卫星通信关键技术研究讲解学习

卫星通信关键技术研究讲解学习
卫星通信关键技术研究讲解学习

卫星通信关键技术研

卫星通信关键技术研究

小组成员:冉文,李鹏翔,杨亚飞

小组分工:

冉文(学号:15085208210015):程序审查,论文校订

李鹏翔(学号:15085208210008):收集资料,编辑文献,结果分析杨亚飞(学号:15085208210023):仿真程序设计

专业:电子与通信工程

引言

卫星通信系统具有覆盖范围广、受地理环境因素影响小等特点,从而使得卫星通信成为当前通信领域中迅速发展的研宄方向和现代信息交换强有力的手段之一。目前,下一代卫星通信网络正朝着更高速率、更大带宽的方向发展,其与地面通信网络联合组成全球无缝覆盖的信息交换网络。随着空间通信技术的飞速发展和业务需求的急速增长,有限的无线资源与多媒体业务不断提高的QoS要求之间的矛盾曰益尖锐,使得设计可以支持高速、高质量多媒体传输的资源管理策略成为当前空间通信领域关注的重点。同时,卫星组网技术直接关系到卫星网络能否实现全球覆盖以及卫星网络的可扩展性问题,是卫星通信系统研宂中的关键问题。相应的,路由协议、链路切换等都要针对卫星网络的特点重新设计,以星上路由交换为核心的新型卫星通信系统是空间通信领域的另一个研究重点。

卫星通信是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。它是微波通信和航天技术基础上发展起来的一门新兴的无线通信技术,所使用的无线电波频率为微波频段(300MHz~300GHz,即波段lm~1min)。这种利用人造地球卫星在地球站之间进行通信的通信系统,则称为卫星通信系统,而把用于现实通信目的的人造卫星称为通信卫星,其作用相当于离地面很高的中继站,因此,可以认为卫星通信是地面微波中继通信的继承和发展,是微波接力通向太空的延伸。卫星通信是空间通信的一种形式,它主要包括卫星固定通信、卫星移动通信和卫星直接广播三大领域。由于卫星通信具有覆盖面大、频带宽、容量大、适用于多种业务、性能稳定可靠、机动灵活、不受地理条件限制、成本与通信距离无关等优点。多年来,它在国际通信、国内通信、军事通信、移动通信和广播电视等领域得到了广泛应用。下面我们就从卫星通信的发展简史、现状、趋势等方面对卫星通信进行概括和综述。

摘要

本文从分析卫星通信的特点入手,综述了卫星通信的主要相关技术的发展状况,概述了典型的卫星通信系统的性能特点并给出了卫星衰落信道的模型,进行了MATLAB仿真,介绍了卫星通信的应用及产业化发展情况,并展望了发展前景。

移动性管理是 LEO(低轨卫星(low earth orbit))卫星网络通信系统中的一个重要问题.提出了 LEO 网络中一种改进的基于移动的位置更新和寻呼方案.在这种方法中我们引入了“元小区”概念,它由两个相邻波束组成.首先阐述了基于“元小区”模型的位置管理策略,然后推导了基于移动的动态位置管理的数学模型,并利用该模型分别计算了 LEO 网络中单位呼叫的位置更新和寻呼代价.通过元小区方案和普通小区的在各种网络参数环境下的性能比较证明了“元小区”方法的有效性和健壮性.最后为了进一步减小“元小区”方法中的寻呼代价,提出了强制更新策略,它强制移动终端在穿越两颗卫星覆盖区的边界时进行位置更新操作.

关键词:卫星通信;位置管理;终端寻呼;元小区;位置更新;移动卫星通信;星上处理;星上交换;多波束天线;蜂窝网卫星系统

Abstract

After analyzing the characteristics of satellite communications, the developing status of communication satellite platform, available frequency resource, as well as the related key techniques are summarized. Through introducing some typical satellite communications systems, were presented the applications and industrialization of satellite communications, and furthermore shows the bright prospects.

Mobility management is an important aspect in LEO (low earth orbit) systems. In terrestrial wireless networks, the movement of the user triggers location updating and determines the paging scheme, while in LEO satellite systems, the location updating and paging is mainly based on the movement of satellite. Terrestrial location management techniques must be altered to fit the LEO systems. This paper introduces a modified movement-based location updating and paging scheme in LEO networks. In this scheme the meta-cell concept is proposed which includes two spot-beams of one satellite. First the location management scheme based on the architecture with meta-cell location area is presented. Then an analytical model is applied to formulate the cost of location updating and paging for the movement meta-cell based dynamic location updating scheme. The comparison of performance between the meta-cell architecture method and the conventional signal-spot-cell architecture method is provided to demonstrate

the cost-effectiveness and robustness of the proposed scheme under various parameters. To reduce the impact of meta-cell architecture on the location paging cost, a forced location updating strategy is presented which is used in the cases that the meta-cell includes the two spot-beams from different satellites。

