齿轮强度校核的新方法(图文)
齿轮强度校核的新方法(图文)

齿轮强度校核的新方法(图文)论文导读:使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的根据,实现变速器齿轮的计算机辅助设计,能够加快设计进程、缩短研制周期、提高设计质量。
本文应用了APDL,即ANSYS参数化设计语言(ANSYSParametricDesignLanguage),设计直齿圆柱齿轮模块与应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。
关键词:ANSYS,直齿圆柱齿轮,接触应力,齿根弯曲应力0引言齿轮作为在机械结构中经常用到的重要的传动零件,其强度直接影响到整个机械结构的工作性能与寿命,然而在传统齿轮设计中,齿轮的强度校核过程与设计过程要紧是通过人工设计完成,计算繁琐,设计周期长且难以实现优化设计。
本文使用有限元分析法对渐开线标准圆柱直齿轮进行接触应力与齿根弯曲应力进行分析计算。
同时在有限元分析中,对AYSYS[1]软件进行二次开发,即应用了APDL[2]语言,自动实现了齿轮的参数精确建模,自习惯网格划分与有限元强度分析。
最后与传统经典方法进行了对比分析,证明了本方法的准确性。
具有实际操作性与推广价值。
论文发表。
1.齿轮强度分析的基本要求在机械专业中,减速机是要紧的重要的传动机构,而齿轮传动是其中最常见的实现方式。
论文发表。
因此齿轮零件的设计就显得尤为重要。
其中齿轮应力强度校核是齿轮结构设计的前提,只有相互啮合的齿轮通过了接触与弯曲强度校核计算,才能进行齿轮结构设计。
当然相互啮合的齿轮种类十分繁杂。
这里我们为方便起见,只考虑渐开线标准圆柱直齿轮的问题。
传统的应力强度校核计算十分烦琐,需要查阅机械设计手册中大量的数据(包含图形与图表)。
而传动机构中往往是多对齿轮啮合,其中有一对不符合要求,整个计算就得重来,耗费了设计者大量的精力。
因此借助计算机及相应软件完成对齿轮的优化设计十分必要。
使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的根据,实现变速器齿轮的计算机辅助设计,能够加快设计进程、缩短研制周期、提高设计质量。
齿轮的校核PPT课件

圆轴扭转时的许用切应力[ ]值是根据试验确定的,可查阅有关设计手册。
7.5 D22(1- 2)
所以,轴的刚度也满足要求。
=9550 x 100 = 716.3 (N.m) 5kW,n=100r/min,轴的许用切应力
=4பைடு நூலகம்M Pa,空心圆轴的内外径之比 = 0.
对于轴1: 要综合考虑扭矩和极惯性矩来确定最大单位长度扭角。
MAC
MCD
τ = 则: max MTmax / WP
= 902 x 10 3/ 0.2 x 50 3 = 14.4 Mpa < 38 MPa
所以,轴的强度足够。
例2:某拖拉机输出轴的直径d=50mm,其转速n=250r/min,
许用切应力[ ]=60MPa,试按强度条件计算该轴能传递 的最大功率。
PA=20kW,轴的转速n=180r/min,齿轮B、C、D的输出
功率分别为PB=3kW,Pc=10kW,PD=7kW,轴的许用切应
力[ ]=38M Pa,试校核该轴的强度。
解:求各轮的外力偶矩:
A
B
CD
MA = 9550 x 20/180
MB MC MD
A B
CD
用截面法可得:MAB
MA = 1061 N.m MB = 159 N.m MC = 531 N.m MD = 371 N.m
1000MT
Wp2
=
716300 0.2D2 3 (1- 4 )
= 40 ( M Pa)
D2 =
716300 0.2(1- 0.5 4) 40
= 46 mm
d 2 = 0.5D2=23 mm
A1 A2
d12 =D22(1-
2) =1.28
齿轮部分中心距前,弯曲强度校核(DOC)

