现代智能优化算法—遗传算法40页PPT
合集下载
智能优化技术ppt

详细描述
总结词
高效、低成本、智能化
详细描述
智能优化技术在物流运输领域的应用,可以实现高效的运输计划和运输路径优化。例如,利用智能算法对运输计划进行优化,降低运输成本;通过物联网技术和实时监控系统,实现货物的实时跟踪和调整;在最后一公里配送中,智能优化技术可提高配送效率和质量,例如智能快递柜、无人机配送等。
智能优化技术是一种基于数学、计算机科学、人工智能等学科的技术,它利用各种算法和数学模型等工具,对特定的应用需求进行优化设计,以实现提高系统性能、减少能源消耗、降低成本等目标。
详细描述
智能优化技术的定义
总结词
广泛应用于各种领域,如生产制造、交通运输、能源消耗、金融投资等。
详细描述
智能优化技术在各个领域都有广泛的应用。在生产制造领域,智能优化技术可以用于生产计划、工艺流程优化等方面;在交通运输领域,智能优化技术可以用于交通流量优化、路线规划等方面;在能源消耗领域,智能优化技术可以用于能源管理、节能减排等方面;在金融投资领域,智能优化技术可以用于股票交易、风险管理等方面。
随着技术的不断发展,智能优化技术的应用领域将更加广泛,如在自然语言处理、计算机视觉、智能制造等领域都将有更广泛的应用。
技术发展与人工智能紧密结合
未来智能优化技术的发展将更加紧密地与人工智能结合,实现技术的无缝集成,进一步提高人工智能的应用效果和性能。
谢谢您的观看
THANKS
神经网络的结构
深度学习模型
深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等,适用于处理复杂的问题。
基础模型
基础模型包括单层感知器和多层感知器,适用于解决简单的问题。
自组织映射模型
自组织映射模型是一种特殊的神经网络模型,它能够自动对输入数据进行聚类和分类。
总结词
高效、低成本、智能化
详细描述
智能优化技术在物流运输领域的应用,可以实现高效的运输计划和运输路径优化。例如,利用智能算法对运输计划进行优化,降低运输成本;通过物联网技术和实时监控系统,实现货物的实时跟踪和调整;在最后一公里配送中,智能优化技术可提高配送效率和质量,例如智能快递柜、无人机配送等。
智能优化技术是一种基于数学、计算机科学、人工智能等学科的技术,它利用各种算法和数学模型等工具,对特定的应用需求进行优化设计,以实现提高系统性能、减少能源消耗、降低成本等目标。
详细描述
智能优化技术的定义
总结词
广泛应用于各种领域,如生产制造、交通运输、能源消耗、金融投资等。
详细描述
智能优化技术在各个领域都有广泛的应用。在生产制造领域,智能优化技术可以用于生产计划、工艺流程优化等方面;在交通运输领域,智能优化技术可以用于交通流量优化、路线规划等方面;在能源消耗领域,智能优化技术可以用于能源管理、节能减排等方面;在金融投资领域,智能优化技术可以用于股票交易、风险管理等方面。
随着技术的不断发展,智能优化技术的应用领域将更加广泛,如在自然语言处理、计算机视觉、智能制造等领域都将有更广泛的应用。
技术发展与人工智能紧密结合
未来智能优化技术的发展将更加紧密地与人工智能结合,实现技术的无缝集成,进一步提高人工智能的应用效果和性能。
谢谢您的观看
THANKS
神经网络的结构
深度学习模型
深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等,适用于处理复杂的问题。
基础模型
基础模型包括单层感知器和多层感知器,适用于解决简单的问题。
自组织映射模型
自组织映射模型是一种特殊的神经网络模型,它能够自动对输入数据进行聚类和分类。
遗传算法的实例ppt课件.ppt

上述操作反复执行,个体逐渐优化
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法(GeneticAlgorithm)PPT课件

2021
14
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
1/6 = 17%
A BC
3/6 = 50% 2/6 = 33%
染色体xi被选概率
ps (xi )
F (xi )
N
F(xj)
j 1
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
假如交叉概率Pc =50%,则交配池中50%的染色体(一半染色体) 将进行交叉操作,余下的50%的染色体进行选择(复制)操作。
GA利用选择和交叉操作可以产生具有更高平均适应值 和更好染色体的群体
2021/3/21
2021
22
变异(Mutation)
➢ 以 编变码异时概,变率P异m改的变基染因色由体0变的成某1一,个或基者因由,1当变以成二0。进制 ➢ 变 间,异平概均率约Pm 1一-2般% 介于1/种群规模与1/染色体长度之
编码(Coding)
10010001
10010010
010001001 011101001
解码(Decoding)
2021/3/21
2021
13
选择(Selection)
➢ 选择(复制)操作把当前种群的染色体按与适应值成正比 例的概率复制到新的种群中
➢ 主要思想: 适应值较高的染色体体有较大的选择(复制) 机会
➢交叉(crossover):
将群体P(t)内的各个个体随机搭配成对,对每一个
个 rat体e),交以换某它个们概之率间P的c (部称分为染交色叉体概。率,crossvoer
➢变异(mutation):
变对异群概体率P,(tm)u中ta的ti每on一r个at个e)体改,变以某某一一个概或率一P些m(基称因为座
智能优化算法.ppt

