离散数学课件
合集下载
自考离散数学课件

离散概率论在计算机科学中还应用于随机算法的设计。随机算法可以在某些情况 下提供比确定算法更高效的解决方案,离散概率论为随机算法的分析提供了理论 基础。
离散概率论在统计学中的应用
离散概率论在统计学中用于描述和分 析离散随机事件。例如,在调查研究 时,离散概率论可以用于估计样本大 小、计算抽样误差和置信区间等。
自考离散数学课件
目录
CONTENTS
• 离散数学简介 • 集合论基础 • 图论基础 • 离散概率论基础 • 组合数学基础 • 离散概率论的应用
01 离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学 研究,最初是为了解决当时的一些实 际问题而发展起来的。
定义
离散数学是研究离散对象(如集合、 图、树等)的数学分支,它不涉及连 续的量或函数,而是专注于研究离散 结构及其性质。
离散概率论在统计学中还用于构建和 检验离散随机变量的统计模型。这些 模型可以帮助我们理解和预测离散随 机变量的分布和性质。
离散概率论在决策理论中的应用
离散概率论在决策理论中用于评估不 确定环境下的决策效果。通过离散概 率模型,可以计算期望效用和期望收 益,从而帮助决策者做出最优决策。
离散概率论在决策理论中还用于风险 评估和管理。通过离散概率模型,可 以评估风险的大小和性质,并制定相 应的风险管理策略。
集合的运算和性质
总结词
集合的运算包括并集、交集、差集等,这些运算具有一些重要的性质,如交换律、结合律等。
详细描述
集合的运算包括并集、交集、差集等,这些运算具有一些重要的性质,如交换律、结合律等。交换律指的是集合 的并集和交集运算满足交换性;结合律指的是集合的并集和交集运算满足结合性。这些性质在离散数学的后续内 容中有着广泛的应用。
离散概率论在统计学中的应用
离散概率论在统计学中用于描述和分 析离散随机事件。例如,在调查研究 时,离散概率论可以用于估计样本大 小、计算抽样误差和置信区间等。
自考离散数学课件
目录
CONTENTS
• 离散数学简介 • 集合论基础 • 图论基础 • 离散概率论基础 • 组合数学基础 • 离散概率论的应用
01 离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学 研究,最初是为了解决当时的一些实 际问题而发展起来的。
定义
离散数学是研究离散对象(如集合、 图、树等)的数学分支,它不涉及连 续的量或函数,而是专注于研究离散 结构及其性质。
离散概率论在统计学中还用于构建和 检验离散随机变量的统计模型。这些 模型可以帮助我们理解和预测离散随 机变量的分布和性质。
离散概率论在决策理论中的应用
离散概率论在决策理论中用于评估不 确定环境下的决策效果。通过离散概 率模型,可以计算期望效用和期望收 益,从而帮助决策者做出最优决策。
离散概率论在决策理论中还用于风险 评估和管理。通过离散概率模型,可 以评估风险的大小和性质,并制定相 应的风险管理策略。
集合的运算和性质
总结词
集合的运算包括并集、交集、差集等,这些运算具有一些重要的性质,如交换律、结合律等。
详细描述
集合的运算包括并集、交集、差集等,这些运算具有一些重要的性质,如交换律、结合律等。交换律指的是集合 的并集和交集运算满足交换性;结合律指的是集合的并集和交集运算满足结合性。这些性质在离散数学的后续内 容中有着广泛的应用。
离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
离散数学树ppt课件.ppt

知,G-e已不是连通图, 所以,e为桥。
(5)(6)
如果G是连通的且G中任何边均为桥,则G中没有回路,但在任 何两个不同的顶点之间加一条新边,在所得图中得到唯一的 一个含新边的圈。
