现代(智能)优化算法

现代优化方法综述

1.引言 优化设计英文名是optimization design,从多种方案中选择最佳方案的设计方法。它以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,寻求最优的设计方案。 第二次世界大战期间,在军事上首先应用了优化技术。1967年,美国的R.L.福克斯等发表了第一篇机构最优化论文。1970年,C.S.贝特勒等用几何规划解决了液体动压轴承的优化设计问题后,优化设计在机械设计中得到应用和发展。随着数学理论和电子计算机技术的进一步发展,优化设计已逐步形成为一门新兴的独立的工程学科,并在生产实践中得到了广泛的应用。通常设计方案可以用一组参数来表示,这些参数有些已经给定,有些没有给定,需要在设计中优选,称为设计变量。如何找到一组最合适的设计变量,在允许的范围内,能使所设计的产品结构最合理、性能最好、质量最高、成本最低(即技术经济指标最佳),有市场竞争能力,同时设计的时间又不要太长,这就是优化设计所要解决的问题。一般来说,优化设计有以下几个步骤:①建立数学模型。②选择最优化算法。③程序设计。 ④制定目标要求。⑤计算机自动筛选最优设计方案等。 2.数学模型 优化设计的数学模型是对优化设计工程问题的数学描述,它包含设计变量、目标函数和设计约束三个基本要素。 2.1设计变量 2.1.1基本参数 a、定义:在设计过程中进行选择变化并最终确定的各项独立参数称为设计变量。 b、说明:在设计选择过程中,这些设计变量是变量,但它们一旦被确定后,设计对象也 就完全确定了。最优化设计是研究怎样合理地优选这些设计变量的一种现代设计 方法。在设计过程中,凡根据设计要求事先给定的,不是设计变量而是设计常量。 2.1.2设计方案的表现形式 a、设计空间:由n个设计变量为坐标所组成的时空间称作设计空间。 b、设计变量的表示法 (1)坐标表示法:一维问题→一个设计变量→数轴上的一个点 二维问题→两个设计变量→平面直角坐标系上的向量 三维问题→三个设计变量→空间直角坐标系的向量

群体协同智能优化算法改进及其应用研究

群体协同智能优化算法改进及其应用研究优化问题广泛地存在于实际工程问题和科学研究中。优化问题具有解空间规模大、维数高的特点,一些传统优化算法在求解大规模优化问题时,存在计算复杂度高、时间长等问题。群体智能算法因其参数少、模型简单、易于实现等优点,已成为求解优化问题新的研究方向。随着人工智能的高速发展,电子商务、移动互联网金融无时无刻不断产生数据。 数据挖掘技术越来越受到众多领域的广泛关注。聚类技术是数据挖掘领域的一个重要分支,在无监督条件下,用于挖掘数据潜在结构,已成为人工智能领域研究热点。密度峰值快速搜索聚类算法是聚类算法中极具竞争力的一种新型聚类算法,已得到各领域广泛认可,但其仍存在手动设置参数的缺陷。本文将布谷鸟搜索算法作为主要研究对象,对其进行研究与改进,并对密度峰值快速搜索聚类算法存在缺陷进行改进。 本文主要内容和创新点如下:(1)针对布谷鸟搜索算法在处理复杂函数时,算法收敛速度慢;在处理多维数据时,算法寻优精度低,算法稳定性较差的问题,提出动态自适应步长的双重策略的布谷鸟搜索算法。算法引入动态自适应步长机制和双重评价策略,动态步长中学习因子加速算法在解空间中搜索速度,在算法迭代前期,双重评价策略中的逐列排序策略在全局搜索中快速定位,并引入动态发现概率增加全局搜索能力。(2)针对密度峰值快速搜索聚类算法存在手动设置截断距离d_c,欧式距离无法准确反映数据间的相似性等缺陷,提出布谷鸟优化的密度峰值快速搜索聚类算法。算法通过布谷鸟搜索算法优化截断距离,并引入余弦相似度,将方向与实际距离相结合,更好区分两类中间区域数据点的归属度。 仿真实验结果表明,改进密度峰值快速搜索聚类算法具有较好聚类性能。(3)基于布谷鸟优化的密度峰值快速搜索聚类算法,对银行个人信贷数据进行聚类。仿真实验结果表明,本文提出的方法能够较为有效地分析和预测银行个人信贷违约情况,帮助银行信贷部门合理地做出决策。

