图像处理实验报告.

合集下载

数字图像处理实验报告——图像分割实验

数字图像处理实验报告——图像分割实验

实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。

实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。

3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。

通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。

2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

图像处理实验报告

图像处理实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。

本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。

二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。

三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。

该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。

我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。

2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。

预处理的目的是去除图像中的噪声、平滑图像的边缘等。

我们使用了均值滤波和中值滤波两种常用的图像平滑方法。

通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。

3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。

在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。

直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。

灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。

4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。

在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。

阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。

边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。

5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。

在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。

纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。

图像分割处理实验报告

图像分割处理实验报告

图像分割处理实验报告1. 引言图像分割是计算机视觉中的重要任务之一,其目标是将图像划分成具有相似特征的子区域。

图像分割在很多应用领域中都有着广泛的应用,比如医学影像分析、目标检测和图像编辑等。

本实验旨在探索不同的图像分割算法,并比较它们在不同场景下的效果和性能。

2. 实验方法2.1 实验数据本实验选取了一组包含不同场景的图像作为实验数据集,包括自然景观、人物肖像和城市街景等。

每张图像的分辨率为500x500像素。

2.2 实验算法本实验使用了两种经典的图像分割算法进行比较,分别是基于阈值的分割和基于边缘的分割。

2.2.1 基于阈值的分割基于阈值的分割算法是一种简单而直观的方法,其原理是根据像素值的亮度信息将图像分割成不同的区域。

在本实验中,我们将图像的灰度值与一个事先设定的阈值进行比较,如果大于阈值则设为白色,否则设为黑色,从而得到分割后的图像。

2.2.2 基于边缘的分割基于边缘的分割算法利用图像中的边缘信息进行分割,其原理是检测图像中的边缘并将其作为分割的依据。

在本实验中,我们使用了Canny边缘检测算法来提取图像中的边缘信息,然后根据边缘的位置进行分割。

2.3 实验流程本实验的流程如下:1. 加载图像数据集;2. 对每张图像分别应用基于阈值的分割算法和基于边缘的分割算法;3. 计算分割结果和原始图像之间的相似度,使用结构相似性指标(SSIM)进行评估;4. 分析并比较两种算法在不同场景下的分割效果和性能。

3. 实验结果3.1 分割效果实验结果表明,基于阈值的分割算法在处理简单场景的图像时效果较好,可以比较准确地将图像分割为目标区域和背景。

然而,当图像的复杂度增加时,基于阈值的分割算法的效果明显下降,往往会产生较多的误分割。

相比之下,基于边缘的分割算法在处理复杂场景的图像时表现良好。

通过提取图像的边缘信息,该算法能够较准确地分割出图像中的目标区域,相比于基于阈值的分割算法,其产生的误分割较少。

3.2 性能评估通过计算分割结果和原始图像之间的SSIM指标,我们可以得到两种算法在不同场景下的性能评估。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。

实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。

本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。

实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。

2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。

3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。

4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。

实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。

通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。

这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。

在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。

图像处理实验报告

图像处理实验报告

图像处理实验报告实验⼀基于matlab 的⼈脸识别技术⼀、实验⽬的1.熟悉⼈脸识别的⼀般流程与常见识别⽅法;2.熟悉不同的特征提取⽅法在⼈脸识别的应⽤;3.了解在实际的⼈脸识别中,学习样本数等参数对识别率的影响;4.了解⾮⼈脸学习样本库的构建在⼈脸识别的重要作⽤。

使⽤MATLAB 平台编程,采⽤K-L 变换、特征提取及图像处理技术,实现⼈脸识别⼆、实验内容与实验仪器、设备1.构建⾮⼈脸学习样本库;2.观测不同的特征提取⽅法对⼈脸识别率的影响;3.观测不同的学习样本数对⼈脸识别率的影响;1. PC 机-系统最低配置 512M 内存、P4 CPU ;2. Matlab 仿真软件- 7.0 / 7.1 / 2006a 等版本的Matlab 软件。

3. CBCL ⼈脸样本库三、实验原理1.⼈脸特征提取的算法通过判别图像中所有可能区域是否属于“⼈脸模式”的⽅法来实现⼈脸检测。

这类⽅法有:特征脸法、⼈⼯神经⽹络法、⽀持向量机法;积分图像法。

本次使⽤的是PCA(主成分分析法)其原理是:利⽤K-L 变换抽取⼈脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到⼀组投影系数,通过与各个⼈脸图像⽐较进⾏识别。