因为G中每条边均为桥,删掉任何边,将使G变成不连通图, 所以,G中没有回路,也即G中无圈。
又由于G连通,所以G为树,由(1) (2)可知,
根树的分类
(1)设T为根树,若将T中层数相同的顶点都标定次序, 则称T为有序树。
(2)分类:根据根树T中每个分支点儿子数以及是否有序 r叉树——每个分支点至多有r个儿子
r叉有序树——r叉树是有序的 r叉正则树——每个分支点恰有r个儿子
r叉正则有序树——r叉正则树是有序的 r叉完全正则树——树叶层数均为树高的r叉正则树
1,1,1,2,2,2,3
由度数列可知,Ti中有一个3度顶点vi,vi的邻域N(vi)中有3个顶 点,这3个顶点的度数列只能为以下三种情况之一:
1,1,2
1,2,2
2,2,2
设它们对应的树分别为T1,T2,T3。此度数列只能产生这三棵 非同构的7阶无向树。
例16.2
例题
例题 已知无向树T中,有1个3度顶点,2个2度顶点,其余 顶点全是树叶,试求树叶数,并画出满足要求的非同构 的无向树。
无向树的性质
定理16.2 设T是n阶非平凡的无向树,则T中至少有两片树叶。
证明
设T有x片树叶,由握手定理及定理16.1可知,
2(n 1) d(vi ) x 2(n x)
由上式解出x≥2。
例16.1
例16.1 画出6阶所有非同构的无向树。
解答 设Ti是6阶无向树。 由定理16.1可知,Ti的边数mi=5, 由握手定理可知,∑dTi(vj)=10,且δ(Ti)≥1,△(Ti)≤5。 于是Ti的度数列必为以下情况之一。
(5)(6)
如果G是连通的且G中任何边均为桥,则G中没有回路,但在任 何两个不同的顶点之间加一条新边,在所得图中得到唯一的 一个含新边的圈。
因为G中每条边均为桥,删掉任何边,将使G变成不连通图, 所以,G中没有回路,也即G中无圈。
又由于G连通,所以G为树,由(1) (2)可知,
根树的分类
(1)设T为根树,若将T中层数相同的顶点都标定次序, 则称T为有序树。
(2)分类:根据根树T中每个分支点儿子数以及是否有序 r叉树——每个分支点至多有r个儿子
r叉有序树——r叉树是有序的 r叉正则树——每个分支点恰有r个儿子
r叉正则有序树——r叉正则树是有序的 r叉完全正则树——树叶层数均为树高的r叉正则树
1,1,1,2,2,2,3
由度数列可知,Ti中有一个3度顶点vi,vi的邻域N(vi)中有3个顶 点,这3个顶点的度数列只能为以下三种情况之一:
1,1,2
1,2,2
2,2,2
设它们对应的树分别为T1,T2,T3。此度数列只能产生这三棵 非同构的7阶无向树。
例16.2
例题
例题 已知无向树T中,有1个3度顶点,2个2度顶点,其余 顶点全是树叶,试求树叶数,并画出满足要求的非同构 的无向树。
无向树的性质
定理16.2 设T是n阶非平凡的无向树,则T中至少有两片树叶。
证明
设T有x片树叶,由握手定理及定理16.1可知,
2(n 1) d(vi ) x 2(n x)
由上式解出x≥2。
例16.1
例16.1 画出6阶所有非同构的无向树。
解答 设Ti是6阶无向树。 由定理16.1可知,Ti的边数mi=5, 由握手定理可知,∑dTi(vj)=10,且δ(Ti)≥1,△(Ti)≤5。 于是Ti的度数列必为以下情况之一。
离散数学四省公开课一等奖全国示范课微课金奖PPT课件

f : DIn DI , 称 f 为f在I中解释.
(d) 对每一个n元谓词符号FL, 有一个DI上n元谓词常项 ,F 称 F 为F在I中解释. 设公式A, 取个体域DI , 把A中个体常项符号a、函数符
号f、谓词符号F分别替换成它们在I中解释 、a 、f ,F称
所得到公式A为A在I下解释, 或A在I下被解释成A.