智能优化算法

智能计算读书报告(二) 智能优化算法 姓名:XX 学号:XXXX 班级:XXXX 联系方式:XXXXXX

一、引言 智能优化算法又称为现代启发式算法,是一种具有全局优化性能、通用性强、且适用于并行处理的算法。这种算法一般具有严密的理论依据,而不是单纯凭借专家的经验,理论上可以在一定时间内找到最优解或者近似最优解。所以,智能优化算法是一数学为基础的,用于求解各种工程问题优化解的应用科学,其应用非常广泛,在系统控制、人工智能、模式识别、生产调度、VLSI技术和计算机工程等各个方面都可以看到它的踪影。 最优化的核心是模型,最优化方法也是随着模型的变化不断发展起来的,最优化问题就是在约束条件的限制下,利用优化方法达到某个优化目标的最优。线性规划、非线性规划、动态规划等优化模型使最优化方法进入飞速发展的时代。 20世纪80年代以来,涌现出了大量的智能优化算法,这些新颖的智能优化算法被提出来解决一系列的复杂实际应用问题。这些智能优化算法主要包括:遗传算法,粒子群优化算法,和声搜索算法,差分进化算法,人工神经网络、模拟退火算法等等。这些算法独特的优点和机制,引起了国内外学者的广泛重视并掀起了该领域的研究热潮,并且在很多领域得到了成功地应用。 二、模拟退火算法(SA) 1. 退火和模拟退火 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。 模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。 模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟

一种新型的智能优化方法—人工鱼群算法

浙江大学 博士学位论文 一种新型的智能优化方法—人工鱼群算法 姓名:李晓磊 申请学位级别:博士 专业:控制科学与工程 指导教师:钱积新 2003.1.1

加,,Z掌博士学位论文一III- 摘要 (优化命题的解决存在于许多领域,对于国民经济的发展也有着巨大的应用前景。随着优化对象在复杂化和规模化等方面的提高,基于严格机理模型的传统优化方法在实施方面变得越来越困难。厂吖 本文将基于行为的人工智能思想通过动物自治体的模式引入优化命题的解决中,构造了一种解决问题的架构一鱼群模式,并由此产生了一种高效的智能优化算法一人工鱼群算法。 文中给出了人工鱼群算法的原理和详细描述,并对算法的收敛性能和算法中各参数对收敛性的影响等因素进行了分析;针对组合优化问题,给出了人工鱼群算法在其中的距离、邻域和中心等概念,并给出了算法在组合优化问题中的描述;针对大规模系统的优化问题,给出了基于分解协调思想的人工鱼群算法;给出了人工鱼群算法中常用的一些改进方法;给出了人工鱼群算法在时变系统的在线辨识和鲁棒PID的参数整定中两个应用实例j最后指出了鱼群模式和算法的发展方向。 f在应用中发现,人工鱼群算法具有以下主要特点: ?算法只需要比较目标函数值,对目标函数的性质要求不高; ?算法对初值的要求不高,初值随机产生或设定为固定值均可以; ?算法对参数设定的要求不高,有较大的容许范围; ?算法具备并行处理的能力,寻优速度较快; ?算法具备全局寻优的能力; 鱼群模式和鱼群算法从具体的实施算法到总体的设计理念,都不同于传统的设计和解决方法,同时它又具有与传统方法相融合的基础,相信鱼群模式和鱼群算法有着良好的应用前景。∥ / 关键词人工智能,集群智能,动物自治体,人工鱼群算法,f优∥ ,l/。7