对于⼀幅M*N 的⼈脸图像,将其每列相连构成⼀个⼤⼩为D=M*N 维的列向量。

D 就是⼈脸图像的维数,即是图像空间的维数。

设n 是训练样本的数⽬;X j 表⽰第j 幅⼈脸图像形成的⼈脸向量,则所需样本的协⽅差矩阵为:1()()m Ti i i S x u x u ==--∑ (1)其中U 为训练样本的平均图像向量:11mi i u x n ==∑ (2)令A=[x 1-u,x 2-u,...x n -u],则有S r =AA T ,其维数为D ×D 。

根据K-L 变换原理,需要求得的新坐标系由矩阵AA T 的⾮零特征值所对应的特征向量组成。

直接计算的计算量⽐较⼤,所以采⽤奇异值分解(SVD)定理,通过求解A T A 的特征值和特征向量来获得AA T 的特征值和特征向量。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

图像处理美工实验报告

图像处理美工实验报告1. 实验目的本次实验旨在通过图像处理技术,提升图片的美观度。

通过对图像进行调整、修复、美化等处理,使得图片在色彩、对比度、清晰度等方面表现出更好的效果。

2. 实验环境- 操作系统:Windows 10- 编程语言:Python- 开发环境:Anaconda Navigator- 相关软件:Adobe Photoshop3. 实验过程3.1 图片调整首先,我们使用Adobe Photoshop对原始图片进行调整。

通过调整图片的亮度、对比度、色调等参数,使得图片的整体效果更加明亮、鲜艳。

3.2 图像修复接着,我们使用图像处理库中的算法对图片进行修复。

通过去除噪点、消除瑕疵、修复缺失等操作,使得图片中的细节更加清晰、完整。

3.3 图像滤镜在调整和修复完成后,我们尝试使用不同的滤镜效果来美化图片。

通过施加不同的滤镜效果,例如模糊、锐化、马赛克等,我们可以给图片加入一些艺术效果,使得图片更加具有视觉冲击力。

3.4 图像细节增强为了使得图片更加饱满、立体,我们可以对图片中的细节部分进行增强处理。

通过增强细节的锐度、增加线条的清晰程度,我们可以使得图片中的物体更加鲜活、立体。

3.5 色彩调整最后,我们对图片的色彩进行调整。

通过调整图片的色相、饱和度、明度等参数,我们可以让图片的色彩更加丰富、鲜艳。

同时,我们可以对不同色彩通道进行调整,使得图片的整体色调更加协调、统一。

4. 实验结果经过一系列的图像处理操作,我们成功提升了图片的美观度。

原始图片与经过处理后的图片相比,色彩更加明亮饱满,细节更加清晰,整体效果更加出色。

同时,通过施加不同的滤镜效果和调整色彩,我们还加入了一些艺术效果,提升了图片的视觉冲击力。

5. 总结通过本次实验,我们了解了图像处理技术在美工方面的应用。

图像处理可以对图片进行调整、修复、美化等操作,提升其美观度和质量。

合理使用图像处理技术,可以使得图片更加生动、吸引人,为设计和美工工作提供了有力的支持。

身份证识别图像处理实验报告

身份证识别图像处理实验报告摘要:本实验通过图像处理技术,对身份证进行识别和处理。

通过对身份证图像的预处理、特征提取和识别算法的应用,实现了对身份证信息的自动提取和识别。

实验结果表明,该方法能够有效地识别身份证信息,具有较高的准确性和鲁棒性。

1. 引言身份证是一种重要的身份证明文件,广泛应用于各个领域。

然而,传统的手工识别方式效率低下且易出错。

因此,本实验旨在通过图像处理技术,实现对身份证的自动识别和信息提取。

2. 实验方法2.1 身份证图像预处理首先,对身份证图像进行预处理,包括灰度化、二值化、去噪等步骤。

通过将彩色图像转换为灰度图像,可以简化图像处理的复杂度。

然后,通过阈值分割将图像转化为二值图像,以便更好地提取身份证信息。

最后,采用滤波器等方法去除图像中的噪声,提高识别的准确性。

2.2 身份证信息提取在身份证图像预处理完成后,需要提取身份证的关键信息,包括姓名、性别、民族、出生日期、住址和身份证号码等。

通过图像处理技术,可以实现对这些信息的自动提取。

例如,通过模板匹配或特征点提取等方法,可以准确地提取身份证号码。

同时,结合OCR(Optical Character Recognition,光学字符识别)技术,可以提取其他文字信息。

2.3 身份证信息识别在身份证信息提取完成后,需要对提取的信息进行识别。

通过特征提取和分类算法,可以实现对身份证信息的准确识别。

例如,可以使用支持向量机(Support Vector Machine,SVM)等机器学习算法进行分类。

通过训练模型,可以将提取的身份证信息与已知的身份证信息进行匹配,从而实现识别。

3. 实验结果与分析经过实验,我们得到了一批身份证图像,并进行了图像处理和信息识别。

实验结果表明,该方法能够有效地识别身份证信息。

在识别准确率方面,我们进行了多次实验,平均准确率达到了90%以上。

同时,该方法对于不同类型的身份证图像都具有较好的鲁棒性,能够适应不同光照条件和角度的变化。

图像处理实验报告

大学新闻与传播学院实验教学中心实验报告实验名称图像处理指导教师洪杰文华滢年级08 学号23 成绩一、预习部分1、实验目的2、实验基本原理3、主要仪器设备(含必要的元器件、工具)1、实验目的:(1)熟悉和掌握数字图像的基本概念和技术指标,掌握色彩模式、图像分辨率、图像深度、图像文件格式与图像的显示效果、文件容量的关系。

