BP神经网络的学习要点

合集下载

BP神经网络详解-最好的版本课件(1)

BP神经网络详解-最好的版本课件(1)

月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导

。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2

bp使用方法

bp使用方法

bp使用方法
BP(Back Propagation)是一种常用的神经网络训练算法,用于训练多层感知器(MLP)等神经网络。

以下是BP的用方法:
1.初始化神经网络:首先,需要初始化一个神经网络,包括输入层、隐藏层和输出层。

每个层包含一定数量的神经元,每个神经元都通过权重与其他神经元相连。

权重初始化为随机值。

2.前向传播:输入数据通过输入层进入神经网络,然后依次经过隐藏层和输出层,最终得到输出结果。

在前向传播过程中,每个神经元将输入值与其权重相乘,加上偏置项,然后通过激活函数得到输出值。

3.计算误差:根据实际标签和神经网络的输出结果,计算误差。

误差是实际标签与输出结果之间的差异,通常使用平方误差或交叉熵误差等函数计算。

4.反向传播:根据计算出的误差,通过反向传播算法更新神经网络的权重。

反向传播算法将误差从输出层逐层反向传播到输入层,并根据梯度下降法更新权重。

5.迭代训练:重复步骤2-4多次,直到神经网络的输出结果收敛或达到预设的训练轮数。

在每次迭代中,权重都会被更新以减小误差。

6.测试与预测:训练完成后,可以使用测试数据对神经网络进行测试或进行预测。

将测试数据输入神经网络,得到输出结果,并根据输出结果进行评估和比较。

BP算法是一种监督学习算法,需要使用已知标签的数据进行训练。

在训练过程中,需要注意选择合适的激活函数、学习率和迭代次数等参数,以获得最佳的训练效果。

同时,为了避免过拟合和欠拟合等问题,可以使用正则化、Dropout 等技术来优化神经网络的性能。

BP神经网络概述

BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。

输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。

网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。

BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。

前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。

反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。

BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。

学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。

此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。

BP神经网络在各个领域都有广泛的应用。

在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。

在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。

在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。

综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。

尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。

神经网络基本知识

神经网络基本知识

神经网络基本知识、BP神经网络一.概述1.1神经网络的定义人工神经网络(Artificial Neural Networks,简写为 ANNs)是由大量类似于生物神经元的处理单元相互连接而成的非线性复杂网络系统。

它是用一定的简单的数学模型来对生物神经网络结构进行描述,并在一定的算法指导下,使其能够在某种程度上模拟生物神经网络所具有的智能行为,解决传统算法所不能胜任的智能信息处理的问题。

它是巨量信息并行处理和大规模并行计算的基础,神经网络既是高度非线性动力学系统,又是自组织自适应系统,可用来描述认知、决策和控制的智能行为。

1.2 神经网络的发展历史对人工神经网络的研究始于 1943 年,经历 60 多年的发展,目前已经在许多工程研究领域得到了广泛应用。

但它并不是从一开始就倍受关注,它的发展道路曲折、几经兴衰,大致可以分为以下五个阶段:①奠基阶段:1943 年,由心理学家 McCulloch 和数学家 Pitts 合作,提出第一个神经计算模型,简称 M-P 模型,开创了神经网络研究这一革命性的思想。

②第一次高潮阶段:20 世纪 50 年代末 60 年代初,该阶段基本上确立了从系统的角度研究人工神经网络。

1957 年 Rosenblatt 提出的感知器(Perceptron)模型,可以通过监督学习建立模式判别能力。

③坚持阶段:随着神经网络研究的深入开展,人们遇到了来自认识、应用实现等方面的难题,一时难以解决。

神经网络的工作方式与当时占主要地位的、以数学离散符号推理为基本特征的人工智能大相径庭,但是更主要的原因是:当时的微电子技术无法为神经网络的研究提供有效的技术保证,使得在其后十几年内人们对神经网络的研究进入了一个低潮阶段。

④第二次高潮阶段:20 世纪 70 年代后期,由于神经网络研究者的突出成果,并且传统的人工智能理论和 Von.Neumann 型计算机在许多智能信息处理问题上遇到了挫折,而科学技术的发展又为人工神经网络的物质实现提供了基础,促使神经网络的研究进入了一个新的高潮阶段。