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

智能优化算法作业

一、优化算法及其应用 1.简介 共轭梯度法(Conjugate Gradient )是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。 2.算法原理 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 设二次函数为1 ()2T T f X C b X X AX =++,其中C 为常数,,b X 为n 维列向 量,A 为对称正定矩阵,用共轭梯度法求()f X 的极小点: 共轭梯度法探索的第一步是沿负梯度方向。即()k X 点按()()()k k S f X =-?方向找到(1)k X +,然后沿着与上一次探索方向()k S 相共轭的方向(1)k S +进行探索直达到最小点*X 。 令()(1)(1)()k k k k S f X S β++=-?+。 上式的意义就是以原来的负梯度()()()k k f X S -?=的一部分即()k k S β,加上新的负梯度()(1)k f X +-?,构造(1)k S +。 在上式中k β的选择,应使n 维欧氏空间n E 中的两个非零向量()k S 与(1)k S +关于矩阵A 共轭。即 (1)() (0,1,2,...1)T k k S AS k n +??==-?? 因 1()2 T T f X C b X X AX =++ ,故有()f X b AX ?=+ 若令 ()()()()k k k g f X b AX =?=+ ()(1)(1)(1)k k k g f X b AX +++=?=+

现代优化设计方法的现状和发展趋势

M ac hi neBuil di ng Auto m atio n,D ec2007,36(6):5~6,9 现代优化设计方法的现状和发展趋势 王基维1,熊伟2,李会玲1,汪振华3 (1.宁波职业技术学院,浙江宁波315800;2.湖南生物机电职业技术学院,湖南长沙410126; 3.南京理工大学,江苏南京210094) 摘要:优化设计是近年来发展起来的一门新学科,为机械设计提供了一种重要的科学设计方 法。优化设计在解决复杂设计问题时,能从众多设计方案中寻到尽可能完美或最适宜的设计 方案。对现代优化设计方法进行了概括和总结,展望了现代优化设计的发展方向和发展趋势。 关键词:优化设计;机械设计;发展趋势 中图分类号:T H122文献标识码:B文章编号:167125276(2007)0620005202 Develop ing T rend on M odern O pt im a l Design M ethods WANG J i2wei1,XI ONG W ei2,LI H u i2li ng1,WANG Zhen2hua3 (1.Ni ngbo Voca ti on Te chno l ogy C o ll e ge,N i n gbo315800,C h i na; 2.Huna n B i o l ogy Me c ha ni c a la nd E l e c tri c a lP ro f e ss i ona lTe chno l ogy C o ll ege,C ha ngsha410126,C h i na; 3.Na n ji ng Un i ve rs ity o f S c i e nc e a nd Te chno l o gy,Na n ji ng210094,C h i n a) Abstr ac t:As a new d i s c i p l i ne,o p tm i a l de s i gn p rov i de s an m i p o rtan t sc i en tifi c de s i gn m e t h od f o r e ng i nee https://www.360docs.net/doc/a76706758.html, i ng op tm i a ld es i gn, t he y can fi nd o ut a nea rl y pe rf e ct o r op tm i um des i gn s ch em e fr om l o ts o f feas i b l e ap p r o ache s.T he p ape r s um m a ri ze s t he de ve l o p i ng trend a nd d ir e cti o n o f t he m ode rn op tm i a l des i gn m e t hod s. K ey word s:op tm i a ld es i g n;m a ch i n e des i gn;de ve l o p t re nd 0引言 机械设计与制造是机械工程领域中最重要的内容,而机械设计又是机械制造的前提。优化设计(opti m a l de2 si gn)是近年来发展起来的一门新的学科,优化设计为机械设计提供了一种重要的科学设计方法,在机械设计上起着重要的作用,使得在解决复杂设计问题时,能从众多的设计方案中寻到尽可能完美的或最适宜的设计方案[1]。实践证明,在机械设计中采用优化设计方法,不仅可以减轻机械设备质量,降低材料消耗与制造成本,而且可以提高产品的品质和工作性能[2]。文中初步论述了机械优化设计方法的发展现状和趋势。 优化设计方法[3]是数学规划和计算机技术相结合的产物,它是一种将设计变量表示为产品性能指标、结构指标或运动参数指标的函数(称为目标函数),然后在产品规定的性态、几何和运动等其它条件的限制(称为约束条件)的范围内,寻找满足一个目标函数或多个目标函数最大或最小的设计变量组合的数学方法。优化设计方法已成为解决复杂设计问题的一种有效工具。 1优化设计方法及应用现状 优化设计的基础和核心是优化理论和算法。迄今为止,己有上百种优化方法提出,这里重点介绍以下几种优化方法[4,5]。 a)线性逼近法:线性逼近法SLP是将原非线性问题转化为一系列线性优化问题,通过求解线性优化问题得到原问题的近似解。根据形成线性优化的方法不同,可以得到不同的线性逼近法。常用的线性逼近法有近似规划法和割平面法; b)遗传算法[2,6,14]:遗传算法GA(genetic a l gorith m s)是一种基于生物自然选择与遗传机理的随机搜索算法。它是1962年首先由美国密执安大学的J.H.H olland教授提出、随后主要由他和他的一批学生发展起来的[7],并在1975年的专著中作了介绍,首先提出了以二进制串为基础的基因模式理论,用二进制位串来模拟生物群体的进化过程。进化结束时的二进制所对应的设计变量的值即为优化问题的解。GA方法的主要优点是具有很强的通用优化能力,它不需要导数信息,也不需要设计空间或函数的连续性条件,其优化搜索具有隐性并行性,可以多点同时在大空间中作快速搜索,因此有可能获得全局最优解。由于G A有着其他优化算法不可比拟的优点,因此,GA的应用非常广泛,取得大量研究应用成果。在结构优化设计方面的如离散结构的遗传形状优化设计[8]、悬臂扭转结构和梁结构的优化设计[9]、桁架和薄壁的结构优化问题[10]等。在文献[11]中对平面四杆机构的遗传优化设计进行了研究。文献[12]介绍了一个用于ZL40装载机的直齿圆锥齿轮差速器的优化设计问题,用GA中的实数编码进行优化求解,取群体大小为50,交叉率为0.2,变异率为0.5,经过120代的进化并经圆整后得到最优解。文献[15]中通过把机械方案设计过程看作是一个状态空间的求解问题,用遗传算法控制其搜索过程,完善了新的遗传编码体系,为了适应新的编码体系重新构建了交叉和变异等遗传操作,并利用复制、交换和变异等操作进行一次次迭代,最终自动生成一组最优的设计方案。 此外,G A还应用在函数优化、机械工程、结构优化、电工、神经网络、机器学习、自适应控制、故障诊断、系统工程调度和运输问题等诸多领域中[13]; #5 #