(2)了解和掌握数字图像压缩的概念,观察不同的压缩比对图像的影响。

(3)了解和掌握图像中色彩的确定及选取方法,掌握前景色和背景色的概念及调整方法,掌握色彩填充的基本概念及应用。

(4)了解和掌握图像处理软件Photoshop的基本功能和基本使用方法,熟练掌握图层与选择区的基本使用方法。

(5)通过创造性的构图和对布局及色彩等的巧妙处理,一幅好的图画可以将一个主题以含蓄而又深刻的方式予以提示,并往往具有比单纯的语言文字更强的表现力。

在掌握图像处理基本概念和Photoshop基本使用方法的基础上,对已有的数字图像做一些基本的创意设计和编辑处理。

2、实验基本原理:基于photoshop软件的图像处理。

3、主要仪器设备(含必要的元器件、工具):Adobe Photoshop二、实验操作部分1、实验操作过程2、实验数据、观察到的实验现象1、实验操作过程:1.图像的基本变换(1)自选一幅不小于400×400pixel的彩色数字图像。

在Photoshop中打开该图像,记录其技术参数:文件格式、文件容量,图像尺寸(pixel和cm)、分辨率、色彩模式等。

文件格式:JPEG 图像;文件容量:59.7kb;图像尺寸(pixel和cm):600×600pixel;分辨率:72像素/英寸;色彩模式:RGB模式。

(2)对该图像重采样,要求采样后的图像分辨率为150dpi,图像尺寸为300×300pixel。

色彩模式分别变换成灰度、Indexed和RGB模式,按BMP格式分别保存成不同名称的图像文件;重新打开并观察变换后的显示效果,并记录各个文件的容量。

灰度图像处理实验报告

灰度图像处理实验报告实验背景灰度图像处理是图像处理中的一项重要任务,它通过将彩色图像转换为仅包含灰度信息的图像,从而简化图像处理的复杂度。

灰度图像处理在计算机视觉、图像识别和模式识别等领域有着广泛的应用。

实验目的本实验的目的是通过python编程实现灰度图像处理算法,包括灰度化、二值化、图像平滑以及直方图均衡化等,从而深入理解灰度图像处理的原理和算法,并掌握实现相关算法的编程技巧。

实验过程1. 数据准备在本次实验中,我们选用了一张彩色图像作为处理对象,该图像包含丰富的纹理和明暗变化。

首先,我们需要将彩色图像转换为灰度图像,以便后续的处理。

2. 灰度化灰度化将彩色图像转换为灰度图像,即将每个像素点的RGB三个分量的值按照一定的权重进行加权平均,得到对应的灰度值。

常用的加权平均法为:Gray = 0.299 * R + 0.587 * G + 0.114 * B上述公式中的0.299、0.587和0.114是经验值,表示红、绿和蓝三个分量的权重。

3. 二值化二值化将灰度图像转换为二值图像,即将每个像素点的灰度值与一个阈值进行比较,若大于阈值,则该像素点的值为255(表示白色),否则其值为0(表示黑色)。

在实际应用中,阈值的选取通常需要根据具体的图像和任务进行调整。

4. 图像平滑图像平滑是为了减少图像的噪声和细节,使得图像更加平滑,在一些图像处理任务中有着重要的应用。

常用的图像平滑算法包括均值滤波、中值滤波和高斯滤波等。

在本次实验中,我们选择了均值滤波作为图像平滑的算法,并使用一个3x3的滤波模板对图像进行卷积操作。

5. 直方图均衡化直方图均衡化是一种常用的图像增强技术,通过对图像的灰度级进行重新分配,使得原始图像中较暗的像素点和较亮的像素点在直方图上均匀分布,从而增强图像的对比度和视觉效果。

实验结果经过实验,我们得到了经过灰度化、二值化、图像平滑和直方图均衡化等处理后的图像。

与原始彩色图像相比,经过灰度化的图像丢失了颜色信息,但保留了图像的亮度信息;经过二值化的图像将图像的亮度信息进一步简化,只保留了黑色和白色两种颜色;经过图像平滑的处理,图像的细节和噪声得到了一定程度的抑制;经过直方图均衡化的处理,图像的对比度得到了显著的提升,整体的视觉效果更好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及要求一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类: 亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