BP神经网络与卷积神经网络(CNN)

BP神经网络与卷积神经网络(CNN)

BP 神经⽹络与卷积神经⽹络(CNN )BP 神经⽹络与卷积神经⽹络(CNN )1、BP 神经⽹络 1.1 神经⽹络基础神经⽹络的基本组成单元是神经元。

神经元的通⽤模型如图 1所⽰,其中常⽤的激活函数有阈值函数、sigmoid 函数和双曲正切函数。

图 1 神经元模型 神经元的输出为:神经⽹络是将多个神经元按⼀定规则联结在⼀起⽽形成的⽹络,如图 2所⽰。

图 2 神经⽹络⽰意图从图 2可以看出,⼀个神经⽹络包括输⼊层、隐含层(中间层)和输出层。

输⼊层神经元个数与输⼊数据的维数相同,输出层神经元个数与需要拟合的数据个数相同,隐含层神经元个数与层数就需要设计者⾃⼰根据⼀些规则和⽬标来设定。

在深度学习出现之前,隐含层的层数通常为⼀层,即通常使⽤的神经⽹络是3层⽹络。

以通⽤的神经⽹络模型来分析神经⽹络的输出。

⾸先规定⼀些参数的意义:⽤ 来表⽰第 l 层第j 个节点和第l+1层第i 个节点之间的权值,激活函数为f(x),第l 层⼀共有 个节点,偏置参数 ,则第l+1层第j 个节点的输出为:设置⼀个中间变量 ,⽽l+1层的输⼊与上⼀层对应神经元的输出是相同的,即 ,因此⽹络中某个神经元的输出可写如下等式:第 层的输出,⼜是下⼀层的输⼊。

设⼀共有 层⽹络(包含输出和输⼊),则⽹络输出层第i 个节点的输出为:由以上⼏个等式就可以得到从对应输⼊的输出层某个神经元的输出值。

那怎么保证输出的值是所想要的?通常采⽤后向反馈⽅法,y =f()∑i=1mw i x i w l+1ij l n θl =f(+)O l+1j ∑j=1l nw l+1ij I l+1iθl =+z l+1∑l nj=1w l+1ij I l+1i θl =I l+1i O l i=f()=f(+)=f(+)O l+1jzl+1∑j=1l nw l+1ij I l+1i θl ∑j=1l nw l+1ij O li θl l +1m =f(+)O m i∑i=1l m−1w m ij I mi θm−1将误差层层传递,并利⽤梯度下降法更新每⼀层的参数,这就是BP 神经⽹络。