自己动手改,特别是图要加一个链传动,自己找图或者动手画,拍下来贴上去。
如果是按照课程设计画的草图,直接加;不是的话,按照当时计算的那个图画简图机械设计《课程设计》学院能源与动力工程班级热工B姓名学号指导老师目录第一章绪论第二章课题题目及主要技术参数说明2.1 课题题目2.2 主要技术参数说明2.3 传动系统工作条件2.4 传动系统方案的选择第三章减速器结构选择及相关性能参数计算3.1 减速器结构3.2 电动机选择3.3 传动比分配3.4 动力运动参数计算第四章齿轮的设计计算(包括小齿轮和大齿轮)4.1 齿轮材料和热处理的选择4.2 齿轮几何尺寸的设计计算4.2.1 按照接触强度初步设计齿轮主要尺寸4.2.2 齿轮弯曲强度校核4.2.3 齿轮几何尺寸的确定4.3 齿轮的结构设计第五章轴的设计计算(从动轴)5.1 轴的材料和热处理的选择5.2 轴几何尺寸的设计计算5.2.1 按照扭转强度初步设计轴的最小直径5.2.2 轴的结构设计5.2.3 轴的强度校核第六章轴承、键和联轴器的选择6.1 轴承的选择及校核6.2 键的选择计算及校核6.3 联轴器的选择第七章减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算7.1 润滑的选择确定7.2 密封的选择确定7.3减速器附件的选择确定7.4箱体主要结构尺寸计算第八章总结参考文献第一章绪论本论文主要内容是进行一级圆柱直齿轮的设计计算,在设计计算中运用到了《机械设计基础》、《机械制图》、《工程力学》、《公差与互换性》等多门课程知识,并运用《AUTOCAD》软件进行绘图,因此是一个非常重要的综合实践环节,也是一次全面的、规范的实践训练。
通过这次训练,使我们在众多方面得到了锻炼和培养。
主要体现在如下几个方面:(1)培养了我们理论联系实际的设计思想,训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。
直齿轮三个强度校核

TRUE
3.042632515
结果(大齿轮)
TRUE
2.678177001
————————————————————————分—————————————界—————————————线———————————————————
取值(大
齿)
C55~60;小齿轮15齿,大齿轮106齿;模数10
取值说明
次级计算
2 弯曲疲劳强度 校核
依据
F
=
Ft bmn
K AKV K KYFYSY
Ft
m
结果(小齿轮)
251.2786769
结果(大齿轮)
415.8612368
YF
Ys
圆周力
模数 齿形系数 应力修正系数
45600
10 2.15 1.78
Y
螺旋角系数
1
KA
工况系数
KV
动载系数
K 齿间载荷分布系数 K
齿向载荷分布系数
依据
1200
依据材料类别、热处理的方式与级别,对照齿轮 接触疲劳极限图线,查得。(本例小齿轮查h) 图,大齿轮查i)图)
结果
说明
N 60 nt 1.244331617
依据应力循环次数和热处理工艺,对照接触寿命 系数图线,查得。
应力循环次数
L
2.16E+07 大齿轮
h
1
1.06E+09 小齿轮
1.1 1
依据
H =ZEZHZ
2KT1 u 1 ZE bd12 u
弹性系数
结果
1030.972486
ZH 节点区域系数
Z 重合度系数
K
载荷系数
T1 传递扭矩/Nmm
齿轮传动机构设计及强度校核

齿轮传动机构设计及强度校核一、概述1.优点:传动效率高;工作可靠、寿命长;传动比准确;结构紧凑;功率和速度适用范围很广。
2.缺点:制造成本高;精度低时振动和噪声较大;不宜用于轴间距离较大的传动。
3.设计齿轮——设计确定齿轮的主要参数以及结构形式主要参数有:模数m、齿数z、螺旋角β以及齿宽b、中心距a、直径(分度圆、齿顶圆、齿根圆)、变位系数、力的大小。