智能优化方法论文

研究生课程论文及评阅书 (2013—2014学年下学期) 论文题目:几种现代优化算法的比较研究课程名称:智能优化方法及应用 任课教师:周永权 授课时间:2014年2月日至2014年6月日 学号:2013081203402 姓名:吴丽佳 专业名称:计算机应用技术 所在学院:信息科学与工程学院

课程论文格式要求 1.课程论文一律使用标准A4复印纸打印,以左侧为准装订成册,本页装订在封面的背面。 2.课程论文格式按照《广西民族大学学报》论文的格式要求实行。 3.论文打印的格式要求: (1)论文标题(使用黑体二号加黑;一级标题、二级标题、三级标题分别使用宋体三号、四号及小四号并加黑); (2)摘要、关键字(需使用宋体小四号); (3)正文(使用宋体小四号,行距23磅); (4)参考文献(使用宋体五号)。 4.“任课教师的评语”放在最后,单独一页。

几种现代优化算法的比较研究 摘要:现代最优化算法比较常见的有遗传算法、粒子群算法、群体复合形进化算法、鱼群算法、模拟退火算法和蚁群算法。文章主要是对遗传算法、粒子群算法和鱼群算法三个算法的优化性能进行比较。首先介绍了三个算法的基本思想和算法优化过程,以此可以了解三种算法有着自身的特点和优势,促进理解后面不同的优化结果和改进方向。文章中,将三种算法分别对这三个函数用VC编出程序,得出优化结果,再针对结果分析算法。三个典型函数特点各不同,但对算法的优化能力要求都比较高,在不同方面考验了算法的收敛和爬山功能。最后,通过分析三个函数的九个优化结果,提出这三种算法的优点和不足,并列出改进措施。从分析结果可以看出遗传算法要优于另两种算法,并且其改进的余地也是最大的,粒子群算法的优化结果次之,鱼群算法的优化结果相对来说是最差的,但三种算法都可以进行改进以达到更好的优化结果。 关键词:优化;遗传算法;粒子群算法;鱼群算法;比较 Abstract: Modern optimization includes genetic algorithm, particle swarm algorithm, multi-complex algorithm, fish school algorithm, Simulated Annealing algorithm and ant colony algorithm. The paper mainly compares the optimization abilities of genetic algorithm, particle swarm algorithm and fish school algorithm. Firstly, the article introduces the basic ideas and the optimization processes of the three algorithms, from which the characteristics and advantages of the three algorithms will be found out, after that, the optimization results and the ways of improvements behind will be understood easily. Secondly, the three algorithms program with VC for the three functions, so get the results of optimization and analyze them. The three representative functions have specialties from each other, but they have one same point which is having much more demands on the algorithms, which tests the abilities of astringency and mountain climbing. At last, through analyzing the nine optimization results of three functions, the paper explains the advantages and the disadvantages of the three algorithms, and puts forward the improvement means. From the conclusion, genetic algorithm is much better than the other two optimization algorithms, and its room of improvement is the most maximum in the three algorithms too. The article also