Key words: satellite communications; mobile satellite communications; onboard processing; onboard switching; multi-beam antenna; cellular satellite system

目录

第一章卫星通信综述 (1)

第二章卫星通信若干关键技术及其发展现状 (3)

2.1调制解调技术 (3)

2.2纠错编码技术 (4)

2.3扩频通信技术 (5)

2.4阵列天线技术与卫星蜂窝网技术 (6)

2.5多址和复用技术 (8)

2.6空间激光通信技术 (10)

第三章关键技术仿真及相关程序 (11)

第四章卫星通信发展现状与展望 (14)

4.1 发展现状 (14)

4.2 卫星移动通信现状 (14)

4.3 卫星直接广播现状 (16)

4.4 卫星通信的发展趋势及我国卫星通信的发展目标 (17)

4.5 发展展望 (19)

结束语 (20)

参考文献 (21)

附录1 MATLAB 仿真程序 (22)

第一章卫星通信综述

1965 年美国发射第一颗商用通信卫星以来,卫星通信技术及其应用取得了令人瞩目的巨大成就。它实现了覆盖全球丰富多彩的通信服务,不仅在军事中发挥了关键性作用,也对人类的生产、生活方式产生了巨大影响。与微波中继通信及其他通信方式相比,卫星通信主要具有以下特点。

(1)通信覆盖区域大,通信距离远:地球同步轨道(GEO)卫星距地面高度 35 860 km,只需一个卫星中继转发,就能实现 1 万多公里的远距离通信;每一颗卫星可覆盖全球表面的 42.4%,用 3 颗 GEO 卫星就可以覆盖除两极纬度76°以上地区以外的全球表面及临地空间;如图 1 所示。

(2)可将其广播性与各种多址连接技术相结合构成庞大的通信网:在一颗卫星所覆盖的区域内,不必依赖显式的交换,只需利用卫星中继传输和多址/复用技术就能构成拥有许多地面用户的大型通信网。

(3)机动灵活:卫星通信的建立不受地理条件的限制,无论是大城市还是边远山区、岛屿,随地可建;通信终端也可由飞机、汽车、舰船搭载,甚至个人随身携带;建站迅速,组网灵活。

(4)通信频带宽、通信容量大:卫星通信信道处于微波频率范围,频率资源相当丰富,并可不断发展。

(5)信道质量好、传输性能稳定:卫星通信链路一般都是自由空间传播的视距通

信,传输损耗很稳定而可准确预算,多径效应一般都可忽略不计,除非是采用很低增益天线的移动通信或个人通信终端。

(6)通信设备的成本不随通信距离增加而增加,因而特别适于远距离以及人类活动稀少地区的通信。卫星通信也存在一些缺点和一些应该而且可以逐步改进的方面,这主要有以下几点。

1)卫星发射和星上通信载荷的成本高:星上元器件必须采用抗强辐射的宇航级器件,而且 LEO、 GEO 卫星的寿命一般分别只有 8 年、15 年左右。

2)卫星链路传输衰减很大:这就要求地面和星上的通信设备具有大功率发射机、高灵敏度接收机和高增益天线。

3) 卫星链路传输时延大:GEO 卫星与地面之间往返传输时间为 239~278 ms;在基于中心站的星形网系统中,小站之间进行话音通信必须经双跳链路,那么传输时延达到0.5 s,对话过程就会感到不顺畅,而且如果没有良好的回音抑制措施,就会因二-四线制转换引起的回波干扰而使话音质量显著下降。基于卫星通信的特点及其重要作用,本文将从卫星通信的可用频率资源、卫星平台、主要关键技术、典型的卫星通信系统、卫星通信应用和产业化发展等方面进行介绍,综述发展现状,展望发展前景。

第二章卫星通信若干关键技术及其发展现状

2.1调制解调技术

卫星通信中最常用的调制方式是 QPSK、OQPSK 和π/4DQPSK 等,近年来,高速数据传输的需求与转发器资源紧缺推动了 8PSK、16APSK、 16QAM 等高阶调制方式的研究与应用。其中 APSK 调制因其星座中所含幅度和相位信息是变量可分离的,可以采用简单的预失真法进行幅度非线性矫正而不影响相位特性,使之在透明转发这种高阶调制信号时的功率效率不明显降低。因此,APSK 调制在卫星电视广播中得到应用,在卫星宽带移动通信中也有很好的应用前景。

格形编码调制(TCM, trellis coding modulation) 在原理上是一种很好的体制;它将信道编码与调制融合在一起,因而几乎不付出频带效率和功率效率降低的代价,就能获得 5 dB 左右的编码增益。TCM 调制用于卫星通信的国际标准早已经形成,但因其译码复杂度较高,而且不大便于再级联外码以进一步降低误码率,因此应用并不广泛。