齿轮类型:—外形及轴线:—根据装置形式:开式齿轮:齿轮完全外露,润滑条件差,易磨损,用于低速简易设备的传动中闭式齿轮:齿轮完全封闭,润滑条件好半开式齿轮有简单的防护罩—根据齿面硬度(hardness):硬度:金属抵抗其它更硬物体压入其表面的能力;硬度越高,耐磨性越好硬度检测方法:布氏硬度法(HBS)洛氏硬度法(HRC)软齿面齿面硬度≤350HBS 或≤38HRC硬齿面齿面硬度>350HBS或>38HRC二.齿轮传动的失效形式和设计准则齿轮传动的失效形式1)轮齿折断(Tooth breakage)疲劳折断齿根受弯曲应力-初始疲劳裂纹-裂纹不断扩展-轮齿折断2)过载折断短时过载或严重冲击,静强度不够全齿折断—齿宽较小的齿轮局部折断—斜齿轮或齿宽较大的直齿轮措施:增大模数(主要方法)、增大齿根过渡圆角半径、增加刚度(使载荷分布均匀)、采用合适的热处理(增加芯部的韧性)、提高齿面精度、正变位等。
备注:疲劳折断是闭式硬齿面的主要失效形式!疲劳折断产生机理:齿面受交变的接触应力-齿面受交变的接触应力-润滑油进入裂纹并产生挤压-表层金属剥落-麻点状凹坑注意:凹坑先出现在节线附近的齿根表面上,再向其它部位扩展;其形成与润滑油的存在密切相关;常发生于闭式软齿面(HBS≤350)传动中;开式传动中一般不会出现点蚀现象(磨损较快);措施:提高齿面硬度和质量、增大直径(主要方法)等。
3、齿面胶合产生机理:高速重载-摩擦热使油膜破裂-齿面金属直接接触并粘接-齿面相对滑动-较软齿面金属沿滑动方向被撕落。
齿轮强度校核(已验证)

2 cos(β b ) , cos ( t ) tan( t )
2
表16.2-43,大小齿轮均为钢件
4 a (1 ) 3 a
试验齿轮疲劳极限 ζ 齿轮设计寿命
按图16.2-17,齿轮滲碳淬火能保证有效层深 Hlim
参考表16.2-47选定 (循环次数)N L
输入齿轮分度圆直径 d1
A't Kw
齿轮为7级精度,齿形齿向均作修形,剃齿 功率 齿轮上圆周力 节点线速度 序号 1 2 动载系数 K1 K2 3 4 5 6 7 8 9 输入系数 使用系数 N m/s Ft v 代号 Ka Kv
d
1
n
d
1
1.70 齿轮1 1 1.008 34.800 0.0087 1 1.1 2.3419 ####### 0.8499 1550 齿轮2 1 1.012 34.800 0.0087 1 1.1 2.3419 189.800 0.9050 1550
齿轮强度校核计算(已验证)
输入扭矩 N·M T Mn α Z1 X1 b1 db1 da1 η 1 ε a u XnΣ 输 法向模数 入 压力角 数 输入齿轮齿数 据 输入齿轮变位系数 输入齿轮宽度 输入齿轮基圆直径 输入齿轮顶圆直径 滑动率 端面重合度 传动比(Z2/Z1) 总变位系数 2700.00 输入转速 4.50 螺旋角 20.00 中心距 19.00 输出齿轮齿数 0.2222 输出齿轮变位系数 32.00 输出齿轮宽度 92.3922 输出齿轮分度圆直径 85.9809 输出齿轮基圆直径 103.3922 输出齿轮顶圆直径 1.6137 滑动率 1.4285 轴向重合度 1.6842 分度圆端面压力角 0.0000 端面啮合角
齿轮校核

齿轮校核:软齿面齿轮按接触疲劳强度设计,按弯曲疲劳强度校核;硬齿面齿轮按弯曲疲劳强度设计,按接触疲劳强度校核。
齿轮:齿轮是指轮缘上有齿轮连续啮合传递运动和动力的机械元件。
齿轮在传动中的应用很早就出现了。
19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,随着生产的发展,齿轮运转的平稳性受到重视。
发展起源:历史在西方,公元前300年古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。
希腊著名学者亚里士多德和阿基米德都研究过齿轮,希腊有名的发明家古蒂西比奥斯在圆板工作台边缘上均匀地插上销子,使它与销轮啮合,他把这种机构应用到刻漏上。
这约是公元前150年的事。
在公元前100年,亚历山人的发明家赫伦发明了里程计,在里程计中使用了齿轮。
