乘法原理ppt
合集下载
分类加法计数原理与分步乘法计数原理PPT教学课件

故任选一名学生任学生会体育部长有30+30+20=80种不同 的方法.
11.某文艺团体有10人,每人至少会唱歌或跳舞中的一 种,其中7人会唱歌,5人会跳舞,从中选出会唱歌与会跳舞 的各1人,有多少种不同的选法?
解析:首先求得只会唱歌的有5人,只会跳舞的有3人, 既会唱歌又会跳舞的有2人.按“多面手”2人当选情况分四 类.
(2)第一象限内的点,即x,y必须为正数,从而只能取A、 B中的正数,同样分两类.N=2×2+2×2=8(个).
即这些点中,位于第一象限的有8个点.
跟踪练习
3.设有5幅不同的国画,2幅不同的油画,7幅不同的水 彩画,从这些画中选出2幅不同种类的画布置房间,有几种不 同的选法?
解析:要完成的“一件事”是“从现有的这些画中选出2 幅不同种类的画”.分3类,每一类又分两步:
点评:明确要完成一个圆的方程的实质是得到一组a,b, r的值,应分三步完成,应用分步乘法计数原理来解.
1.对分类计数原理的理解
(1)分类计数原理的特点:各类中的每一种方法都可以完 成要做的事情.
(2)应用分类计数原理要注意的问题.
第一类办法:从书架上层任取一本数学书,有5种不同的 方法;
第二类办法:从书架中层任取一本语文书,有3种不同的 方法;
第三类办法:从书架下层任取一本英语书,有2种不同的 方法.
只要在书架上任意取出一本书,任务即完成.由分类加 法计数原理知,不同的取法共有N=5+3+2=10(种).
(2)从书架上任取三本书,其中数学书、语文书、英语书 各一本,可以分成三个步骤完成:
自测自评
1.某班有男生26人,女生24人,从中选一位同学为数学 课代表,则不同选法的种数是___5_0____.
2.从A地到B地要经过C地和D地,从A地到C地有3条路, 从C地到D地有2条路,从D地到B地有4条路,则从A地到B地 不同走法的种数是______2_4_.
11.某文艺团体有10人,每人至少会唱歌或跳舞中的一 种,其中7人会唱歌,5人会跳舞,从中选出会唱歌与会跳舞 的各1人,有多少种不同的选法?
解析:首先求得只会唱歌的有5人,只会跳舞的有3人, 既会唱歌又会跳舞的有2人.按“多面手”2人当选情况分四 类.
(2)第一象限内的点,即x,y必须为正数,从而只能取A、 B中的正数,同样分两类.N=2×2+2×2=8(个).
即这些点中,位于第一象限的有8个点.
跟踪练习
3.设有5幅不同的国画,2幅不同的油画,7幅不同的水 彩画,从这些画中选出2幅不同种类的画布置房间,有几种不 同的选法?
解析:要完成的“一件事”是“从现有的这些画中选出2 幅不同种类的画”.分3类,每一类又分两步:
点评:明确要完成一个圆的方程的实质是得到一组a,b, r的值,应分三步完成,应用分步乘法计数原理来解.
1.对分类计数原理的理解
(1)分类计数原理的特点:各类中的每一种方法都可以完 成要做的事情.
(2)应用分类计数原理要注意的问题.
第一类办法:从书架上层任取一本数学书,有5种不同的 方法;
第二类办法:从书架中层任取一本语文书,有3种不同的 方法;
第三类办法:从书架下层任取一本英语书,有2种不同的 方法.
只要在书架上任意取出一本书,任务即完成.由分类加 法计数原理知,不同的取法共有N=5+3+2=10(种).
(2)从书架上任取三本书,其中数学书、语文书、英语书 各一本,可以分成三个步骤完成:
自测自评
1.某班有男生26人,女生24人,从中选一位同学为数学 课代表,则不同选法的种数是___5_0____.
2.从A地到B地要经过C地和D地,从A地到C地有3条路, 从C地到D地有2条路,从D地到B地有4条路,则从A地到B地 不同走法的种数是______2_4_.
第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

数为A45=120. 故符合题意的四位数一共有960+120=1 080(个). 答案:1 080
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值
结构力学图乘法课件