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

智能优化算法(蚁群算法和粒子群算法)

7.1 蚁群优化算法概述 ?7.1.1 起源 ?7.1.2 应用领域 ?7.1.3 研究背景 ?7.1.4 研究现状 ?7.1.5 应用现状

7.1.1 蚁群优化算法起源 20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发。提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题。

20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。

背景:人工生命 ?“人工生命”是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容。 ?研究如何利用计算技术研究生物现象。?研究如何利用生物技术研究计算问题。

?现在关注的是第二部分的内容,现在已经有很多源于生物现象的计算技巧。例如,人工神经网络是简化的大脑模型,遗传算法是模拟基因进化过程的。 ?现在我们讨论另一种生物系统-社会系统。更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为,也可称做“群智能”(swarm intelligence)。这些模拟系统利用局部信息从而可能产生不可预测的群体行为(如鱼群和鸟群的运动规律),主要用于计算机视觉和计算机辅助设计。

?在计算智能(computational intelligence)领域有两种基于群智能的算法。蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。

现代设计论文-优化设计

现代设计方法论文课题名称:现代设计—优化设计 班别:卓越交Y131 姓名:刘xx 学号; 2013002070xx 2015年7月

摘要:优化设计是在计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法综合各方面因素,以人机配合方式或“自动探索”方式,在计算机上进行的半自动或自 动设计,以选出在现有工程条件下的最佳设计方案的一种现代设计方法。其设计原则是最优设 计:设计手段是电子计算机及计算程序;设计方法是采用最优化。 关键词:优化方法;数学模型;优化应用;MATLAB 一·现代设计——优化设计 优化设计主要包括两部分内容,一是优化设计的建模技术;另一是优化设计问题的求解 技术。如何将一个实际的设计问题抽象成一个优化设计问题,并建立起符合实际要求的优化 设计数学模型,这是优化技术的关键。建立实际问题的优化数学模型,不仅需要掌握优化设 计方法的基本理论,更重要的是要具有该设计领域的设计经验。 目前,它的内容主要包括优化设计、可靠性设计、设计方法学、计算机辅助设计、动态 设计、有限元法、工业艺术造型设计、人机工程、并行工程、价值工程、反求工程设计、模 块化设计、相似性设计、虚拟设计、疲劳设计、三次设计等。在运用它们进行工程设计时, 一般都以计算机作为分析、计算、综合、决策的工具。这些学科汇集成了一个设计学的新体 系,即现代设计方法。 设计的思想和方法一方面不断地影响着人类的生活与生产,推动社会的进步;另一方面又 受到社会发展的反作用,不断变化和更新。实际上所谓的“传统设计”和“现代设计”都只 是相对的概念。人们把当前认为先进的那部分系统称为现代的,而其余的自然成为传统的, 若干年后,目前先进的被新发展的东西所取代,而成为传统。从人类生产的进步来看,整个 设计进程大致经历了四个阶段。 1直觉设计阶段。既从自然现象中直接获得启示,或是全凭人的直观感受来设计,制作。2经 验设计阶段。3半理论半经验设计阶段。4现代设计阶段。电子计算机技术的发展和应用,使 设计工作产生了革命性的突变。 现代设计是面向市场面向用户的设计。首先,好的产品始于先进的设计理念和对市场需求 的深刻了解以及贯穿整个设计过程中的以人为本的信念。其次,设计要求对产品进行全寿命 周期设计。即在设计过程中要考虑设计,制造,安装,运行,维修和报废等每一个阶段中用 户的需求。也就是,设计不仅要实现产品的基本功能要求,还应该体现人性化和环境友好的 先进设计思想。此外,设计对象从最初的单一功能产品变为越来越复杂的系统。功能更加先 进和全面,因此需要在设计时运用集成,综合,系统的方法与技术来解决设计问题。 与传统设计相比,有如下一些特点。 1传统设计中灵感和经验的成分占有很大的比例。思维带有很大的被动性。但是,今天技

