微带天线的设计
宽带圆极化微带天线分析与设计

宽带圆极化微带天线分析与设计一、本文概述本文旨在深入探讨宽带圆极化微带天线的分析与设计。
随着无线通信技术的飞速发展,天线作为无线通信系统的关键组成部分,其性能直接影响到整个系统的传输质量和效率。
宽带圆极化微带天线作为一种重要的天线类型,具有宽频带、圆极化、低剖面、易集成等优点,因此在卫星通信、移动通信、雷达系统等领域具有广泛的应用前景。
本文将首先介绍宽带圆极化微带天线的基本原理和特性,包括其辐射机制、极化特性、带宽特性等。
随后,将详细分析宽带圆极化微带天线的设计方法,包括天线尺寸的选择、馈电方式的设计、介质基板的选取等。
在此基础上,将探讨影响天线性能的关键因素,如阻抗匹配、交叉极化、增益等,并提出相应的优化策略。
本文还将通过具体的案例分析,展示宽带圆极化微带天线在实际应用中的性能表现。
通过对比分析不同设计方案下的天线性能,为工程师和研究者在实际应用中提供有益的参考。
本文将总结宽带圆极化微带天线的设计与优化策略,并展望其未来的发展趋势和应用前景。
通过本文的研究,旨在为宽带圆极化微带天线的分析与设计提供理论支持和实践指导。
二、圆极化微带天线的基本原理圆极化微带天线是一种能够在空间中产生圆形极化波的天线,它具有独特的电磁辐射特性,广泛应用于无线通信、雷达探测和卫星通信等领域。
了解圆极化微带天线的基本原理对于其分析与设计至关重要。
圆极化波是一种电磁波,其电场矢量在空间中随时间旋转,形成一个圆形的轨迹。
圆极化微带天线通过特定的设计和构造,能够在其辐射区域内产生这样的圆形极化波。
这种波形的特性在于,无论接收天线的极化方式如何,圆极化波都能在一定程度上被接收,因此具有更好的抗干扰能力和更广泛的适用性。
圆极化微带天线的基本原理主要基于电磁场理论和天线辐射原理。
它通过在微带天线的辐射贴片上引入特定的相位差,使得天线的两个正交分量产生90度的相位差,从而形成圆极化波。
这种相位差可以通过在辐射贴片上刻蚀特定的槽口或引入附加的相位延迟线来实现。
实验8-微带缝隙天线设计

实验八:9.2微带缝隙天线设计
(自我认为仿真的最好的一个)
一、设计要求
设计一个微带缝隙天线,工作频率为3.75 GHz,采用内部端口馈电,开放边界条件(即基板处于空气中)。
基板的介电常数为2.33,厚度为30 mil,金属导带厚度为0.7 mil.
要求:建立天线的电磁结构模型,设计匹配网络使天线取得最大辐射功率。
对天线进行电磁仿真分析,观察电流及电场的分布情况。
记录微带天线的模型图、匹配电路图,以及名项电磁分析结果。
二、实验仪器
硬件:PC
软件:AWR软件
三、设计步骤
1、绘制缝隙天线
2、添加匹配结构
3、查看网格剖分
4、查看电流、电场分布
四、数据记录及分析
设置mil单位需要把Metric units去掉勾选!
1、绘制缝隙天线
测量天线反射特性:
在圆图中,S11参数距圆图中心很远,在矩形图中S11参数不到-10db,说明反射特性很差,还需要对天线进行匹配,使其能有最大辐射功率。
2、添加匹配结构
然后进行匹配调节:
这部分我觉得是这个实验我做的最后的一个部分!