THANKS
感谢观看
工程实践应用
探讨结构力学图乘法在工程实践中的应用,包括结构分析和设计、损伤识别与健康监测、物理实验模拟等领域,以帮 助学员了解该领域的实际应用和未来发展方向。
对个人发展的启示 总结学习结构力学图乘法的经验和方法,提出对个人发展的启示和建议,包括思维方式、分析问题和解 决问题的能力以及团队协作等方面的提升。
图乘法的扩展应用
建筑结构分析
图乘法在建筑结构分析中有着广泛的应用,可以用于分析建筑结构的强度、刚度和稳定性。 通过图乘法,工程师可以快速求解出建筑结构的响应和性能,为建筑设计和施工提供依据。
桥梁结构分析
图乘法在桥梁结构分析中也有着重要的应用,可以用于分析桥梁的承载能力和稳定性。通 过图乘法,工程师可以得出桥梁在不同载荷条件下的响应和性能,为桥梁的设计和施工提 供依据。
选择实例
选择具有代表性的扭转结构作 为分析对象。
建模分析
建立结构模型,进行静力分析 和动力学分析。
结果比较
比较不同设计方案和参数下的 结果,分析优劣。
结论总结
总结分析结果,提出优化方案 和结论。
06
图乘法的应用与扩展
图乘法在结构设计中的应用
01
简化复杂结构分析
图乘法可以用于求解复杂结构的内力和位移,通过将结构分解为简单部
教学方法评析
对采用的教学方法和策略进行反 思和评析,包括案例分析、课堂 讲解、小组讨论和习题练习等, 以帮助学员更好地掌握知识和技
能。
学员收获与感受
分享学员在学习过程中的收获和 感受,包括对基本概念的理解、 解决问题的能力和实践应用能力
的提升等方面。
展望与启示
前沿技术发展
介绍结构力学图乘法领域的前沿技术和研究动态,包括新理论、新方法和新应用等,以激发学员对该领域的兴趣和研 究热情。
6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.
学而思加乘原理初步 ppt课件

• 所以共 有8+6+12=26(种)取法
学而思加乘原理初步
• 花店有10盆不 的茉莉花,15盆不同的 菊花,8盆不同的丁香花。现在人从中 出出2盆,而且不能是同一品种的,一共有多少种不同的取法?
• 解:分三类情况:情况1取茉莉花和菊花有10×15=150(种);情况2取茉莉 花和丁香花有10×8=80(种);情况3取菊花和丁香花有15×8=120(种)所 以共有150+80+120=350
• 解:先分类:挂一面:4种;挂两面:4×3=12(种);挂三面:4×3×2=24 (种)所以共有4+12+24=40(种)信号
学而思加乘原理初步
• 有红、黄、蓝三种颜色信号旗各一面。他牛牛在旗杆上挂信号旗时每次可从上 到下依次挂一面、两面或三面,排成一列。则牛牛一共可以表示出多少种不同 的信号?
学而思加乘原理初步
学而思加乘原理初步
上海
飞机(4个班次)
北京
火车(7个班次)
第一类:4种 第二类:7种
4+7=11(种)
学而思 加乘原 如理果初完步成一项工作有N类方法:
在第一类中有M(1)种不同的方法; 在第二类中有M(2)种不同的方法; 以此类推,在第N类中有M(N)种不同的 方法; 总共有: M(1)+M(2)+......+M(N)=总共的方法
学而思加乘原理初步
五名同学去照相馆拍照:
甲不能站在两侧,能照出多少张不同的照片? 解:3 ×4×3×2×1=72(种)
学而思加乘原理初步
用数字1,2,3,4,5,6,7, (1)可以组成多少个两位数? (2)可以组成多少个无重复数字的三位数 (3)可以组成多少个无重复数字的四位偶数? (4)可以组成多少个无重复数字的四位奇数? 解(1)7×7=49(个) (2)7×6×5=210(个) (3)3×6×5×4=360(个) (4)4×6×5×4=480(个)
学而思加乘原理初步
• 花店有10盆不 的茉莉花,15盆不同的 菊花,8盆不同的丁香花。现在人从中 出出2盆,而且不能是同一品种的,一共有多少种不同的取法?
• 解:分三类情况:情况1取茉莉花和菊花有10×15=150(种);情况2取茉莉 花和丁香花有10×8=80(种);情况3取菊花和丁香花有15×8=120(种)所 以共有150+80+120=350
• 解:先分类:挂一面:4种;挂两面:4×3=12(种);挂三面:4×3×2=24 (种)所以共有4+12+24=40(种)信号
学而思加乘原理初步
• 有红、黄、蓝三种颜色信号旗各一面。他牛牛在旗杆上挂信号旗时每次可从上 到下依次挂一面、两面或三面,排成一列。则牛牛一共可以表示出多少种不同 的信号?
学而思加乘原理初步
学而思加乘原理初步
上海
飞机(4个班次)
北京
火车(7个班次)
第一类:4种 第二类:7种
4+7=11(种)
学而思 加乘原 如理果初完步成一项工作有N类方法:
在第一类中有M(1)种不同的方法; 在第二类中有M(2)种不同的方法; 以此类推,在第N类中有M(N)种不同的 方法; 总共有: M(1)+M(2)+......+M(N)=总共的方法
学而思加乘原理初步
五名同学去照相馆拍照:
甲不能站在两侧,能照出多少张不同的照片? 解:3 ×4×3×2×1=72(种)
学而思加乘原理初步
用数字1,2,3,4,5,6,7, (1)可以组成多少个两位数? (2)可以组成多少个无重复数字的三位数 (3)可以组成多少个无重复数字的四位偶数? (4)可以组成多少个无重复数字的四位奇数? 解(1)7×7=49(个) (2)7×6×5=210(个) (3)3×6×5×4=360(个) (4)4×6×5×4=480(个)
分类加法计数原理和分步乘法计数原理 课件