比如,x(F(x,y)G(x,z)), x为指导变元,(F(x,y)G(x,z))为 x 辖域,x两次出现均为约束出现,y与 z 均为自由出现
又如, x(F(x,y,z)y(G(x,y)H(x,y,z))), x中x是指导变元, 辖域为(F(x,y,z)y(G(x,y)H(x,y,z))). y中y是指导变元, 辖 域为(G(x,y)H(x,y,z)). x3次出现都是约束出现, y第一次出 现是自由出现, 后2次是约束出现, z2次出现都是自由出现
19
第19页
实例
例7 判断以下公式中,哪些是永真式,哪些是矛盾式? (1) xF(x)(xyG(x,y)xF(x))
重言式 p(qp) 代换实例,故为永真式. (2) (xF(x)yG(y))yG(y)
矛盾式 (pq)q 代换实例,故为永假式. (3) x(F(x)G(x))
解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 非永真式可满足式
2
第2页
谓词
谓词——表示个体词性质或相互之间关系词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x含有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间关系 如, L(x,y):x与 y 相关系 L,L(x,y):xy,… 0元谓词——不含个体变项谓词, 即命题常项 或命题变项
(d) 对每一个n元谓词符号FL, 有一个DI上n元谓词常项 ,F 称 F 为F在I中解释. 设公式A, 取个体域DI , 把A中个体常项符号a、函数符
号f、谓词符号F分别替换成它们在I中解释 、a 、f ,F称
所得到公式A为A在I下解释, 或A在I下被解释成A.
比如,x(F(x,y)G(x,z)), x为指导变元,(F(x,y)G(x,z))为 x 辖域,x两次出现均为约束出现,y与 z 均为自由出现
又如, x(F(x,y,z)y(G(x,y)H(x,y,z))), x中x是指导变元, 辖域为(F(x,y,z)y(G(x,y)H(x,y,z))). y中y是指导变元, 辖 域为(G(x,y)H(x,y,z)). x3次出现都是约束出现, y第一次出 现是自由出现, 后2次是约束出现, z2次出现都是自由出现
19
第19页
实例
例7 判断以下公式中,哪些是永真式,哪些是矛盾式? (1) xF(x)(xyG(x,y)xF(x))
重言式 p(qp) 代换实例,故为永真式. (2) (xF(x)yG(y))yG(y)
矛盾式 (pq)q 代换实例,故为永假式. (3) x(F(x)G(x))
解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 非永真式可满足式
2
第2页
谓词
谓词——表示个体词性质或相互之间关系词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x含有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间关系 如, L(x,y):x与 y 相关系 L,L(x,y):xy,… 0元谓词——不含个体变项谓词, 即命题常项 或命题变项
《离散数学图论》课件

最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
离散数学PPT课件

定义2.1设A,B是两个命题公式,若A,B构成的等价 式AB为重言式,则称A与B等值,记为AB。
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
《离散数学函数》课件

幂函数
如正弦函数、余弦函数、正切函数等。
三角函数
$f(x) = sin x$。
正弦函数
$f(x) = cos x$。
余弦函数
$f(x) = tan x$。
正切函数
自然指数函数
$f(x) = e^x$。