BP神经网络学习及算法

BP神经网络学习及算法

BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。

(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。

每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。

输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。

(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。

同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。

隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。

2.反向传播:在前向传播后,可以计算出网络的输出值。

接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。

(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。

误差函数的具体形式根据问题的特点而定。

(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。

首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。

依此类推,直到计算出输入层神经元的误差。

(3)更新权值:利用误差和学习率来更新网络中的权值。

通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。

权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。

以上就是BP神经网络的学习算法。

在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。

此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

bp神经网络的课程设计

bp神经网络的课程设计

bp神经网络的课程设计一、课程目标知识目标:1. 理解BP神经网络的原理和基本结构,掌握其计算过程和应用场景。

2. 学会使用BP神经网络进行数据分类和预测,了解其优缺点。

3. 掌握调整BP神经网络参数的方法,提高网络的性能。

技能目标:1. 能够运用BP神经网络构建简单的模型,解决实际问题。

2. 熟练使用相关软件或编程语言实现BP神经网络的训练和预测。

3. 学会分析BP神经网络训练结果,优化网络结构和参数。

情感态度价值观目标:1. 培养学生对人工智能技术的兴趣和好奇心,激发其探索精神。

2. 增强学生的团队协作意识,培养其在合作中解决问题的能力。

3. 使学生认识到BP神经网络在现代科技发展中的重要作用,树立正确的价值观。

课程性质:本课程为信息技术或人工智能相关课程的拓展内容,适用于高年级学生。

学生特点:具备一定的编程基础和数学知识,对人工智能有一定了解,具有较强的学习能力和探索精神。

教学要求:注重理论与实践相结合,强调动手实践,引导学生主动探索,培养学生解决问题的能力和团队协作精神。

通过本课程的学习,使学生能够将BP神经网络应用于实际问题,提高其解决复杂问题的能力。

教学过程中,关注学生个体差异,提供个性化指导,确保学习目标的达成。

二、教学内容1. 引言:介绍人工智能的发展历程,引出BP神经网络在现代科技中的应用价值。

- 章节:人工智能概述2. 理论知识:- BP神经网络基本原理:感知机、多层前馈神经网络、反向传播算法。

- 网络结构:输入层、隐藏层、输出层。

- 激活函数:Sigmoid、ReLU等。

- 学习算法:梯度下降法、动量法等。

- 章节:BP神经网络原理与结构3. 实践操作:- 搭建BP神经网络模型:使用相关软件或编程语言(如Python、MATLAB 等)实现。

- 数据集准备:分类问题、回归问题。

- 网络训练与优化:调整学习率、隐藏层节点数、迭代次数等参数。

- 预测与分析:评估模型性能,优化网络结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络的学习王贵腾摘要:人工神经网络是近年来的热点研究领域,是人类智能研究的重要组成部分。

BP神经网络作为目前应用较多的一种神经网络结构,具有良好的逼近性能,且结构简单,性能优良。

但仍存在收敛速度慢,易陷入局部极小值的问题,通过附加动量项法、自适应学习率法、数据归一化法、遗传算法等,可大幅度改善其性能,可广泛应用于多输入多输出的非线性系统。

关键词:BP神经网络;BP算法;动量项;自适应学习率;归一化;遗传算法1.绪论1.1人工神经网络概述人工神经网络(Artificial Neural Network),简称神经网络(NN),是由大量处理单元(神经元)组成的非线性大规模自适应系统。

它具有自组织,自适应和自学习能力,以及具有非线性、非局域性,非定常性和非凸性等特点。

它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理,记忆信息的方式设计一种新的机器使之具有人脑那样的信息处理能力。

神经网络作为计算智能与控制的重要分支,在控制领域具有如下优点:1)能逼近任意L2范数上的非线性函数;2)信息分布式存储与处理,鲁棒性和容错性强;3)便于处理多输入多输出问题;4)具有实现高速并行计算的潜力;5)具有学习能力,对环境变化具有自适应性,对模型依赖性不强,主要用于解决非线性系统的控制问题。

同时,神经网络控制在多种控制结构中得到应用,如PID控制、模型参考自适应控制、前馈反馈控制、内模控制、逆系统控制、预测控制等。

目前神经网络的研究主要集中在三个方面:理论研究、实现技术研究、应用研究。

1.2 BP神经网络概述BP神经网络是1986年由Rumelhart和McClelland一同提出的一种多层前馈神经网络。

该网络采用BP算法——一种误差反向传播(Back Propagation)算法,其方法是依据负梯度下降方向迭代调整网络的权值和阀值以实现训练误差目标函数的最小化。

由于BP神经网络在实际应用中存在着收敛速度慢、网络结构难以确定、容易陷入局部极小值、泛化能力不强的缺陷,近年来,许多学者为满足实际应用中需要提出了许多改进方法,在网络自身性能的改善方面做了大量而有实际意义的工作,并且在BP神经网络的理论方面的研究和实际问题上应用也取得了丰硕的成果。

对BP神经网络的理论研究,概括起来大致分为三个方面:改进激励函数,权值选取优化和网络拓扑结构。

1.3本文研究内容本文从神经网络出发,研究其中应用最为广泛的BP神经网络模型,分析其缺点和不足,提出改进措施,并探讨其应用。

具体研究内容包括:1)研究人工神经网络的基本原理;2)对BP神经网络进行分析,探讨BP算法的缺陷;3)提出对BP神经网络的改进和优化;4)基于MATLAB的BP神经网络的建模仿真。