我对智能优化算法的认识

我对智能优化算法的认识 20世纪70年代以来,随着仿生学、遗传学和人工智能科学的发列展,形成了一系列新的优化算法——智能优化算法。智能优化算法是通过模拟某一自然现象或过程而建立起来的,他们具有适于高度并行、自组织、自学习与自适应等特征,为解决复杂问题提供了一种新的途径。它们不需要构造精确的数学方法,不需要进行繁杂的搜索,同大连简单的信息传播和演变方法来得的问题的最优解。 传统的智能优化算法包括进化算法、粒子群算法、禁忌搜索、分散搜索、模拟退火、人工模拟系统、蚁群算法、遗传算法、人工神经网络技术等等。随着智能优化算法的发展出现了一些新的算法如:萤火虫算法,随着遇到事物的复杂性显现出混合智能优化算法的优势。这些算法在农业、电子科技行业、计算机应用中有很大的作用。 在查看资料后,我发现传统的智能优化算法应用较广泛些。在2009年发表的一篇论文中,讲到了遗传算法可以成功解决函数优化问题。其上提到,利用遗传算法,根据函数创造一系列个体,计算适应度函数,模拟“优胜劣汰”的自然法则,选择优良个体交叉、随机产生后代等步骤解决函数优化问题。其中还提出了用蚁群算法求解传统方法难以解决的非凸、非线性非连续的优化问题。 11年发表的《浅谈几种智能优化算法》中介绍了几种典型传统的智能优化算法,并对它们(遗传算法、蚁群算法和粒子群算法等)做了详尽的分析,让人们对这几种算法有更深刻的认识。近年来,这些算法在运筹学、管理科学中也有重要的应用。另外,从近几年

发表论文可以看出典型的智能优化算法在解决传统难题方面的优势,及其广泛的应用。如蚁群算法在静态组合优化中可用来解决TSP 问题、QAP、JSP、VRP等;在动态组合优化中用于解决路由问题、电子系统故障诊断、模糊系统和设计无限数字响应器等。 随着其应用的的广泛,出现了一些新的算法,如微粒子群算法,可应用于化学过程的动态分析,蛋白质序列的模拟及光纤通信。还有95年提出的蜂群算法,该算法可应用于解决作业车间调度问题。02年提出的人工鱼群算法,在组合优化、参数估计、PID控制器的参数整定及神经网络优化等方面都有重要意义。 通过查看资料学习,我了解了智能优化算法在交通、物流、人工神经网络优化、生产调度、电力系统优化及电子科技行业的重要作用及应用,对智能优化算法的意义有更深刻的认识;有机会的话我会继续了解其发展和应用。 参考文献: [1]高炜欣,穆向阳,汤楠,等.Hopfield 神经网络在机组组合问题中的应用[J].计算机应用,2009,4:1028- 1031. [2]张炯,刘天琪,苏鹏,等.基于遗传粒子群混合算法的机组组合优化[J].电力系统保护与控制,2009,9(29):25- 29. [3]刘海江,张春伟,徐君杰,等.基于遗传算法的白车身焊接机器人焊点分配[J].同济大学学报(自然科学版),2010,38(5):725-728. [4]海丽切木?阿布来提.浅谈几种智能优化算法[J].电脑知识与技术,2011,中图分类号:TP301 文献标识码:A 文章编号:1009-3044(2011)19-4628-03.