幂指数函数
$f(x) = x^n$,其中 $n > 0$。
03
函数的运算
Chapter
函数的加法是一种对应关系,将两个函数的对应点一一对应起来。
总结词:函数的性质包括有界性、单调性、奇偶性等。
02
函数的分类
Chapter
01
02
03
04
$f(x) = ax + b$,其中 $a$ 和 $b$ 是常数,$a neq 0$。
线性函数
$f(x) = ax^2 + bx + c$,其中 $a neq 0$。
二次函数
$f(x) = x^n$,其中 $n$ 是实数。
函数的加法运算是在函数值域上进行的,将两个函数的对应点一一对应起来,形成一个新的函数。具体来说,如果函数$f(x)$和$g(x)$的定义域分别为$D_1$和$D_2$,值域分别为$R_1$和$R_2$,且$D_1 cap D_2 = emptyset$,那么函数$f(x)$和$g(x)$的加法运算结果是一个新的函数$h(x)$,其定义域为$D_1 cup D_2$,值域为$R_1 cup R_2$,且对于任意$x in D_1 cup D_2$,有$h(x) = f(x) + g(x)$。
VS
函数的复合是一种对应关系,将一个函数的对应点作为另一个函数的自变量。
详细描述
函数的复合运算是在一个函数的值域上定义另一个函数作为其自变量,从而形成一个新的函数。具体来说,如果函数$f(x)$的定义域为$D_1$,值域为$R_1$;函数$g(y)$的定义域为$R_1$,值域为$R_2$,那么函数$g(f(x))$的复合运算结果是一个新的函数,其定义域为$D_1$,值域为$R_2$。对于任意$x in D_1$,有$(g circ f)(x) = g(f(x))$。
如正弦函数、余弦函数、正切函数等。
三角函数
$f(x) = sin x$。
正弦函数
$f(x) = cos x$。
余弦函数
$f(x) = tan x$。
正切函数
自然指数函数
$f(x) = e^x$。
幂指数函数
$f(x) = x^n$,其中 $n > 0$。
03
函数的运算
Chapter
函数的加法是一种对应关系,将两个函数的对应点一一对应起来。
总结词:函数的性质包括有界性、单调性、奇偶性等。
02
函数的分类
Chapter
01
02
03
04
$f(x) = ax + b$,其中 $a$ 和 $b$ 是常数,$a neq 0$。
线性函数
$f(x) = ax^2 + bx + c$,其中 $a neq 0$。
二次函数
$f(x) = x^n$,其中 $n$ 是实数。
函数的加法运算是在函数值域上进行的,将两个函数的对应点一一对应起来,形成一个新的函数。具体来说,如果函数$f(x)$和$g(x)$的定义域分别为$D_1$和$D_2$,值域分别为$R_1$和$R_2$,且$D_1 cap D_2 = emptyset$,那么函数$f(x)$和$g(x)$的加法运算结果是一个新的函数$h(x)$,其定义域为$D_1 cup D_2$,值域为$R_1 cup R_2$,且对于任意$x in D_1 cup D_2$,有$h(x) = f(x) + g(x)$。
VS
函数的复合是一种对应关系,将一个函数的对应点作为另一个函数的自变量。
详细描述
函数的复合运算是在一个函数的值域上定义另一个函数作为其自变量,从而形成一个新的函数。具体来说,如果函数$f(x)$的定义域为$D_1$,值域为$R_1$;函数$g(y)$的定义域为$R_1$,值域为$R_2$,那么函数$g(f(x))$的复合运算结果是一个新的函数,其定义域为$D_1$,值域为$R_2$。对于任意$x in D_1$,有$(g circ f)(x) = g(f(x))$。
离散数学课件ppt课件

联结词可以嵌套使用,在嵌套使用时,规定如下优先顺序: ( ),┐,∧,∨,→, ,对于同一优先级的联结词,先出现 者先运算。
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在讨论抽象运算时,“运算”常记为“*”、