进行匹配后,圆图S11在3.75Ghz时,非常接近圆心,x=-1.354×10^-5;在矩形图频率为3.75Ghz时,S11参数为-88.44dB。
3、查看网格剖分
4、查看电流、电场分布电流分布:
电场分布:。
实验五-微带天线设计_图文_图文

• 把Layout层映射到金属层,也就是把Cond层粘贴到Sub介质板上,如下图所 示,选择“Layout Layer”标签,在“Name”下拉列表中选择贴片所在的Layout层 cond,单击【Strip】按钮完成贴片的粘贴。设置金属层参数,单击【Applay】 ,然后单击“OK”
(4)添加端口
end Zt=sqrt(50*Zin) %计话框
优化目标对话框
• 进行优化仿真,下图为优化后的仿真结果。
• 打开前面仿真过的微带贴片的Layout文件,按照原理图尺寸在Layout中划出 匹配结的图形,然后设置板材参数,插入端口。
• S参数仿真。 中心频率还是发生了偏移! 改进方法:减少匹配线长度,减少贴片长度
板材参数:
H:基板厚度(1.5 mm),
Er:基板相对介电常数(2.65)
Mur:磁导率(1),
Cond:金属电导率(5.88E+7)
Hu:封装高度(1.0e+33 mm), T:金属层厚度(0.035 mm)
TanD:损耗角正切(1e-4), Roungh:表面粗糙度(0 mm)
报告要求:
(1)简单叙述微带天线工作原理; (2)给出微带天线的版图尺寸; (3)给出版图仿真结果,并对其结果进行分析; (4)制作该天线,进行测试,给出天线的驻波测试结果,分析误差原因。
使天线辐射尽可能多的功率,必须使天线与空气匹配,输入驻波比尽可 能小。阻抗、驻波比与反射系数的关系为
(5) 辐射效率 Pr为天线辐射出的功率,单位为W;Pi为馈入天线的功率,单位为W 。 天线增益、方向性系数和辐射效率的关系: (6) 半功率角
(a) 按电场定义; (b) 按功率定义
1.3 常见的天线类型
微带天线设计

第一章微带天线简介1.1微带天线的发展历史与趋势微带天线是20世纪70年代以来逐渐发展起来的一种新型天线。
虽然在1953年就提出了微带天线的概念,但并没有在工程界的引起重视。
从20世纪50年代到60年代也只是做一些零星的研究,直到20世纪70年代初期,在微带传输线的理论模型及对敷铜的介质基片的光刻技术发展之后,第一批具有许多设计结构的实用的微带天线才被制造出来[3]。
为适应现代通信设备的需求,天线的研发方向主要往几个方面进行,即减小天线的尺寸、宽带和多波段工作、智能方向图控制。
随着电子设备集成度的提高,通信设备的体积也变得越来越小,这时天线尺寸就需要越来越小了。
然而,在减小天线的尺寸的同时又不明显影响天线的增益和效率是一项艰巨的工作。
电子设备集成度提高,经常需要一个天线在较宽的频率范围内来支持两个或更多的无线服务,宽带和多波段天线能满足这样的需要。
微带天线由于重量轻、体积小、成本低、制作工艺简单、易与有源器件和电路集成等诸多优点,所以得到广泛的应用和重视。
1.2 微带天线研究的背景微带天线是带有导体接地板的截止基片上贴加导体薄片而形成的天线。
微带天线通过微带线或者同轴线等馈线馈电,在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。
微带天线主要是一种谐振式天线,相对带宽比较窄,一般设计的带宽只有2%到5%。
随着天线的工作频率的降低,带宽也逐渐变窄。
在这样的背景下,研究影响微带天线带宽的因素,进而找到展宽微带天线的带宽的方法,对于微带天线能否在工业、民用、国防等领域得到广泛的应用,具有重要的意义。
1.3 多频带微带天线研究的意义当今,无线通讯行业发展迅猛,掌上电脑、笔记本电脑和手机都已经成了人们生活的必需品[4]。
对于频谱资源日益紧张的现在通讯领域,迫切需要天线具有双极化功能,因为双极化可使它的通讯容量增加1倍。
对于有些系统,则要求系统工作于双频,且各个频段的极化又不同。
设计1:侧馈矩形微带天线

背馈时
WG W 0.2g LG L 0.2g
侧馈时,基片宽度同上,长度要考虑馈线和匹配电路的配置而定
二、HFSS仿真设计:1、新建设计工程