遥感数据传输和大容量宽带卫星通信中对于高速调制解调技术有迫切需求,目前我国基于 FPGA 并行实现的高速调制解调已达到 1.5 Gbit/s,已接近国际先进水平。这个速率基本上能满足通信卫星馈送链路高速数据传输的要求。

正交频分复用(OFDM)技术作为一种多载波调制方式,由于其抗多径衰落能力强而在地面蜂窝网第四代(4G)、第五代(5G)移动通信中成为不可或缺的技术,因此人们一直想将其广泛应用于卫星移动通信中。值得注意的是,OFDM 本来是不大适于卫星下行链路这种功率严重受限的场合,因为其峰平功率比(PAPR)高,在功放非线性条件下容易产生多载波互调干扰而使链路特性变差。虽已研究出多种方法来克服这个缺点,但没有一种办法是不需付出巨大代价就能完全解决这个问题的,不是频带效率显著降低,就是计算复杂度很高。

但是,确有一些卫星通信或广播系统的下行链路采用了 OFDM 体制。IPSTAR-I 在 60 MHz 带宽下行链路中采用层叠在 OFDM 上的 TDM 技术,其目的是为了扩大复接信号的路数,而非抗多径衰落;因为其 Ku 频段小站天线口径为 0.75~1.8 m,波束主瓣只有 1o ~2.3 o,周围环境的反射波很难进入天线主瓣,因而多径效应可忽略不计。我们应当看到如此应用 OFDM 技术,会使其链路信噪比产生明显损失。

对于基于多波束天线的 GEO 或 LEO 卫星宽带移动通信或广播系统而言,因其多径衰落非常严重,目前下行链路不得不采用 OFDM 体制。其移动式终端的天线增益很低,例如,L 或 S 频段天线的增益一般只有 2~3dB,这种半球波束天线可接收到的多径信号分量多,多径衰落非常严重,采用OFDM 技术有其合理性。事实上在卫星与地面基站相结合的移动数字电视广播系统中已成功应用 OFDM,并已形成了国际标准和我国国家标准。

然而卫星下行链路功率受限问题远比地面移动通信基站严重,驱动多波束卫星天线的功放非线性问题更加严重。加之 OFDM 系统抗多径衰落效益的发挥有赖于信道信息反馈,而卫星链路时延大,不能及时利用信道信息反馈对各子信道的信息速率和发射功率进行自适应调整。总之,卫星下行链路采用 OFDM 体制只是当前的无奈之举,而非理想的选择,我们很有必要探索出一种新的传输方式来取代它,因为其中约有 30%左右的频带效率和 10 dB 左右的链路信噪比增益的潜力是有可能挖掘出来的。

2.2纠错编码技术

各种通信业务信息传输的误比特率(BER, bit error rate)都有最高限度要求,例如:声码话 BER 为 10?3 ,视频通信 BER 为 10?4 ,一般数据通信 BER 为 10?6 或 10?7 ,无特殊措施的 ATM(asyschronious transfer mode)或 IP(Internet protocol)数据传输BER 为 10?10,深空通信中某些数据传输 BER 为 10?14。当然一般系统不会设计为在传输和解调后所得数据的 BER 就能达到上述要求,因为这需要很高的链路信噪比,严重浪费发射功率。而采用纠错编码 (即信道编码)技术与调制相结合,只需付出很小的频带效率代价就能使 BER 降低若干个数量级。相应地达到指定 BER 要求的链路信噪比就可降低几 dB,甚至十几 dB,也就是可获得相应的编码增益。

在卫星通信的前期发展中,使用最为广泛的信道编码是由卷积码作为内码、RS 码作为外码的串行级联码。这是因为卷积码实现简单、译码门限较低,而 RS 码的译码复杂度低,在输入信息误码率较高时能获得较高的编码增益,例如,3/4 卷积码与 RS 编码级联情况下在达到 BER=10?7 时可获得 5.2 dB 编码增益。

并行级联形式的 Turbo 码[17]和低密度奇偶效验码(LDPC)[18]是目前 2 种最先进的信道编码算法,自 90 年代发展起来并推广应用之后,很快在地面移动通信等场合得到了很好应用。两者均有 2 个突出特点:一是都结合了比特交织技术,能有效地纠正突发错误,而多径衰落信道等场合正是容易出现突发性错误;其二是它们的译码门限比卷积码更

低,而且能在较高的码率下获得较大的编码增益。这就是说它们能使整个系统的传输特性以较高的频带效率和功率效率逼近香农容量限。例如,对于 QPSK 调制采用码率为 0.793 的 Turbo 码在 BER 达到 10?7 时,比采用 RS、卷积码串行级联码的编码增益高 1.6 dB。IPSTAR-1系统的前向链路采用Turbo码、 Inmarsat 系统也将 Turbo 码作为高速数据传输系统的核心技术。