2.神经网络基本原理神经网络,主要是模拟人的神经系统。

其神经元特性、网络结构、学习算法是神经网络的三要素。

2.1神经元特性神经网络是由大量简单处理单元组成,通过可变权值连接而成的并行分布式系统,神经元是神经网络的基本处理单元。

1943年提出的MP模型,经不断改进形成了现在广泛应用的BP神经元模型,MP 模型如图2-1所示。

图2-1 人工神经元模型模型基于以下六点假设:1)神经元是多输入单输出的信息处理单元;2)神经元输入:兴奋性输入和抑制性输入;3)神经元具有空间整合特性和阀值特性;4)输入和输出间有固定时滞(突触延搁);5)忽略时间整合作用和不应期;6)突触时延和突触强度为常数(时不变)。

神经元信号处理特性(转移函数)是决定人工神经网络整体性能的三大要素之一。

包括阀值型转移函数、连续非线性转移函数、分段线性转移函数、概率型转移函数等。

2.2神经网络结构神经网络拓扑结构是决定神经网络特性的第二大要素。

包括:1)层次型结构。

包括单纯型层次网络结构、输出层到输入层有连接的层次网络结构、层内有互连的层次网络结构。

2)互连型结构。

包括全互连型、局部互连型、稀疏连接型。

按信息流向类型可分为前馈型网络和反馈型网络。

2.3神经网络学习算法神经网络的学习方式是决定神经网络信息处理性能的第三大要素。

神经网络的工作方式分为两个阶段:学习期和工作期。

神经网络的学习类型包括有导师学习(有监督学习)、无导师学习(无监督学习)、灌输式学习(死记硬背学习)、再励式学习。

3.BP神经网络3.1 BP神经网络结构采用BP算法的神经网络模型称为BP神经网络,一般由输入层、隐层和输出层组成,隐层可以是一层或者多层,每个层中又包含许多单个神经元,在BP神经网络中,层与层之间的神经元是全连接,层内部的神经元之间是无连接的。

各隐层节点的激活函数使用Sigmoid 函数,其输入层和输出层激励函数可以根据应用的不同需要而异。

因此,BP神经网络是前向反馈网络的一种,其网络结构可以采用简要的形式来描述,如图3-1。

输入层隐层输出层图3-1 BP神经网络结构3.2 BP算法BP算法即误差反向传播(Back Propagation)算法,其主要思想是是把学习过程分为两个阶段:第一阶段(正向传播过程),给出输入信息通过输入层经隐含层处理并计算每个单元的实际输出值;第二阶段(反向过程),若在输出层未能得到期望的输出值,则逐层递归地计算实际输出与期望输出之差值(即误差),以便根据此差值调节权值。

BP 算法的基本步骤如下:1) 设置初始权值W(0)为较小的随机非零值。

2) 给定输入/输出样本集合{,}p p p u d ,误差指标 21()2p ip ip iE d y =-∑ 总误差指标1P all p p E E ==∑ 重复下列过程直至满足收敛条件(allE ε≤)a) 对于任意一个样本p ,计算 正向过程 1,,,,,l l p p p p u O x y - 反向过程 ()()()'11'1,1,1l L ipip ip ip l l l l ip mp mi ip m p l l ip jp l ijd y f x w f x l L E O l L w δδδδ++-⎧⎪=--•⎪⎪⎛⎫⎪=••<<⎨ ⎪⎝⎭⎪⎪∂⎪=•<≤∂⎪⎩∑ b) 修正权值()()1,0l lij ij l ij E w t w t w ηη∂+=->∂ 包括两种学习方式:模式(Pattern )学习方式:()()1,0pl l ij ij l ij E w t w t w ηη∂+=->∂训练(Epoch )学习方式:()()1,0l lall ij ij l ij E w t w t w ηη∂+=->∂ 3.3 BP 神经网络存在的缺陷由于BP 神经网络是基于负梯度下降算法的网络模型,就不可避免的存在着一些缺陷和不足:1)BP 学习算法采用梯度下降法来收敛实际输出与期望输出之间误差。