二、HFSS仿真设计:2、定义设计变量
结构名称 辐射贴片 1/4波长阻抗 变换器 50Ω微带线 结构参数名称
长度 宽度 长度 宽度 长度 宽度 厚度
其中
Yin
2G G B 1, 1 2 Y Y T0 T0 cos ( z )
1 YT 0 ZT 0
Z为馈电点到天线边缘拐点处的距离,β是介质 中的相位常数
一、设计步骤:2、阻抗匹配
cos 2 ( z ) Z L Zin 2G
3.73
等效缝隙宽度
L 0.412h
c 2 f0 e
e 0.258 W / h 0.8
2L 30.21mm
e 0.3 W / h 0.264
0.75mm
辐射贴片长度
L
一、设计步骤:2、阻抗匹配
侧馈矩形微带天线输入阻抗计算公式 辐射电导
一、设计步骤:1、计算天线尺寸
由设计要求可知:f0=2.45GHz,εr=4.4,h=1.6mm 辐射贴片宽度
c 2 W 2 f0 r 1
1/2
37.26mm
1/2
有效介电常数
e
r 1 r 1
12h 1 2 2 W
1 G 120 2
0
k0W sin ( cos )tg 2 sin d 2
2
等效电纳
输入导纳
B
k0 L e ZT 0
ZT0是把天线视作传输线时的特性阻抗
微带天线仿真设计

微带天线(圆形贴片)仿真设计一.设计要求矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为2.45GHz,分析其远区辐射场特性以及S曲线。
二.设计目的1.理解和掌握微带天线的设计原理。
2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置。
3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型。
4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图。
5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响。
三.实验原理矩形贴片天线如下图一所示,用传输线模分析法介绍它的辐射原理。
设辐射元的长为L,宽为ω,介质基片的厚度为h。
现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。
在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。
在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。
因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。
缝的宽度△L≈h,长度为ω,两缝间距为L ≈λ/2。
这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。
图一矩形贴片天线示意图四.贴片天线仿真步骤1、建立新的工程运行HFSS,点击菜单栏中的Project>Insert HFSS Dessign,建立一个新的工程。
2、设置求解类型(1)在菜单栏中点击HFSS>Solution Type。
(2)在弹出的Solution Type窗口中(a)选择Driven Modal。
基于近零折射率超材料的微带天线的设计和研究

基于近零折射率超材料的微带天线的设计和研究一、近零折射率超材料的魔力说起“近零折射率”,你或许会觉得有点抽象,甚至有点让人摸不着头脑。
简单来说,它就是一种可以让光或电磁波在传播时,变得像“傻傻的”一样,不太按照常理来走的材料。
听起来是不是有点神奇?简单点说,当光线穿过这种材料时,它的传播速度和方向可以跟我们平时接触到的普通材料完全不同。
这就是为什么它叫“近零折射率”了,因为折射率接近于零,光波的行为简直可以说是被“解放”了。
这种特性在很多领域都有潜力,特别是在无线通信和微波天线的设计上。
而微带天线呢,大家可能会想,这个是不是就跟你家电视机、手机上用的天线差不多?其实它们是同一个家族的,差别就在于微带天线是专门设计来处理高频信号的,它们体积小、轻巧,广泛应用在现代通信系统中。