与 Turbo 码相比,LDPC 码具有编解码简单、码长可以较短、编译码效果更易逼近香农限,因而已成为当前卫星通信中信道编码的首选,特别是宽带移动通信。例如,对于BPSK 调制采用 1/2 码率、 107 块长的 LDPC 码在 BER 达到 10?6时所需 Eb/N0 值为0.04 dB,已非常逼近频带效率为 1 bit/s/Hz 时的香农限 0 dB[20]。目前,已用 FPGA 实现的 LDPC 编译码器,最高信息速率可达到 10 Gbit/s[21,22],可满足高速调制解调的需求。

对于大尺度衰落信道,例如存在降雨衰落情况下的 Ka 频段信道,采用自适应编码调制(ACM, adaptive coding modulation)可使信道传输效率最大化[23,24]。发送端在保持发送的符号速率和功率不变的情况下,根据接收方反馈回来的 Eb/N0 估值,自动选择最佳的调制方式和编码码率进行发送,可以高效地将链路余量,例如,Ka 频段的雨衰余量,转化为数据传输吞吐量,同时也可避免了偶然出现的干扰对链路造成的绝对中断。目前市场上已有支持 ACM 功能的产品。

2.3扩频通信技术

卫星通信信道开放性的特点带来的隐蔽性差、抗干扰能力弱等缺点,可采用扩频技术克服,因此扩频通信主要用于隐蔽通信和抗干扰军事通信。

扩频主要有直接序列扩频(DSSS,direct sequence spectrum spreading)、跳变频率(FH, frequency hopping)、跳变时间和线性调频等 4 种基本工作方式。这里主要介绍DSSS 和 FH。

DSSS 系统中每个符号用一个长度为 N 的伪随机序列表示,可使其信号的频带扩展 N 倍,接收端采用同样的序列进行相关接收解扩,因而可使解扩之后的信噪比提高到解扩之前的 N 倍,即可获得 N 倍的解扩处理增益。N 可以很大,例如,GPS 中 P 码信号的扩频倍数 N=204 600,即具有 53 dB 的处理增益。因此它可以在接收信号信干噪比很低的条件下进行通信,可使通信信号具有很强的隐蔽性,并使系统具有很高的干扰容限,例

如,允许信干比达 50 dB。如果在接收端解扩之前配合某种自适应信号处理算法,例如,自适应陷波、幅度非线性处理或自适应空间陷波等,还可使系统的干扰容限再提升30~40dB。

基于 DSSS 利用 GEO 卫星透明转发器可构成隐蔽性很强的重叠通信系统,将功率谱密度极低的 DSSS 信号重叠在其他正在进行通信的强信号之上进行较低比特率的通信,则信号具有高度的隐蔽性。

跳频(FH)通信中,发送端将调制信号的载波频率在很宽的频率范围中按照某种秘密约定的跳频图案进行跳变,接收端采用同样跳变的本地振荡进行正交下变频,变回为零中频信号再进行基带解调、符号判决和译码。因此 FH 比 DSSS 更容易将信号频谱扩展到更宽的频率范围,可获得更高的处理增益。只要跳频范围足够宽、跳速足够快,再配合卫星多波束天线技术从空间躲避可能的干扰,通信的安全性就有充分的保障。我国已实现的 FH 系统跳频范围可达 2 GHz,跳速达上万跳/秒,接近国际先进水平。

总之,目前卫星通信抗干扰技术已比较成熟,在军事通信中发挥了重要作用。当然,通信对抗双方没有绝对的赢家,只是在一定的条件下有一方取胜。

2.4阵列天线技术与卫星蜂窝网技术

1)阵列天线技术由于卫星链路传播衰减很大,例如,GEO 卫星 C、Ku、Ka 频段链路的衰减都在 200 dB 左右,需要采用高增益天线,因而天线的尺寸和成本往往成为推广应用的重要障碍。早期是采用 VSAT(very small aperture terminal)技术来缓解这个问题,即由一个大型中心站与大量的小口径天线终端站一起构成一个星形网。利用中心站天线增益很高、 EIRP(equivalent isotropic radiated power)值很大的优势,来弥补小站因天线口径小、增益低而使链路预算不足的弱点。后来通过开发更高频段的转发器、增大转发器的发射功率以及采用多波束卫星天线技术提高星上转发器的接收灵敏度和 EIRP,更加有效地实现了终端的小型化,天线的尺寸和成本似乎不再是明显的障碍,VSAT 的概念也逐渐淡化了。但目前基于GEO卫星Ku 频段透明转发器的宽带移动通信,其“动中通”天线的成本仍然很高,相当于通信终端其余部分总成本的 6~10 倍。这种天线通常都是采用线阵形式多个阵元实现水平方向跟踪,而采用机械装置实现垂直方向的跟踪。星上采用阵列天线技术形成点波束天线或蜂窝状的多波束天线(MBA, multiple beam antenna),可大大提高天线的增益,还实现了频率多次重复利用。卫星 MBA 主要有 3 种