“∘”等。设*是二元运算,如果a与b运算得到c, 记作a*b=c;若*是一元运算,a的运算结果记 作*a或*(a)。
第五章:代数结构
设A=1 , a , 1 ,其中,a是非零实数。f定ቤተ መጻሕፍቲ ባይዱ为:
a
aA,f(a)= 1 。容易看出f是A上的一元运算。
又如,f:a m,nN,f(m,n)=m+n,f是自然数集合N上
河南理工大学电子教案
《离散数学》教案
计算机科学与技术学院
课程学时:64 主 讲:宋 成
第三篇:代数系统
本篇用代数方法来研究数学结构,故 又叫代数结构,它将用抽象的方法来研 究集合上的关系和运算。
代数的概念和方法已经渗透到计算 机科学的许多分支中,它对程序理论, 数据结构,编码理论的研究和逻辑电路 的设计已具有理论和实践的指导意义
教学类容: 代数系统的引入、运算及性质、半群、群与子群、 阿贝尔群和循环群、陪集与拉格朗日定理 、同态 与同构、环和域。
教学重点: 群、环、域的概念及运算,同态和同构。
教学难点: 同态与同构 的概念。
第五章:代数结构
§5.1 代数系统的引入 1、运算
【定义5.1.1】 设A是非空集合,一个从An到B的 映射,称为集合A上的n元运算。简称为n元运算。 如果B A,则称该n元运算是封闭的。 在定义5.1中,当n=1时,f称为集合A上的一 元运算;当n=2时,f称为集合A上的二元运算。
第五章:代数结构
§5.2二元运算的性质
5.2.1运算的基本性质 1.交换律
【定义5.2.1】 设*是非空集合A上的二元运算,如果对于任 意的a,bA,有a∗b=b∗a,则称二元运算∗在A上是可交换的,也 称二元运算*在A上满足交换律。
例如,设R为实数集合,对于任意的a,bR,规定 a∗b=(a–b)2 a∘b=a2+b2
【例5.3】设B是一个集合,A=P (B)是A幂集合。集合的求补
运算是A上的一元运算,集合的并和交运算是A上的是二元运算。 于是<A,∪,∩,~>构成一个代数系统,该代数系常称为集合代数。
【例5.4】设R-0是全体非零实数集合,*是R-0上二元运 算,定义为:a,b R-0,a*b=b。则<R-0,*>是代数系统。
a·b=a+b–ab 则运算∗、∘和·都是可交换的。
2.结合律 【定义5.2.2】 设*是非空集合A上的二元运算,如果对于任意 的a,b,cA,有(a*b)*c=a*(b*c),则称二元运算*在A上是可结合 的,也称二元运算∗在A上满足结合律
第五章:代数结构
实数集合上的普通加法和乘法是二元运算,满足结合律; 矩阵的加法和乘法也是二元运算,也满足结合律。
2.运算的表示 表示运算的方法通常有两种:解析公式和运算表。
解析公式是指用运算符号和运算对象组成的表达式。如
f(a)= 1 ,
a
i j i j k i k j i j k i j k
运算表是指运算对象和运算结果构成的二维表。 经常使用运算表来定义有限集合上的二元运算,特别当有限
集合上的二元运算不能用表达式简明地表示时,借助于运算表来 定义二元运算会带来方便。另外,运算表还便于对二元运算的某 些性质进行讨论,更形象地了解二元运算的有关特征。
中的元素:0,1,2,3,4,5,6分别看作是:星期日、星 期一、星期二、星期三、星期四、星期五、星期六。那么 4+72=6 可 解 释 为 : 星 期 四 再 过 两 天 后 是 星 期 六 ; 4+75=2 可 解释为:星期四再过五天后是星期二。这是模7加法实际意 义的一种解释。
第五章:代数结构
②A中任何元素的运算结果都属于A。A中任何元素的运 算结果都属于A通常称为运算在A是封闭的。
第五章:代数结构
【例5.1】设N为自然数集合,*和∘是N×N到N映射,规 定为:m,nN,
m∗n=minm,n m∘n=maxm,n 则∗和∘是N上的二元封闭运算。 【例5.2】设Nk=0,1,…,k-1。Nk上的二元运算+k定义为: 对于Nk中的任意两个元素i和j,有