群体智能方法在最优化问题的应用和未来

群体智能方法在最优化问题的应用和发展前景 姓名:曾燕亭学号:201110510133 班级:11计科1班 摘要:将遗传算法解决最优化问题,即将最优化问题转化为求解目标函数的最优解问题。关键词:遗传算法;最优化 1.定义 1.1定义及原理 顾名思义,群体智能即群其实质是将物理问题数字化,体产生的智能,与集体智慧类似。我们可以从两个方面来理解群体智能的含义。一方面,群体智能是自然界广泛存在的一种现象,指大量简单个体构成的群体按照简单的交互规则相互协作,完成了其中任何一个个体不可能单独完成的复杂任务。以蚁群为例,正如斯坦福大学生物学家D.Gordon的概括:蚂蚁很笨,但蚁群很聪明。另一方面,人们通过对这些群体行为的研究,逐步形成了群体智能理论,即研究大量个体的简单行动如何成为群体的高智能行为的理论。群体智能理论自20世纪80年代出现以来便吸引了众多研究者的关注,是人工智能及经济、社会、生物等交叉学科的热点和前沿领域,因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法和粒子群优化算法。 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求:

几种智能优化方法

1.遗传算法 遗传算法(Genetic Algorithms, GA)是由美国密歇根大学的John H.Holland教授及其学生于20世纪60年代末到70年代初提出的。在1975年出版的《自然与人工系统的自适应性》一书中,Holland系统地阐述了遗传算法的基本原理和方法,提出了对遗传算法的理论发展极为重要的模板理论。 遗传算法基本思想: 遗传算法是根据问题的目标函数构造一个适值函数,对于有多个解构成的种群进行评估、遗传运算、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。具体描述如下。 1)产生初始种群 遗传算法是一种基于群体寻优的方法,算法运行时是以一个种群在搜索空间进行搜索。一般是采用随机方法产生一个初始种群。也可以采用其他方法构造一个初始种群。 2)根据问题的目标函数构造适值函数 在遗传算法中使用适值函数来表征种群中每个个体对其生存环境的适应能力,每个个体具有一定的适应值。适应值是种群中个体生存机会的唯一确定值。适值函数直接决定着群体的进化行为。适值函数基本上依据优化的目标函数来确定。为了能够直接将适值函数与群体中的个体优劣相联系,在遗传算法中适应值规定为非负,并且在任何情况下总是希望越大越好。 3)根据适应值的好坏不断选择和繁殖 在遗传算法中自然选择规律的体现就是以适应值的大小决定的概率分布来进行计算选择。个体的适应值越大,该个体被遗传到下一代的概率越大;反之,个体适应值越小,该个体被遗传到下一代的概率越小。被选择的个体两两进行繁殖,繁殖产生的个体组成新的种群。这样的选择和繁殖的过程不断重复。 4)若干代后得到适应值最好的个体即为最优解 在若干代后,得到适应值最好的个体所对应的解即被认为是问题的最优解。 遗传算法构成要素: a)种群和种群大小 种群是有染色体构成的。每个个体就是一个染色体,每个染色体对应着问题的一个解。种群中个体的数量称为种群大小或种群规模。种群规模通常采用一个不变的常数。一般来说种群规模越大越好,但是种群规模增大也将导致运算时间的增大。在一些特殊情况下,群体规模也可能采用与遗传代数相关的变量,以获取更好的优化效果。 b)编码方法(Encoding Scheme) 编码方法也称为基因的表达方法。在遗传算法中,种群中每个个体,即染色体是由基因构成的。所以染色体与要优化的问题的解如何进行对应,就需要通过基因来进行表示,即染色体进行正确的编码(一般用二进制编码)。正确地对染色体进行编码来表示问题的解是遗传算法的基础工作,也是最重要的工作。 c)遗传算子(Genetic Operator) 遗传算子包括交叉(Crossover)和(Mutation)。遗传算子模拟了每一代中创造后代的繁殖过程,是遗传算法的精髓。 交叉是最重要的遗传算子,它同时对两个染色体进行操作,组合二者的特性产生新的后代。交叉最简单的方式是在双亲的染色体上随机地选择一个断点,将断点的右段相互交换,从而形成两个新的后代。这种方式对于二进制编码最适合。遗传算法的性能很大程度上取决于采用的交叉运算的方式。 交叉率定义为各代中交叉产生后代数与种群中个体数的比。显然,较高的交叉率将达到更大的解空间,从而减小停止在非最优解上的机会;但交叉率过高,会因过多搜索不必要的