实现方式,即反射面式、透射式和相控阵形式。

反射面 MBA 由一个或 2个反射面和几个独立馈源组成,通过馈源照射到反射面形成多波束。反射面 MBA 具有结构简单、质量轻和可靠性高等优点而最先得到广泛应用,如Odyssey 卫星[28]和日本的 ETS-VI 卫星[29]。ETS-VI 卫星的 MBA 有 2 种镜面,20 GHz 的 Ka 频段和 S 频段共用 3.5 m 直径反射镜,30 GHz 的 Ka 频段和 C 频段共用2.5 m 直径反射镜,实现了 13 个 Ka 频段波束覆盖日本大地、 C 频段单波束覆盖日本中部和 5 个 S 频段的波束覆盖 200 海里海域。

相控阵 MBA 由天线阵、馈电网络及波束形成控制器等组成,通过相移网络调节阵元的激励幅度、相位实现辐射波束指向的改变。相控阵 MBA 具有损耗低、动态扫描角度大的优点,便于形成蜂窝状 MBA。

透射式 MBA 通过网络对辐射阵移相,在覆盖区形成相对固定的波束,波束对辐射阵不扫描但可校正及微调,更适于星体体积和质量较小场合的应用。例如全球星(Globalstar)系统和铱(Iridium)系统[1] 中 MBA 就是采用直接辐射阵列形式、基于模拟射频移相法形成多波束,不同的是前者使用功分器[30],后者使用 Butler 矩阵。

对于上百个以上波束的 MBA,不宜采用反射面式的,而后 2 种 MBA 中各个阵元的功率驱动信号的 PAPR 都很高,这是因为每个阵元的驱动信号都含有其他许多波束的信号,所有阵元的信号通过空间功率合成而形成 MBA。若各个波束的发送信号又是多载波调制的或多路频分复用的信号,各阵元信号的 PAPR 就会更高,功率放大器的功率回退引起射频功率效率降低和功放非线性引起的互调干扰,将成为严重的问题[32]。这正是如前所述 OFDM 不大适于卫星宽带移动通信下行链路观点的又一个论据。

2)卫星蜂窝网技术频率资源有限是大力发展卫星通信应用的一个瓶颈。GEO 卫星采用 MBA 技术,不仅能够大幅度提高卫星天线的增益和下行发射的 EIRP 值,还可形成许多蜂窝小区覆盖地面,实现频率资源的多次重复利用。例如,星上采用 7 小区簇结构的140个蜂窝状波束的 MBA,频率资源可重复利用 20 次,其天线增益可比单波束区域天线的增益提高 20dB 左右。由此可见卫星 MBA 技术是开发大容量卫星移动通信系统、增强其市场竞争力的关键。目前国外 GEO 卫星 MBA 的波束个数可达 500 个,而我国的这一技术存在较大差距,有可能成为影响市场竞争力的关键因素之一。

采用多个LEO 卫星构成卫星群星座,每颗卫星都装备 MBA 便可形成大量的蜂窝小

区,动态地覆盖整个地球表面,可使频率资源重复利用更多次。例如,铱星系统 66 颗卫星[1]、每星 48 个波束,形成 3 168 个蜂窝小区动态地覆盖全球表面,其中 2 150 个小区按 12 个小区簇的方式分配频带,因此其频率资源可重复利用 179 次。铱星系统的星座如图 2 所示。

假设将来能用 4 000 颗 LEO 卫星构成星座,每颗星装一幅 500 波束的 MBA,则总共可形成 200 万个直径约 20 km 的蜂窝小区覆盖全球表面。若采用 Ka 频段 3.5 GHz 带宽以 7 小区簇方式分配频率,则此带宽可复用 266 667 次,总的可用频率资源达 933 THz,每小区可用带宽约 500 MHz,其可用频率资源的地域覆盖密度可与 3G、4G 蜂窝网相比拟。不过这个假设不是短期内可实现的。

2.5多址和复用技术

所谓多址(multiple access)是指某个站从它接收到的多路信号中区分各路信号来自哪个站点,并根据需要选择其中一路或几路进行接收处理;也可以是某一站以某种信道复用方式广播地发送多路信号,让其他各站能按需选择其中一路或几路信号进行接收处理。所谓复用即多路复用(multiplexing),是指多个数据流的数字调制信号共享一条信道进行传输时的信道共享方法。

无线通信的 4 种基本多址方式——频分多址 (FDMA)、时分多址(TDMA)、码分多址(CDMA)和随机竞争多址(Aloha)以及它们的组合,在卫星通信中都有重要应用,其中Aloha 常常用于多址接入的呼叫申请。多址方式对应的复用方式——FDM、TDM、 CDM 及其组合也常常伴随着相应的多址方式出现。