的二元运算,它就是普通加法运算。普通减法也是自然数 集合N上的二元运算,但是它不是封闭的,因为两个自然数 相减可能得到负数,而负数不是自然数。所以普通的减法 不是自然数集合N上封闭的二元运算。
通过以上讨论可以看出,一个运算是否为集合A上的封 闭运算必须满足以下两点:
①A中任何元素都可以进行这种运算,且运算的结果是 惟一的。
本篇讨论一些典型的代数系统及其 性质。
第五章:代数结构
§5.1 代数系统的引入 §5.2 运算及其性质 §5.3 半群 §5.4 群与子群 §5.5 阿贝尔群和循环群 §5.6* 陪集与拉格朗日定理 §5.7 同态与同构 §5.8 环与域
第五章:代数结构
教学目的及要求: 深刻理解和掌握代数系统的基本概念和运算
设N4=0,1,2,3,N4上的模4加法+4可以用运算表表示,它的 运算表如表5.1所示。N4上的模4乘法×4也可以用运算表表示,它 的运算表如表5.2所示。
第五章:代数结构
表5.1
+4 0 1 2 3 00123 11230 22301 33012
表5.2
×4 0 1 2 3 00000 10123 20202 30321
i j i j k i k j i j k i j k
称二元运算+k为模k加法。
第五章:代数结构
Nk上
的二元运
算× 定 k
义为:对于Nk中的
任意两个
元素i
和j,有
i j
i j k
i k j i j除以k 的余数 i j k
称二元运算×k为模k的乘法。 模k加法+k和模k乘法×k是两种重要的二元运算。 在N7=0,1,2,3,4,5,6中,有4+72=6,4+75=2。如果把N7
第五章:代数结构
3 代数系统 【 定义5.1.2】 一个非空集合A连同若干个定义在该集合上
的 运 算 ∗ 1,∗2,…,∗k 所 组 成 的 系 统 称 为 一 个 代 数 系 统 , 记 作 <A,∗1,∗2,…,∗k>。
根据定义5.1.2,一个代数系统需要满足下面两个条件: ①有一个非空集合A。 ②有一些定义在集合A上的运算。 集合和定义在集合A上的运算是一个代数系统的两个要素, 缺一不可。
“∘”等。设*是二元运算,如果a与b运算得到c, 记作a*b=c;若*是一元运算,a的运算结果记 作*a或*(a)。
第五章:代数结构
设A=1 , a , 1 ,其中,a是非零实数。f定ቤተ መጻሕፍቲ ባይዱ为:
a
aA,f(a)= 1 。容易看出f是A上的一元运算。
又如,f:a m,nN,f(m,n)=m+n,f是自然数集合N上
河南理工大学电子教案
《离散数学》教案
计算机科学与技术学院
课程学时:64 主 讲:宋 成
第三篇:代数系统
本篇用代数方法来研究数学结构,故 又叫代数结构,它将用抽象的方法来研 究集合上的关系和运算。
代数的概念和方法已经渗透到计算 机科学的许多分支中,它对程序理论, 数据结构,编码理论的研究和逻辑电路 的设计已具有理论和实践的指导意义
教学类容: 代数系统的引入、运算及性质、半群、群与子群、 阿贝尔群和循环群、陪集与拉格朗日定理 、同态 与同构、环和域。
教学重点: 群、环、域的概念及运算,同态和同构。
教学难点: 同态与同构 的概念。
第五章:代数结构
§5.1 代数系统的引入 1、运算
【定义5.1.1】 设A是非空集合,一个从An到B的 映射,称为集合A上的n元运算。简称为n元运算。 如果B A,则称该n元运算是封闭的。 在定义5.1中,当n=1时,f称为集合A上的一 元运算;当n=2时,f称为集合A上的二元运算。
第五章:代数结构
§5.2二元运算的性质
5.2.1运算的基本性质 1.交换律
【定义5.2.1】 设*是非空集合A上的二元运算,如果对于任 意的a,bA,有a∗b=b∗a,则称二元运算∗在A上是可交换的,也 称二元运算*在A上满足交换律。
例如,设R为实数集合,对于任意的a,bR,规定 a∗b=(a–b)2 a∘b=a2+b2
【例5.3】设B是一个集合,A=P (B)是A幂集合。集合的求补
运算是A上的一元运算,集合的并和交运算是A上的是二元运算。 于是<A,∪,∩,~>构成一个代数系统,该代数系常称为集合代数。
