高程测量‎必须限制一‎次传递高程‎的距离。

三角高程测‎量路线的总‎长原则上可‎参考同等级‎的水准路线‎的长度,路线尽可能‎组成闭合多‎边形,以便对高差‎闭合差进行‎校核。

除以上介绍‎的基本方法‎外,采用全站仪‎测量高程中‎,视线高程有‎两种计算方‎法:一、若已知置站‎点地面高程‎,则视线高程‎为“置站点地面‎高程与全站‎仪仪器高之‎和”。

二、若已知后视‎点地面高程‎,则视线高程‎为“后视点地面‎高程减去后‎视高差读数‎加上棱镜高‎度”。

测量学-三角高程测量

测量学-三角高程测量
控制测量:为建立控制网所进行的测量工作。
3、控制测量分类
按内容分:
平面控制测量:测定各平面控制点的坐标X、Y。 高程控制测量:测定各高程控制点的高程H。
按精度分:一等、二等、三等、四等;一级、二级、
三级
按方法分:三角网测量、天文测量、导线测量、交
会测量、卫星定位测量
按区域分:国家控制测量、城市控制测量、小区域
如图,PC为水平视线, PE 是通过P点的水准面。 由于地球曲率的影响, C、E高程不等。P、E同 高程。CE为地球曲率对 高差的影响:
P
CE
S
2 0
2R
如图,A点高程已知,测量A、B
之间的高差hAB,求B点的高程。
PC为水平视线。PM为视线未受大
气折光影响的方向线,实际照准
在N上。 视线的竖直角为 。
求: X B 、Y B
B
X AB DAB cos AB YAB DAB sin AB
Y
X B X A X AB YB YA YAB
X
坐标反算
Y
X
ab
B 已知:XA、YA、 XB、 YB
A
求:DAB、αAB
O
Y
DAB
X B X A 2 YB YA 2
x2 AB
Y
2 AB
3、大气垂直折光系数误差 大气垂直折光误差主要表现为折光系数K值测定误差。
4、丈量仪高和觇标高的误差 仪高和觇标高的量测误差有多大,对高差的影响也会有
多大。因此,应仔细量测仪高和觇标高。
控制测量
内容提要:
§7.1 控制测量概述 §7.2 导 线 测 量 §7.3 交会测量 §7.4 高程控制测量
第七章 控制测量 §7.1 概 述

三角高程测量的往返观测计算公式

三角高程测量的往返观测计算公式

三角高程测量是一种常用的测量方法,它可以用来测量地面上点的准确高程。

在这篇文章中,我们将着重介绍三角高程测量中的往返观测计算公式。

一、三角高程测量原理三角高程测量是利用三角形的相似性原理,通过已知两点的高程和这两点到待测点的水平距离,来计算待测点的高程。

三角高程测量的基本原理如下:1. 在地面上选择一个已知高程的点A,以及要测量高程的点P。

2. 通过测量仪器测量点A和点P之间的水平距离d和两点的高程差h。

3. 通过三角函数计算出点P的高程。

二、三角高程测量的往返观测在实际测量中,为了提高精度,常常采用往返观测的方法进行测量。

往返观测的原理是利用观测仪器来回测量两点之间的距离和高程差,然后取平均值作为最终结果,以减小由于观测仪器误差、大气温度、大气压力等因素造成的误差。

三、三角高程测量往返观测计算公式往返观测的三角高程测量计算公式如下:1. 求点P的高程差首先需要计算出点P的高程差,使用以下公式:\[ \Delta h = h_1 - h_2 \]其中,\(h_1\) 为第一次测量的高程,\(h_2\) 为第二次测量的高程。

2. 求两次测量的平均距离将两次测量的距离\(d_1\)和\(d_2\)求均值,得到平均距离:\[ \bar{d} = \frac{d_1 + d_2}{2} \]3. 计算点P的高程利用三角函数计算出点P的高程:\[ H = h_2 + \frac{\Delta h \times \bar{d}}{d_2} \]其中,\(H\)为最终计算出的点P的高程。

四、注意事项在进行三角高程测量的往返观测时,需要注意以下几点:1. 观测仪器的选择和校准非常重要,需要保证其精度和稳定性。

2. 大气温度和大气压力对测量结果有较大影响,需要进行相应的修正。

3. 观测时需要注意周围环境的影响,避免受到建筑物、树木、地形等因素干扰。

4. 测量终点的选取应当避免大坡度地形,以减小误差。

通过以上介绍,我们了解了三角高程测量中的往返观测计算公式及其应用注意事项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角高程测量计算
三角高程测量是一种常用的地形测量方法,通过测量不同位置的水平距离和高程差,来计算目标点的高程。

三角高程测量的计算步骤如下:
1. 根据设计要求,选择合适的测量点,一般要求其呈三角形分布,并确定其中一点为基准点。

2. 进行水平距离测量。

使用测距仪等仪器,测量出各个点之间的水平距离。

3. 进行高程差测量。

使用水准仪等仪器,测量出各个点之间的高程差。

4. 计算目标点的高程。

根据测得的水平距离和高程差,利用三角形的相似关系,可以计算出目标点相对于基准点的高程。

具体计算方法如下:
假设三角形的三个顶点为A、B、C,其中A点为基准点,C
点为目标点。

设AB距离为dAB,BC距离为dBC,AC距离为dAC。

设高程差为hBC,即C点的高程减去B点的高程,记为hBC。

则目标点C相对于基准点A的高程为:
高程差hAC = hBC * (dAC / dBC)
目标点的高程 = 基准点的高程 + hAC
通过上述计算,可以得出目标点相对于基准点的高程,并完成了三角高程测量的计算。

相关文档
最新文档