智能优化算法笔试考试试题

ll一、写出遗传算法中的两种交叉运算方法,并分别举例说明。 解:双亲双子法(两父代交叉位之后的全部基因互换)、变化交叉法(从不相同的基因开始选取交叉位,之后的方法同双亲双子法)、多交叉位法(间隔交换)、双亲单子法(2选1)、显性遗传法(按位或)、单亲遗传法(2-opt)等,例子见课本175-179。 二、什么是P问题,什么是NP问题?智能优化算法主要是针对什么问题而提出的? 解:(1)P问题 (2)NP问题 (3)NP-C问题和NP-Hard问题 (4)智能优化算法主要是针对组合优化问题而提出的。 三、描述组合优化问题中的一个典型例子,并建立其数学模型。 解:(1)旅行商问题(Traveling Salesman Problem,TSP)

(2)背包问题 (3)并行机排序问题

四、描述模拟退火算法中的接收准则。 解:在一给定温度下,由一个状态变到另一个状态,每一个状态到达的次数服从一个概率分布,即基于Metropolis 接受准则的过程,该过程达到平衡时停止。在状态s i 时,产生的状态s j 被接受的概率为: 1, ()()()exp(),()()i j ij ij i j if f s f s A t f if f s f s t ≥?? =??-

Step 1. 构造函数逼近的能量函数,使得能量函数有好的稳定性,如Err(w); Step 2. 由能量函数Err(w),根据 () i i dz Err dt y ? -= ? w 求解出动力系统方程 ; Step 3. 用数值计算的方法求解动力系统方程的平衡点,用定理判断平衡点是否为稳定点或渐近稳定点,网络达到稳定状态即达到极小值。 七、用遗传算法解决实数编码求连续函数优化问题,写出一种变异的运算方法。解: 再用单点变异法或多点变异法即可完成实数码的变异方法。(随机选一个或几个变异位取反) 八、为什么学“智能优化算法”?学习之后有什么感想?对本课程考核方法有什么建议。 答:最优化问题使人们在工程实践中,科学研究和经济管理等诸多领域中经常遇到的问题。

智能优化方法作业——PSO算法

智能优化方法作业PSO算法实验报告 课程名称:智能优化方法作者姓名: 专业:控制工程

目录 第一章问题描述 (1) 第二章算法设计 (1) 2.1解及目标函数的表达 (1) 2.1.1种群的编码 (1) 2.1.2初始种群的产生 (1) 2.1.3评价函数的构造 (1) 2.2 POS速度迭代公式 (2) 2.3粒子的更新 (2) 2.4惯性权重的调整 (3) 2.5停止准则 (3) 第三章算法实现及分析 (3) 3.1编译环境及界面介绍 (3) 3.2 matlab中GUI界面打开的3种方式 (4) 第四章算法分析 (5) 4.1 默认参数下的运行结果 (5) 4.2种群大小对算法的影响 (6) 4.3 最大迭代次数对算法的影响 (8) 4.4 实验得出的“最优”参数 (9)

第一章 问题描述 无约束5维的Rosenbrock 函数可以描述如下: ∑-=+-+-=112221))1()(100()(min n i i i i x x x x f (1) 其中,5,...2,1],30,30[=-∈i x i 。 要求按PSO 算法思想设计一个该问题的求解算法,并利用计算机语言实现设计的算法。将实验报告和程序代码(带有详细注释)。 第二章 算法设计 2.1解及目标函数的表达 2.1.1种群的编码 显然对于一个粒子个体可以用一个含有5个元素的一维数组进行表示。对于一个种群这里使用pop_size×5的二维数组进行表示。其中pop_size 为种群大小。 2.1.2初始种群的产生 初始种群的各个粒子均采用均匀随机产生的方式,即粒子每一位都是-30到30上的随机数。同样粒子的速度也是-40到40上的随机数。这里设置速度在-40到40内是因为限定速度的最大值为40。 2.1.3评价函数的构造 这里直接采用解的函数值作为评价函数,评价函数值越小认为该解越好。评价函数如下: ∑-=+-+-=112221))1()(100()(min n i i i i x x x x f (2) 其中,5,...2,1],30,30[=-∈i x i 。

相关文档
最新文档