【例5.4】设R-0是全体非零实数集合,*是R-0上二元运 算,定义为:a,b R-0,a*b=b。则<R-0,*>是代数系统。
a·b=a+b–ab 则运算∗、∘和·都是可交换的。
2.结合律 【定义5.2.2】 设*是非空集合A上的二元运算,如果对于任意 的a,b,cA,有(a*b)*c=a*(b*c),则称二元运算*在A上是可结合 的,也称二元运算∗在A上满足结合律
第五章:代数结构
实数集合上的普通加法和乘法是二元运算,满足结合律; 矩阵的加法和乘法也是二元运算,也满足结合律。
2.运算的表示 表示运算的方法通常有两种:解析公式和运算表。
解析公式是指用运算符号和运算对象组成的表达式。如
f(a)= 1 ,
a
i j i j k i k j i j k i j k
运算表是指运算对象和运算结果构成的二维表。 经常使用运算表来定义有限集合上的二元运算,特别当有限
集合上的二元运算不能用表达式简明地表示时,借助于运算表来 定义二元运算会带来方便。另外,运算表还便于对二元运算的某 些性质进行讨论,更形象地了解二元运算的有关特征。
中的元素:0,1,2,3,4,5,6分别看作是:星期日、星 期一、星期二、星期三、星期四、星期五、星期六。那么 4+72=6 可 解 释 为 : 星 期 四 再 过 两 天 后 是 星 期 六 ; 4+75=2 可 解释为:星期四再过五天后是星期二。这是模7加法实际意 义的一种解释。
第五章:代数结构
②A中任何元素的运算结果都属于A。A中任何元素的运 算结果都属于A通常称为运算在A是封闭的。
第五章:代数结构
【例5.1】设N为自然数集合,*和∘是N×N到N映射,规 定为:m,nN,
m∗n=minm,n m∘n=maxm,n 则∗和∘是N上的二元封闭运算。 【例5.2】设Nk=0,1,…,k-1。Nk上的二元运算+k定义为: 对于Nk中的任意两个元素i和j,有
的二元运算,它就是普通加法运算。普通减法也是自然数 集合N上的二元运算,但是它不是封闭的,因为两个自然数 相减可能得到负数,而负数不是自然数。所以普通的减法 不是自然数集合N上封闭的二元运算。
通过以上讨论可以看出,一个运算是否为集合A上的封 闭运算必须满足以下两点:
①A中任何元素都可以进行这种运算,且运算的结果是 惟一的。
本篇讨论一些典型的代数系统及其 性质。
第五章:代数结构
§5.1 代数系统的引入 §5.2 运算及其性质 §5.3 半群 §5.4 群与子群 §5.5 阿贝尔群和循环群 §5.6* 陪集与拉格朗日定理 §5.7 同态与同构 §5.8 环与域
第五章:代数结构
教学目的及要求: 深刻理解和掌握代数系统的基本概念和运算
设N4=0,1,2,3,N4上的模4加法+4可以用运算表表示,它的 运算表如表5.1所示。N4上的模4乘法×4也可以用运算表表示,它 的运算表如表5.2所示。
第五章:代数结构
表5.1
+4 0 1 2 3 00123 11230 22301 33012
表5.2
×4 0 1 2 3 00000 10123 20202 30321
i j i j k i k j i j k i j k
称二元运算+k为模k加法。
第五章:代数结构
Nk上
的二元运
算× 定 k
义为:对于Nk中的
任意两个
元素i
和j,有
i j
i j k
i k j i j除以k 的余数 i j k
称二元运算×k为模k的乘法。 模k加法+k和模k乘法×k是两种重要的二元运算。 在N7=0,1,2,3,4,5,6中,有4+72=6,4+75=2。如果把N7
第五章:代数结构
3 代数系统 【 定义5.1.2】 一个非空集合A连同若干个定义在该集合上
的 运 算 ∗ 1,∗2,…,∗k 所 组 成 的 系 统 称 为 一 个 代 数 系 统 , 记 作 <A,∗1,∗2,…,∗k>。
根据定义5.1.2,一个代数系统需要满足下面两个条件: ①有一个非空集合A。 ②有一些定义在集合A上的运算。 集合和定义在集合A上的运算是一个代数系统的两个要素, 缺一不可。