FDMA 因其实现简单而最早在卫星通信中得到广泛应用,但是,当一个透明转发器转

发的多频带信号的路数达到 15 个以上时,由于难于避免多载波互调干扰而会使系统的数据吞吐率急剧下降,因此单纯的 FDMA 系统能支持的用户数是非常有限的。

基于透明转发器由一个大型中心站与许多小站一起,可以基于 FDMA/TDM 方式构成用户容量很大的 VSAT 网。这是因为转发器在转发 FDMA 信号时进行充分的功率回退,可基本上避免多载波互调干扰。尽管因功率回退太多而造成射频功率效率显著降低、下行EIRP 相应减小,但因中心站天线增益很高而仍能保证正常接收。在中心站对各路信号进行解调译码和用户交换之后,将要发往各小站的数据进行 TDM 复接和数字调制后,再通过卫星转发给各个小站。这种 TDM 信号属于单载波调制信号,因此整个外向链路(中心站—转发器—小站) 的功率效率都可达到最高,从而 VSAT 站能正常地接收。这种 VSAT 网,可以提供上百条双向信道,系统根据申请按需分配信道,其总的用户容量能达到数千个,因而在 1980 年代末至 2000 年代初得到了十分广泛的应用。

由于这种 VSAT 系统中 2 个小站之间通信需要借助中心站进行两跳透明转发,不仅浪费一倍信道资源,而且增大一倍延迟。为克服这 2 个缺点曾发表许多论文,认为应该将中心站进行的 FDMA-TDM 转换搬移到星上去进行[33]。这就要求在星上对许多路信号进行解调译码,又导致星上设备复杂很高、信道无法灵活应用 2 个缺点,因而未得到大力推广。

将 FDMA 与 TDMA 相结合,形成多频 TDMA(即 MF-TDMA),是扩大用户容量的另一条有效途径[34]。将多频带中的每一个子带都划分为多条 TDMA 子信道,用户容量很容易扩大许多倍,而发送、接收处理依然简单方便,信道的调配也很灵活。于是很快就形成多个相关的国际标准,并得到了广泛的应用。MF-TDMA 既适于基于透明转发器构成的系统,也适于有星上处理的系统,因此将有长足的发展和应用。其实地面 2G 蜂窝网 GSM 系统也是采用这种体制。

1990 年代末,ViaSat 公司采用成对载波多址[35] (PCMA, paired carrier multiple access)、基于透明转发器构成星形 VSAT 网。其前向链路是中心站在某一频带以 TDM 方式向各个小站广播发送信息,而回传链路是各小站在同一频带以 CDMA 方式向中心站回传信息。两者的频谱重叠在同一频带上,但因后者是扩频信号,其信号强度比前者弱得多,而不影响各小站正常地接收中心站的信号。中心站在接收各小站的弱信号时所受到的干扰正是自己发送的信号,这可以通过重构而抵消之,因此也可以正常接收。该体制有 2 个独特的优点:其一是频率资源可重复应用一次,其二是小站发送信号的隐蔽性较强。

卫星通信论文

卫星通信论文 卫星通信地球站系统驱动电动机的选择 摘要:卫星通信地球站天线驱动电动机的选择需从机械、电子和伺服控制等方面综合考虑,其难度较大且至关重要。具体分析各类卫星通信地球站天线选择驱动电动机的依据,对卫星通信地球站天线驱动电动机的选择有一定参考价值。 关键词:卫星通信地球站; 电动机; 俯仰阻力矩; 方位转动; 极化 0 引言 卫星通信地球站是设置在地球上能通过卫星传输信息的微波站。设立在固定地点的地球站叫做卫星固定地球站,简称固定站。设置在车、船、飞机上,可以在移动中通过卫星进行通信的地球站叫作卫星移动地球站,即通常说的动中通[1-3] 。可以移动,但是通过卫星进行通信是在某一固定地点进行的地球站叫作静中通[4] 。而便于携带的静中通叫作便携式卫星地球站,简称便携站。 众所周知,天线是卫星通信地球站系统中最主要的设备之一[5] 。无论是何种卫星通信地球站天线,通常都包括方位、俯仰和极化三个转动部分,相应地,要实现自动对星就需要三个电动机。电动机的选择需根据转矩、转速、转动加速度、精度和伺服控制等的要求来综合考虑,其涉及到机械、电子、天馈和控制等方面的知识,而且电动机的种类繁多,所以选择合适的电动机至关重要且难度较大。