因为误差是高维权向量的复杂非线性函数,故易陷入局部极小值;2)网络在学习过程收敛速度慢;3)在网络训练过程中容易发生振荡,导致网络无法收敛;4)网络的结构难以确定(包括隐层数及各隐层节点数的确定);5)在学习新样本时有遗忘以学过样本的趋势,因为每输入一个样本,网络的权值就要修改一次;6)学习样本的数量和质量影响学习效果(主要是泛化能力)和学习速度。

4. BP 算法的改进标准的 BP 算法是基于梯度下降法,通过计算目标函数对网络权值和阈值进行修正的。

改进算法一种是在标准梯度下降法的基础上,只用到目标函数对权值和阈值的一阶导数(梯度)信息。

4.1附加动量项法它的实质就是改变学习率η来提高网络性能,其网络连接权的迭代关系式由传统 BP 算法()()1,0l lij ij l ij E w t w t w ηη∂+=->∂ 变成()()()()11l lij ij ij ij l ij E w t w t w t w t w ηα∂⎡⎤+=-+--⎣⎦∂ 其中α为动量因子,01α<<。

动量项()()1ij ij w t w t α⎡⎤--⎣⎦的作用在于记忆上一时刻的连接权的变化方向(即变化量的值),这样就可以用较大的学习速率系数η以提高学习速度。

附加动量项利用其“惯性效应”来抑制网络训练中可能出现的振荡,起到了缓冲平滑的作用。

此外,附加动量项还有利于脱离平坦区。

4.2自适应学习率法该方法被认为是一种最简单最有效的方法。

在 BP 算法中,连接权的调整决定于学习速率和梯度,但是,在基本 BP 算法中,学习速率是不变的。

实际上学习速率对收敛速度的影响也很大,通过对它的在线调整,可以大大提高收敛速度。

学习速率的调整原则上是使它在每一步保持尽可能大的值,而又不致使学习过程失去稳定性。

学习速率可以根据误差变化的信息和误差函数对连接权梯度变化的信息进行启发式调整,也可以根据误差函数对学习速率的梯度直接进行调整。

对于批处理可以根据总误差变化的信息进行启发式调整,其规则是:1)若总误差all E 减小,则学习率增加。

2)若总误差all E 增加,则学习率减小。

当新误差与老误差之比超过一定值,则学习率快速下降。

上述规则可用如下迭代方程来描述:()()()()()()()1,1,11,1,11,all all all all a n ifE w n E w n a b n ifE w n kE w n b n elseααα⎧-<->⎡⎤⎡⎤⎣⎦⎣⎦⎪⎪->-<⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪-⎪⎩ 4.3输入输出数据归一化各输入数据往往具有不同的物理含义和量纲,取值范围差异可能较大,归一化将避免取值较小的输入分量的作用被淹没;对于S 型转移函数,归一化可防止因神经元净输入过大而使其输出饱和,避免进入误差曲面平坦区;对输出进行归一化,可使各神经元输出在误差指标中具有等量的作用。

4.4利用遗传算法优化遗传算法优化神经网络主要包括三方面:网络结构优化、权值优化、学习规则优化,这里主要讨论的是权值优化。

首先,用遗传算法对初始权值分布进行优化,在解空间中找出一个较好的搜索空间;然后,再用BP 算法在这个较小的解空间中搜索出最优解。

用改进的遗传算法优化神经网络权值,能够更好地防止搜索陷入局部极小值。

遗传算法优化神经网络权值的主要步骤如图4-1所示。

图4-1 遗传算法优化BP 神经网络权值流程5.基于MATLAB的建模仿真MATLAB中的神经网络工具箱由许多子程序组成,这些子程序已完成了神经网络算法中所涉及的许多运算和操作,使用者根据需要调用相关函数即可。

对于一个实际问题,选用哪种BP算法很难判断,它取决于很多因素,包括问题的复杂程度、学习样本的多少、隐层的节点数目、误差目标等。

例:创建一个含一个隐层(含3 个神经元)的单输出BP 神经网络,采用各种不同的算法训练该网络,并对一位整数奇偶性判别问题进行测试。

相关文档
最新文档