❖ (1)从网络性能角度可分为:连续型与离散型网络、 确定性与随机性网络;
❖ (2)从网络结构角度可分为前向网络与反馈网络;
❖ (3)从学习方式角度可分为有教师学习网络和无教 师学习网络;
❖ (4)按连接突触性质可分为一阶线性关联网络和高 阶非线性关联网络。
单层前向网络
源节点输入层
神经元输出层
多层前向网络
神经网络-算法概述
人工神经网络的模型
❖ 人工神经网络是由大量处理单元广泛互连而成的网络 , 是人脑的抽象、简化、模拟,反映人脑的基本特性。 一般来说,作为神经元模型应具备三个要素:
(1)之具间有的一联组接突强触度或,联或接称,之常为用权wi值j表。示与神人经脑元神i和经神元经不元同j , 人工神经元权值的取值可在负值与正值之间。
wij (n) (x j (n) x j )( xi (n) xi )
纠错学习
源节点输入层
神经元隐含层
神经元输出层
反馈网络
无自反馈和隐含层 的反馈网络
z z z z 1 1 1 1
竞争神经网络
源节点层
单层输出神经元
最简单的竞争神经网络:Hamming网络
神经网络-算法概述
神经网络的学习
❖ 神经网络的学习也称为训练,指的是通过神经网络 所在环境的刺激作用调整神经网络的自由参数,使 神经网络以一种新的方式对外部环境作出反应的一 个过程。
智能优化算法
随着仿生学、遗传学和人工智能科学的发展, 从20世纪70年代以来,研究人员相继将遗传学、神 经网络科学的原理和方法应用到最优化领域,形成 了一系列新的最优化方法,如:人工神经网络算法、 遗传算法、蚁群算法等。这些算法不需要构造精确 的数学搜索方向,不需要进行繁杂的一维搜索,而 是通过大量简单的信息传播和演变方法来得到问题 的最优解。这些算法具有全局性、自适应、离散化 的特点。
❖ (2)从网络结构角度可分为前向网络与反馈网络;
❖ (3)从学习方式角度可分为有教师学习网络和无教 师学习网络;
❖ (4)按连接突触性质可分为一阶线性关联网络和高 阶非线性关联网络。
单层前向网络
源节点输入层
神经元输出层
多层前向网络
神经网络-算法概述
人工神经网络的模型
❖ 人工神经网络是由大量处理单元广泛互连而成的网络 , 是人脑的抽象、简化、模拟,反映人脑的基本特性。 一般来说,作为神经元模型应具备三个要素:
(1)之具间有的一联组接突强触度或,联或接称,之常为用权wi值j表。示与神人经脑元神i和经神元经不元同j , 人工神经元权值的取值可在负值与正值之间。
wij (n) (x j (n) x j )( xi (n) xi )
纠错学习
源节点输入层
神经元隐含层
神经元输出层
反馈网络
无自反馈和隐含层 的反馈网络
z z z z 1 1 1 1
竞争神经网络
源节点层
单层输出神经元
最简单的竞争神经网络:Hamming网络
神经网络-算法概述
神经网络的学习
❖ 神经网络的学习也称为训练,指的是通过神经网络 所在环境的刺激作用调整神经网络的自由参数,使 神经网络以一种新的方式对外部环境作出反应的一 个过程。
智能优化算法
随着仿生学、遗传学和人工智能科学的发展, 从20世纪70年代以来,研究人员相继将遗传学、神 经网络科学的原理和方法应用到最优化领域,形成 了一系列新的最优化方法,如:人工神经网络算法、 遗传算法、蚁群算法等。这些算法不需要构造精确 的数学搜索方向,不需要进行繁杂的一维搜索,而 是通过大量简单的信息传播和演变方法来得到问题 的最优解。这些算法具有全局性、自适应、离散化 的特点。
《遗传算法详解》课件

特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
《遗传算法》PPT课件

遗传算法
学习过程如下:
选择适应度最好的4个
11 01001101 -4 13 01001101 -4 14 00111001 -4 15 00101111 -5
11与13交叉
16 01001101 -4 17 01001101 -4
14与15交叉
18 00111011 -4 19 00101101 -5
遗传算法
遗传算法是一种通过模拟自然进化过程搜索最优解 的方法。 遗传算法是一类随机算法通过作用于染色体上的基 因,寻找好的染色体来求解问题。 遗传算法对求解问题的本身一无所知,它所需要的 仅是对算法所产生的每个染色体进行评价,并基于适 应值来选择染色体,使适应性好的染色体比适应性差 的染色体有更多的繁殖机会。 遗传算法通过有组织地而且是随机地信息交换来重 新结合那些适应性好的串,在每一个新的串的群体中 作为额外增添,偶尔也要在串结构中尝试用新的位和 段来代替原来的部分。
遗传算法
要做的第一件事是将染色体转换成二进制串, 00表示0 01表示1 10表示2 11表示3 交叉位置:6,即父代染色体被复制下来产生两个后代 然后两个后代交换他们的最后两位 变异:由随机选择一位、求反
遗传算法
例如,染色体0223的适应度为4。 若所有7个规则都满足(也就是当染色体是0133),则 适应度为7。 适应度值可以求负操作,以使任务成为最小化搜索。 因此,目标染色体具有-7的适应度。 要做的第一件事是将染色体转换成二进制串, 这可通过由00表示0,01表示1,10表示2,11表示3来完 成。现在每个基因由两位表示,目标染色体有00011111 表示。 为了简化例子,总是在位置6处应用单点交叉。 父染色体被复制下来产生两个后代,然后两个后代交换 他们的最后两位。 变异由随机选择一位且对他求反组成。
《遗传算法》课件

总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件

遗传算法原理及其应 用
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。