1 选择驱动电动机需考虑的因素 1.1 转矩 电动机经过减速增矩(需考虑传动系统的效率)后的输出转矩应大于最大阻力矩且有一定的裕量,通常为20%~50%。这里的阻力矩对方位来说主要是摩擦力矩,对于动中通还需根据控制要求满足一定的转动加速度要求,所以必须考虑惯性力矩,如果没有天线罩则阻力矩还要考虑风力矩,而对于俯仰阻力矩还有重力引起的阻力矩通常是最大的。对方位阻力矩通常只考虑摩擦力矩即可。 1.2 转速和转动加速度 对固定站(包括静中通、便携站)天线,通常要求在满足力矩和传动系统响应时间的条件下,转动平稳即可,一般转速为零点几度到两三度每秒,对转动加速度无特殊要求。对动中通天线通常需根据一定的控制策略确定转动速度和转动加速度。 1.3 精度 对固定站(包括静中通、便携站)天线,方位、俯仰角的精度一般不应超过-3 dB波束宽度的1/10,极化角精度不应超过0.1°;对动中通,方位、俯仰角的精度一般不应超过-3 dB波束宽度的1/7,极化角精度不应超过0.1°。所以需根据方位、俯仰和极化角要求的精度,并考虑传动系统的回差和成本等因素来综合确定电动机的精度。 2 卫星通信地球站天线驱动电动机的选用 2.1 固定站天线驱动电动机的选用

GEO多波束卫星通信网络关键技术研究

2009年第05期,第42卷 通 信 技 术 Vol.42,No.05,2009 总第209期Communications Technology No.209,Totally GEO多波束卫星通信网络关键技术研究 杨巧丽①②, 陆锐敏②, 马刈非① (①解放军理工大学 通信工程学院,江苏 南京 210007;②总参第63研究所,江苏 南京 210007) 【摘 要】文章对GEO多波束卫星通信网络的体系结构进行了分析研究;提出了一种集中式与分布式相结合的天地一体化无线资源管理模式;针对QoS保证和特殊的抗干扰应用需求,对其呼叫准入控制、波束切换管理、分组调度策略等关键技术给出了初步的研究建议。 【关键词】GEO卫星通信网络;服务质量(QoS);无线资源管理(RRM) 【中图分类号】TN927.23【文献标识码】A【文章编号】1002-0802(2009)05-0158-03 Key Technologies of GEO Multi-beam Satellite Communications Network YANG Qiao-li①②, LU Rui-min②, MA Yi-fei① (①Institute of Communication Engineering, PLA University of Science & Technology, Nanjing Jiangsu 210007, China; ②No.63 Research Institute of PLA General Staff Headquarters, Nanjing Jiangsu 210007, China) 【Abstract】The network structure of GEO Multi-beam satellite communications network is analyzed. The model of integrated space-ground radio resource management in combination of centralized mode and distributed mode is proposed. For the quality of service (QoS) support and the special requirement of anti-jamming, some research suggestions on call admission control, beam handoff management and packet scheduling are given. 【Key words】GEO satellite communications network;quality of Service (QoS);radio resource management (RRM) 0 引言 GEO多波束卫星通信系统以其覆盖范围广、星座和网络控制简单等诸多优点一直都是军事领域研究和应用的重点[1]。为了满足未来国家多方面安全利益的需求,未来军事卫星通信系统将由3-5颗GEO卫星星座组成,采用更高的频段、多波束天线、宽带跳频、星上处理、星上交换、星上网络控制、星际链路等先进技术,能够实现与地面其他网络内任何用户的互连互通,同时还将满足从低速到高速的话音、数据、视频、Internet数据传输等多媒体业务需求,实现抗干扰并可应对复杂的电磁环境,提供受保护的动中通服务能力。 1 天地一体化网络体系结构 随着星上处理和交换技术的发展,鉴于军事应用抗干扰、抗摧毁能力的特殊需求,未来军事GEO卫星通信系统将采用多星全球覆盖有星际链路组网应用模式[2],采用星际链路方式时,卫星无需地面站中转就可直接互连,不仅降低了通信时延,而且还会显著地改善通话质量;另外,为了保证在地面网络管理中心受到打击时整个卫星通信系统的自主运行能力,还应该考虑星上网络控制设计方案[3]。 如下页图1所示,给出了多星全球覆盖有星际链路天地一体化网络体系结构示意图。在军事应用背景下,应用Ka或更高频段为系统提供了足够大的带宽,可调多波束主要是为了空间隔离以提高系统的抗干扰能力,必要时可能还需要波束重叠使用以增强特殊覆盖区域内的用户容量和通话质量,所以一般不进行频率复用。同其它卫星通信系统类似,GEO多波束卫星通信网络也可划分为空间段、用户段和地面段[4]。 空间段由3-5颗多波束GEO卫星通过星际链路组成一个+/- 65°纬度带内的准全球覆盖卫星星座,每颗卫星均具备 收稿日期:2008-09-22。 作者简介:杨巧丽(1979-),女,工程师,博士生,主要研究方向为卫星通信抗干扰;陆锐敏(1963-),男,高级工程师,硕导,主要研究方向为卫星通信抗干扰;马刈非(1947-),男,教授,博导,主要研究方向为卫星通信网络。 158