问题 5 若还有 C 大学,其中强项专业为:新闻学、金融学、 人力资源学,那么,这名同学可能的专业选择共有多少种? 答 这名同学可以选择 A、B、C 三所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方 法,在 C 大学中有 3 种专业选择方法.又由于三所大学没有 共同的强项专业,因此根据分类加法计数原理,这名同学可 能的专业选择种数为 5+4+3=12. 小结 如果完成一件事有 n 类不同方案,在第 1 类方案中 有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方 法,……,在第 n 类方案中有 mn 种不同的方法,那么完成 这件事共有 m1+m2+m3+…+mn 种不同的方法.
小结 解两个计数原理的综合应用题时,最容易出现不知道应 用哪个原理解题的情况,其思维障碍在于没有区分该问题是 “分类”还是“分步”,突破方法在于认真审题,明确“完成 一件事”的含义.具体应用时灵活性很大,要在做题过程中不 断体会和思考,基本原则是“化繁理:完成一件事有两类不同方案,在第 1
类方案中有 m 种不同的方法,在第 2 类方案中有 n 种不 同的方法,那么完成这件事共有 N= m+n 种不同的方法. 2.分步乘法计数原理:完成一件事需要两个步骤,做第 1 步 有 m 种不同的方法,做第 2 步有 n 种不同的方法,那么 完成这件事共有 N= m×n 种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到 A、B 两
所大学各有一些自己感兴趣的强项专业,具体情况如下:
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
高中数学 排列、组合、二项式定理 分步乘法计数原理 (初始课件)
导入
• 思考:用前4个大写英文字母和1—9九个阿 拉伯数字,以A1,A2,……,B1,B2,…… 的方式给教室的座位编号,总共能编出多 少个不同的号码? • 我们可以这样思考: • 由于前四个英文字母中的任意一个都能与9 个数字中的任何一个组成一个号码,而且 他们各不相同,因此共有4*9=36个不同的 号码。
• 问题2:要从甲、乙、丙、丁4幅不同的画 中选出2幅,分别挂在寝室左右两边墙上的 指定位置,则共有___种不同的挂法. • 解:共有N=4*2=8种挂法。
• 探究:如果完成一件事需要三个步骤, 在第1步中有m1种不同的方法,在第2步中 有m2种不同的方法,在第3步中有m3种不同 的方法,那么完成这件事共有多少种不同 的方法? • 如果完成一件事情需要n个不同的步骤, 在每一个步骤中都有若干种不同方法,那 么应当如何计数呢?
思考?
• 这个问题有什么特征?根据它的特征你能 总结出什么分步乘法计数原理吗?
• 上述问题中,最重要的特征是“和”字的 出现:每个座位由一个英文字母和一个阿 拉伯数字构成,每个英文字母与不同的数 字组成的号码是各不相同的。
• 一般地,有如下原理: • 分步乘法计数原理 完成一件事情需要两个 步骤,做第1步有m种不同的方法,做第2步 有n种不同的方法,那么完成这件事情共有 • N=m+n • 种不同的方法。
内容
描述
课件名称
分步乘法计数原理
课程内容
分步乘法计数原理概念及其特征
教学设计
激趣导入:通过两个具体例子引出分步乘法计数原理 概念。 知识新授:通过实例总结分步乘法计数原理,分清它 的条件和结论。 课堂练习:通过一小题巩固分步乘法计数原理 课堂小结:总结分步乘法计数原理
分步乘法计数原理
第十章 第一节 分类加法计数原理与分步乘法计数原理 课件(共30张PPT)
主,难度将会变小.
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.