你要知道,随着技术的发展,微带天线的要求也越来越高。
比如说,要有更高的性能、更好的方向性、还有更小的体积。
传统的微带天线虽然已经够聪明了,但总觉得还可以更聪明一点。
这个时候,近零折射率的超材料就来了,简直是微带天线的“超级英雄”。
二、近零折射率超材料与微带天线的结合你可能会问了,为什么不直接用普通材料来做天线呢?其实普通材料的折射率固定了,光线或者电磁波的传播速度和方向就容易被限制。
尤其是当我们在高频通信中要求更快、更强的信号时,这种限制就暴露了出来。
而近零折射率超材料能带来“超乎常规”的传输能力,电磁波在它里面穿行时,就好像“腾云驾雾”,没那么容易被干扰。
更有意思的是,这种材料还可以控制电磁波的传播方向和方式,帮助微带天线更好地接收和发送信号。
想象一下,我们把这种超材料融入微带天线,简直是给天线加装了一个“高科技大脑”。
这种天线不仅能够提高信号的接收能力,而且还能在特定方向上集中能量,让信号传播得更远、更清晰。
你可能不知道,微带天线的工作频率通常是很高的,所以它对材料的要求也特别严格。
传统材料往往处理不了这么高频的信号,结果就是信号质量不稳定、甚至衰减得特别快。
微带天线设计实验报告hsff

微带天线设计实验报告hsff1. 引言微带天线是指一种在非导体衬底上,厚度远小于工作波长的金属片片状天线。
由于其结构简单、易于实现和与尺寸成正比的频率调谐特性,微带天线在无线通信系统、雷达系统、卫星通信系统等领域都有广泛应用。
本实验旨在设计一种基于微带天线的无线通信系统。
2. 设计原理微带天线的设计基于微带线的传输线理论和天线理论,通过调整微带天线的几何结构,可以实现对特定频率信号的发送和接收。
在本实验中,我们需要设计一种工作频率为2.4 GHz的微带天线。
微带天线主要由导体衬底、金属贴片和喇叭线组成。
导体衬底可以是介电材料,如玻璃纤维板、陶瓷板等,也可以是金属材料。
金属贴片是微带天线的辐射元件,其几何形状和尺寸决定了天线的频率特性。
喇叭线用于连接导体衬底和金属贴片,起到提供电信号的功能。
3. 设计步骤根据微带天线的设计原理和工作频率要求,我们可以按照以下步骤来设计微带天线:步骤一:确定导体衬底材料和尺寸根据设计要求选择合适的导体衬底材料,一般可选用介电常数在2到12之间的材料。
确定导体衬底的尺寸,以便适应工作频率。
步骤二:计算金属贴片的尺寸根据所选导体衬底的材料和尺寸,计算金属贴片的尺寸。
一般来说,金属贴片的长度和宽度与工作波长有关,且与导体衬底的介电常数相关。
步骤三:确定喇叭线的结构根据所选导体衬底的材料和尺寸,设计合适的喇叭线结构。
喇叭线的长度、宽度和厚度都会影响微带天线的频率调谐特性。
步骤四:制作微带天线样品根据设计得到的尺寸参数,使用相应的工艺方法制作微带天线样品。
常用的制作方法包括化学腐蚀、电镀等。
步骤五:测试天线性能通过天线测试仪器对微带天线进行性能测试,包括频率响应、增益、辐射图形等参数的测量。
4. 实验结果与分析经过设计和制作,在实验中成功制作了一种工作频率为2.4 GHz的微带天线样品。
经测试,该微带天线样品的频率响应符合设计要求,在工作频率范围内具有良好的增益和辐射特性。
为了进一步优化微带天线的性能,我们对设计参数进行了微调,得到了更好的工作频率和辐射特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微带天线设计天线大体可分为线天线和口径天线两类。
移动通信用的VHF 、UHF 天线,大多是以对称振子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。
天线的特征与天线的形状、大小及构成材料有关。
天线的大小一般以天线发射或接收电磁波的波长l 来计量。
因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。
与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。
最大辐射波束通常称为方向图的主瓣。
主瓣旁边的几个小的波束叫旁瓣。