公元1世纪时,罗马的建筑家毕多毕斯制作的水车式制粉机上也使用了齿轮传动装置。
到14世纪,开始在钟表上使用齿轮。
东汉初年(公元1世纪)已有人字齿轮。
三国时期出现的指南车和记里鼓车已采用齿轮传动系统。
晋代杜预发明的水转连磨就是通过齿轮将水轮的动力传递给石磨的。
史书中关于齿轮传动系统的最早记载,是对唐代一行、梁令瓒于725年制造的水运浑仪的描述。
北宋时制造的水运仪象台(见中国古代计时器)运用了复杂的齿轮系统。
明代茅元仪著《武备志》(成书于1621年)记载了一种齿轮齿条传动装置。
1956年发掘的河北安午汲古城遗址中,发现了铁制棘齿轮,轮直径约80毫米,虽已残缺,但铁质较好,经研究,确认为是战国末期(公元前3世纪)到西汉(公元前206~公元24年)期间的制品。
1954年在山西省永济县蘖家崖出土了青铜棘齿轮。
参考同坑出土器物,可断定为秦代(公元前221~前206)或西汉初年遗物,轮40齿,直径约25毫米。
关于棘齿轮的用途,迄今未发现文字记载,推测可能用于制动,以防止轮轴倒转。
1953年陕西省长安县红庆村出土了一对青铜人字齿轮。
根据墓结构和墓葬物品情况分析,可认定这对齿轮出于东汉初年。
(完整版)齿轮强度校核及重合度计算(已优化)

深
参考表16.2-47选定
2
10 NL
6
0 .0191
参考GB/T3480-1997表14-1-98,按剃齿齿轮副选取
0.942 1550
15000000 0.962
1
12 工作硬化系数
ZW 图14-1-90或计算,大齿轮齿面硬度HBS>470
1
13 尺寸系数 14 最小安全系数
ZX 表14-1-99,按mn<7选取/
1.65105 大齿轮轴向重合度
εβ
传动比
u
3.929 节圆端面压力角
αt
齿轮为7级精度,齿形齿向均作修形,剃齿
齿轮上圆周力 N
节点线速度
mm/s
序号
输入系数
Ft v 代号
2T
d1
n d1
说明
16951 2.06 齿轮1
1 使用系数
Ka
参照表14-1-71说明
1
2 动载系数
Kv
1
K
K1 A
d
mtΒιβλιοθήκη z1mn z1 cos
径da
a
mn 2 cos
(z1 z2 )
角
αt
d a d 2ha
db d b d cos t
ha (ha*n x)mn
t arctan(tan n / cos )
28.5
3.43
28.5
3.43
48.02 188.65
4.5 3.2277
57.02
118.34 195.11
Ft b
K2
Z V 100
u2 1 u2
K1 K1、K2按表16.2-39查取,7级精度斜齿轮 K2 3 齿向载荷分布系数 KHβ、KF 参照表14-1-88/89说明按修形齿轮选取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮强度校核的新方法(图文)论文导读:使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。
本文应用了APDL,即ANSYS参数化设计语言(ANSYSParametricDesignLanguage),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。
关键词:ANSYS,直齿圆柱齿轮,接触应力,齿根弯曲应力
0引言
齿轮作为在机械结构中经常用到的重要的传动零件,其强度直接影响到整个机械结构的工作性能和寿命,然而在传统齿轮设计中,齿轮的强度校核过程和设计过程主要是通过人工设计完成,计算繁琐,设计周期长且难以实现优化设计。
本文采用有限元分析法对渐开线标准圆柱直齿轮进行接触应力和齿根弯曲应力进行分析计算。
并且在有限元分析中,对AYSYS[1]软件进行二次开发,即应用了APDL[2]语言,自动实现了齿轮的参数精确建模,自适应网格划分和有限元强度分析。
最后和传统经典方法进行了对比分析,证明了本方法的准确性。