规定双精度型归一化亮度图像的取值范围是[0,1](2) 二值图像一幅二值图像是一个取值只有0和1的逻辑数组。

而一幅取值只包含0和1的uint8类数组,在MATLAB中并不认为是二值图像。

使用logical函数可以把数值数组转化为二值数组或逻辑数B=logical(A)组。

创建一个逻辑图像,其语法为:其中,B是由0和1构成的数值数组。

——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师: Hiyanbaoigao要测试一个数组是否为逻辑数组,可以使用函数:islogical(c)若C是逻辑数组,则该函数返回1;否则,返回0。

(3) 索引图像索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。

一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。

(4) RGB图像一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相对应的红、绿、蓝三个分量。

按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。

令fR,fG和fB分别代表三种RGB分量图像。

一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像:rgb_image=cat(3,fR,fG,fB)在操作中,图像按顺序放置。

三、实验程序及结果J=imread('P1.tif');姓名:同组姓名:指导老师:I=imresize(J,0.5);figure,imshow(I)imfinfo 'P1.tif';imwrite(I,'P1Jpg.jpg','quality',50);imwrite(I,'P1Bmp.bmp');figure, imshow('P1Bmp.bmp');I_g=rgb2gray(I);gg=im2bw(I_g);figure, imshow(gg)——————————————————————————————————————————————————————班级:学号:班级:学号:姓名:同组姓名:指导老师:——————————————————————————————————————————————————————实验二图像增强—灰度变换及直方图变换一、实验目的:1.了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。

2.学会对图像直方图的分析,掌握灰度直方图的概念及其计算方法。

3.掌握直接灰度变换的图像增强方法。

4.熟练掌握直力图均衡化和直方图规定化的计算过程;5.掌握色彩直方图的概念和计算方法6.利用MATLAB程序进行图像增强。

二、实验原理及要求2.1 灰度变换术语‘空间域’指的是图像平面本身,在空间与内处理图像的方法是直接对图像的像素进行处理。

空间域处理方法分为两种:灰度级变换、空间滤波。

空间域技术直接对像素进行操作其表达式为g(x,y)=T[f(x,y)] 其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定领域内。

定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域,。

此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的领域。

T应用于每个位置(x,y),以便在该位置得到输出图像g。

在计算(x,y)处的g值时,只使用该领域的像素。

——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f在该点处的亮度决定,T也变为一个亮度或灰度级变化函数。

当处理单设(灰度)图像时,这两个术语可以互换。

由于亮度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式: s=T(r) 其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。

2.2 直方图变换直方图是多种空间城处理技术的基础。

直方图操作能有效地用于图像增强。

除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。

直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。

直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。

直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。

灰度直方图是图像预处理中涉及最广泛的基本概念之一。

图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。

直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。

直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:三、实验程序及结果1)灰度变化f=imread('P2.jpg'); i=rgb2gray(f); subplot(1,2,1);imshow(i,[]);g=imhist(i,256); subplot(1,2,2); plot(g);g1=imadjust(f,[0 1],[1 0]); figure,imshow(g1)g2=imadjust(i,[0.5 0.75],[0 1]); figure,imshow(g2) g=imread('P2.jpg');h=log(1+double(g)); h=mat2gray(h); h=im2uint8(h); figure,imshow(h)010*******00.511.522.533.54x 104班级:学号:姓名:同组姓名:指导老师:灰度图像8位图2)直方图变化A=imread('P2.jpg');P=rgb2gray(A)[m,n]=size(P);B=zeros(size(P));l=m*n;r=zeros(1,256);y=zeros(1,256);A=double(P);for i=1:mfor j=1:nr(A(i,j)+1)=r(A(i,j)+1)+1;endendr=r./l;for k=1:256for j=1:ky(k)=y(k)+r(j);endendfor k=1:256y(k)=floor(255*y(k)+0.5);endfor i=1:mfor j=1:nB(i,j)=y(A(i,j)+1);endendA=uint8(A);B=uint8(B);subplot(1,2,1) ;imshow(A);title('原图像')subplot(1,2,2) ;imhist(A);title('原图像的直方图')————————————————————————————————————————————————————————————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:原图像00.511.522.53x 104原图像的直方图0100200直方图变换——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:实验三 图像增强—空域滤波及频域滤波一、实验目的1. 进一步了解MatLab 软件/语言,学会使用MatLab 对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果;2. 掌握常用的空域滤波方法; 3.掌握怎样利用傅立叶变换进行频域滤波; 4.掌握频域滤波的概念及方法; 5.熟练掌握频域空间的各类滤波器; 6.利用MATLAB 程序进行空域及频域滤波。

相关文档
最新文档