为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有:1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。
2.天线效率3.极化特性4.频带宽度5.输入阻抗天线增益是在波阵面某一给定方向天线辐射强度的量度。
它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。
天线方向性GD与天线增益G类似但与天线增益定义略有不同。
因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。
理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。
这种情况下天线增益与天线方向性相等。
理想的天线辐射波束立体角ΩB及波束宽度θB实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。
在波束中心辐射强度最大,偏离波束中心,辐射强度减小。
辐射强度减小到3db时的立体角即定义为ΩB。
波束宽度θB与立体角ΩB关系为旁瓣电平旁瓣电平是指主瓣最近且电平最高的。
第一旁瓣电平,一般以分贝表示。
方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。
天线效率ηA定义为:式中,Pi为输入功率;P1为欧姆损耗;PΣ为辐射功率。
天线的辐射电阻RΣ用来度量天线辐射功率的能力,它是一个虚拟的量,定义如下:设有一个电阻RΣ,当通过它的电流等于天线上的最大电流时,其损耗的功率就等于辐射功率。
显然,辐射电阻越大,天线的辐射能力越强。
由上述定义得辐射电阻与辐射功率的关系为即辐射电阻为仿照引入辐射电阻的办法,损耗电阻R1为将上述两式代入效率公式,得天线效率为可见,要提高天线效率,应尽可能提高RΣ,降低R1。
极化特性是指天线在最大辐射方向上电场矢量的方向随时间变化的规律。
按天线所辐射的电场的极化形式,可将天线分为线极化天线、圆极化天线和椭圆极化天线。
线极化又可分为水平极化和垂直极化;圆极化和椭圆极化都可分为左旋和右旋。
输入阻抗与电压驻波比:天线的输入阻抗等于传输线的特性阻抗,才能使天线获得最大功率。
当天线工作频率偏离设计频率时,天线与传输线的匹配变坏,致使传输线上电压驻波比增大,天线效率降低。
因此在实际应用中,还引入电压驻波比参数,并且驻波比不能大于某一规定值。
天线的电参数都与频率有关,当工作频率偏离设计频率时,往往要引起天线参数的变化。
当工作频率变化时,天线的有关电参数不应超出规定的范围,这一频率范围称为频带宽度,简称为天线的带宽。
多数天线具有互易性,即天线在发射模式和接收模式具有相同的方向性。
如果一给定天线工作在发射模式,A 方向辐射电磁波的能力比B方向强100倍,那末该天线工作于接收模式时,接收A方向辐射来的电磁波灵敏度比B方向也强100倍。
如果所观测点离开波源很远、很远,波源可近似为点源。
从点源辐射的波其波阵面是球面。
因为观测点离开点源很远很远,在观察者所在的局部区域,其波阵面可近似为平面,当作平面波处理。
符合这一条件的场通常称为远区场。
在天线很多应用场合,远区场的假设都是成立的。
远区场假设为我们分析研究天线辐射的场带来很大方便。
这里所谓很远很远都是以波长来计量的。
同常规的微波天线相比,微带天线具有一些优点。
因而,在大约从100MHz到50GHz的宽频带上获得了大量的应用。
与通常的微波天线相比,微带天线的一些主要优点是:o重量轻、体积小、剖面薄的平面结构,可以做成共形天线;o制造成本低,易于大量生产;o可以做得很薄,因此,不扰动装载的宇宙飞船的空气动力学性能;o无需作大的变动,天线就能很容易地装在导弹、火箭和卫星上;o天线的散射截面较小;o稍稍改变馈电位置就可以获得线极化和圆极化(左旋和右旋);o比较容易制成双频率工作的天线;o不需要背腔;o微带天线适合于组合式设计(固体器件,如振荡器、放大器、可变衰减器、开关、调制器、混频器、移相器等可以直接加到天线基片上);o馈线和匹配网络可以和天线结构同时制作。