具有实际操作性和推广价值。
论文发表。
1.齿轮强度分析的基本要求
在机械专业中,减速机是主要的重要的传动机构,而齿轮传动是其中最常见的实现方式。
论文发表。
因此齿轮零件的设计就显得尤为重要。
其中齿轮应力强度校核是齿轮结构设计的前提,只有相互啮合的齿轮通过了接触和弯曲强度校核计算,才能进行齿轮结构设计。
当然相互啮合的齿轮种类十分繁杂。
这里我们为方便起见,只考虑渐开线标准圆柱直齿轮的问题。
传统的应力强度校核计算十分烦琐,需要查阅机械设计手册中大量的数据(包括图形和图表)。
而传动机构中往往是多对齿轮啮合,其中有一对不符合要求,整个计算就得重来,耗费了设计者大量的精力。
因此借助计算机及相应软件完成对齿轮的优化设计十分必要。
使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。
本文应用了APDL,即ANSYS参数化设计语言(ANSYS Parametric Design Language),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。
2.问题研究的主要方法及实例
本文以ANSYS软件为平台,以直齿圆柱齿轮为实例,研究了在ANSYS 环境下实现直齿轮精确建模和应力分析的方法,并与弹性力学和机械手册的计算结果进行了比较。
2.1ANSYS软件介绍
ANSYS是一个大型通用有限元软件。
在机械结构系统中.主要在于分析机械结构系统受到负载后产生的力学效应.如位移、应力、变形等.根据该结果判断是否符合设计要求。
2.2 APDL介绍
APDL即ANSYS参数化设计语言(ANSYSParametric Design Language),用于自动利用参数(变量)创建模型。
很适于在系统之上根据特定的需要进行二次开发。
2.3 渐开线直齿圆柱齿轮的参数化二维建模
本文以《机械设计手册》[3]中第八章计算例题为实例。
渐开线圆柱直齿轮建模前的参数如表1所示:
表1渐开线圆柱直齿轮参数表
模数/ M=8 齿数Z1=30 Z2=95 压力角a_fdy=20o 顶隙系数haX=1 齿顶高系数cX=0.25 齿宽/ B=0.24
2.4 交互式人机对话
渐开线直齿圆柱齿轮成型时,首先在ANSYS中应用APDL中的*ASK命令实现人机对话,输入模型关键数据。
都通过在宏中包含*ASK命令,该宏就可以提示用户输入某个参数的值。
*ASK命令的格式为:
首先,用ANSYS导入文件The Gear Model of JXP,然后根据弹出的对话框输入数据,本程序输入值为例题。
1〉输入齿轮模数M=8,其命令流为
图1输入齿轮模数
2〉输入其他参数略。
2.5 构造齿轮的端面渐开线齿轮轮廓
利用已输入模型关键数据,根据标准齿轮的几何尺寸公式应用APDL 编写齿轮的几何尺寸计算程序。
应用APDL的基本特性将齿轮的几何尺寸由计算机自动计算,并把建立模型所需关键数据保存到数组中。
2.6 端面渐开线的绘制
按照APDL的语法规则写出表达式。
然后可以根据齿轮的参数绘制出完整的端面渐开线齿轮轮廓曲线,即得到该渐开线直齿圆柱齿轮齿形轮廓。
论文发表。
3.有限元模型的建立与求解
3.1建立数学模型、齿轮计算前处理
选取单元为2维4节点轴对称单元,形状为四边形Quad,采用四边形自由网格划分。
图2 有限元网格划分图
3.2 定义接触对
由于在理论计算中只即使一对齿轮相互作用,故在建模时只定义一对接触对。
定义接触对时,理论上要考虑最先接触的一对齿轮,否则有可能因为计算量过大导致溢处,而无法得到计算结果。
在定义接触对时要将接触对定义为非对称接触。
3.3 施加边界条件和荷载:
(1) 先在总体柱坐标系下固定第一个齿轮(主动轮)的轴功率孔上所有节点的径向位移。
(2) 再对第二个齿轮(从动轮)的轴功率孔上所有节点施加各个方向位移约束
(3)荷载计算,因为转矩由圆轴通过轴功率孔传给齿轮,所以把转矩分解成轴功率孔的节点上的周向力。