但是,与通常的微波天线相比,微带天线也有一些缺点:o频带窄;o有损耗,因而增益较低;o大多数微带天线只向半空间辐射;o最大增益实际上受限制(约为20dB);o馈线与辐射元之间的隔离差;o端射性能差;o可能存在表面波;o功率容量较低。
但是有一些办法可以减小某些缺点。
例如,只要在设计和制造过程中特别注意就可抑制或消除表面波。
在许多实际设计中,微带天线的优点远远超过它的缺点。
在一些显要的系统中已经应用微带天线的有:–移动通信;–卫星通讯;–多普勒及其它雷达;–无线电测高计;–指挥和控制系统;–导弹遥测;–武器信管;–便携装置;–环境检测仪表和遥感;–复杂天线中的馈电单元;–卫星导航接收机;–生物医学辐射器。
这些绝没有列全,随着对微带天线应用可能性认识的提高,微带天线的应用场合将继续增多。
微微带天线可以分为三种基本类型:微带贴片天线、微带行波天线和微带缝隙天线。
微带贴片天线微带贴片天线(MPA)是由介质基片、在基片一面上有任意平面几何形状的导电贴片和基片另一面上的地板所构成。
实际上,能计算其辐射特性的贴片图形是有限的。
图3-3 实际使用的各种微带天线图形图3-4 微带天线其它可能的几何图形微带行波天线(MTA)是由基片、在基片一面上的链形周期结构或普通的长TEM波传输线(也维持一个TE模)和基片另一面上的地板组成。
TEM波传输线的末端接匹配负载,当天线上维持行波时,可从天线结构设计上使主波束位于从边射到端射的任意方向图3-5 微带行波天线微带缝隙天线由微带馈线和开在地板上的缝隙组成。
缝隙可以是矩形(宽的或窄的),圆形或环形。
图3-6 微带缝隙天线大多数微带天线只在介质基片的一面上有辐射单元,因此,可以用微带天线或同轴线馈电。
因为天线输入阻抗不等于通常的50 传输线阻抗,所以需要匹配。
匹配可由适当选择馈电的位置来做到。
但是,馈电的位置也影响辐射特性。
图3-7 微带线馈电的天线图3-9 同轴馈电的微带天线中心微带馈电和偏心微带馈电。
馈电点的位置也决定激励那种模式。
当天线元的尺寸确定以后,可按下法进行匹配:先将中心馈电天线的贴片同50 的馈线一起光刻,测量输入阻抗并设计出匹配变阻器;再在天线元与馈线之间接入该匹配变阻器,重新做成天线。
另外,如果天线的几何图形只维持主模,则微带馈线可偏向一边以得到良好的匹配。
特定的天线模可用许多方法激励。
如果场沿矩形贴片的宽度变化,则当馈线沿宽度移动时,输入阻抗随之而变,从而提供了一种阻抗匹配的简单办法。
馈电位置的改变,使得馈线和天线之间的耦合改变,因而使谐振频率产生一个小的漂移,而辐射方向图仍然保持不变。
不过,稍加改变贴片尺寸或者天线尺寸,可补偿谐振频率的漂移。
对于微带馈电,用惠更斯原理可以把馈源模拟为贴在磁壁上沿z方向的电流带。
在薄的微带线中,除了馈线的极邻近区域外,在贴片边界上的任何地方,这个电流都很小。
在理想的情况下,可假定馈源是一个恒定电流的均匀电流带,如图3-8所示。
边缘效应要求电流带的宽度等于馈线的有效宽度,馈线对微带天线输入阻抗的影响表现为增加了一个感抗分量,此感抗可以由电流带的尺寸来计算。
各种同轴激励示于图3-。
在所有的情况中,同轴插座安装在印制电路板的背面,而同轴线内导体接在天线导体上。
对指定的模,同轴插座的位置可由经验去找,以便产生最好的匹配。
使用N型同轴插座的典型微带天线示于图3-9中。
根据惠更斯原理,同轴馈电可以用一个由底面流向顶面的电流圆柱带来模拟。
这个电流在地板上被环状磁流带圈起来,同轴线在地板上的开口则用电壁闭合。
如果忽略磁流的贡献,并假定电流在圆柱上是均匀的,则可进一步简化。
简化到最理想的情况是,取出电流圆柱,用一电流带代替,类似微带馈电的情况。
该带可认为是圆柱的中心轴,沿宽度方向铺开并具有等效宽度的均匀电流带,对于给定的馈电点和场模式,等效宽度可以根据计算与测量所得的阻抗轨迹一致性经验地确定。
一旦这个参数确定了,它就可以用在除馈电点在贴片边缘上以外的任何馈电位置和任何频率。
当馈电点在贴片边缘上时,可以认为,在贴片边缘上的边缘场使等效馈电宽度不同于它在天线内部时的值。
在矩形天线中,等效宽度为同轴馈线内径的五倍时,可给出良好的结果。