卫星通信论文

卫星通信 卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任 何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。 卫星在空中起中继站的作用,即把地球站发上来的电磁波放大后再反送回另一地球站。地球站则是卫星系统形成的链路。由于静止卫星在赤道上空360 00千米,它绕地球一周时间恰好与地球自转一周(23小时56分4秒)一致,从地面看上去如同静止不动一样。三颗相距120度的卫星就能覆盖整个赤道圆周。故卫星通信易于实现越洋和洲际通信。最适合卫星通信的频率是1一10GHz 频段,即微波频段、为了满足越来越多的需求,已开始研究应用新的频段,如12G Hz,14GHz,20GHz及30GHz。 在微波频带,整个通信卫星的工作频带约有50OMHz宽度,为了便于放大和发射及减少变调干扰,一般在卫星上设置若干个转发器。每个转发器的工作频带宽度为36MHz或72MHz目前的卫星通信多采用频分多址技术,不同的地球站占用不同的频率,即采用不同的载波。它对于点对点大容量的通信比较适合。近年来,已逐渐采用时分多址技术,即每一地球站占用同一频带,但占用不同的 时隙,它比频分多址有一系列优点,如不会产生互调干扰,不需用上下变频把各 地球站信号分开,适合数字通信,可根据业务量的变化按需分配,可采用数字话 音插空等新技术,使容量增加5倍。另一种多址技术使码分多址(CDMA),即不同的地球站占用同一频率和同一时间,但有不同的随机码来区分不同的地址。它采用了扩展频谱通信技术,具有抗干扰能力强,有较好的保密通信能力,可灵活 调度话路等优点。其缺点使频谱利用率较低。它比较适合于容量小,分布广,有一定保密要求的系统使用。 只有通信技术的不断成熟和发展,无线通信的质量才能得到逐步改善和提高。卫星通信作为一种重要的通信方式,在数字技术的迅速发展推动下,也得到了迅速发展。但是由于陆地光缆通信的迅速发展,对传统的卫星通信产生了重大的冲击。到了20世纪90年代中后期,由于卫星通信技术的发展,再加上卫星通信本身所具有的广播式传送及接入方式灵活等特点,使得它在因特网、宽带多媒体通信和卫星电视广播等方面得到了迅速发展。与其他通信技术相比,卫星通信技术有着自己与众不同的特点,主要表现在以下几个方面: 1、市场发展潜力大

船载卫星通信地球站监控系统分析及软件设计

大学毕业设计论文 题目船载卫星通信地球站监控系统分析及软件设 计 专业通信工程 学生姓名XXX 班级学号XXXXX 指导教师XXX 指导单位XXXXXXXX

摘要 在突发灾难情况下,现有的地面通信网络,往往很容易遭到破坏,且难以快速恢复,此时建立先进的应急通信系统显得格外重要。快速反应,应急开通,是抢险救灾服务中争取时间、减少损失的关键,它甚至关系到救援行动的成败。然而目前的“动中通”虽然已经应用于应急通信,但是仍然有不尽如人意的地方,未来的“动中通”应具有良好的人机界面和高度的可靠性,以嵌入式处理芯片和嵌入式实时操作系统为标志。 本课题研究是的船载卫星站监控器,它是控制物体在运动状态下能够实现实时通信、精确定位的功能。与此同时会涉及到动载体卫星通信的工作原理的理解。所谓动载体卫星通信,其工作原理是:载体在移动过程中,由于其姿态和地理位置发生的变化,会引起原对准卫星天线偏离卫星,使通信中断,因此必须对载体的这些变化进行隔离,使得天线不受影响并始终对准卫星。这就是天线稳定系统要解决的主要问题,也是移动载体进行不间断卫星通信的前提。 对于本次课题研究的主要任务是实现船载卫星站系统的监控功能,并且利用KEIL集成开发平台软件辅助实现天线监控系统的各部分功能,包括电子罗盘数据采集和处理程序的编写、监控器面板键盘程序的编写以及监控器液晶显示器显示程序的编写等。 关键词:卫星移动通信,动中通,捷联技术,单脉冲自跟踪

ABSTRACT In case of sudden disasters, the existing terrestrial telecommunication networks are often easily damaged and difficult to be recovered, Seting up an advanced emergency communications system is particularly important at this time. The rapid response and emergency open is the key to gain time to reduce the loss in the emergency rescue. Though some types of "mobile communications services" have been used in emergency communications, there are some failures in these systems, such as higher costs, poor human-computer interface. The new type of "mobile communications"system should solve those problems and enhance the reliability, the embedded chips and embedded real-time operating system will be wildly applied. The vehicle "mobile communications" reaserched in this issue can be installed in a normal cross-country vehicles and has merit of miniaturization, light-duty, rapid response, high tracking precision which improve the mobility of vehicle, so that it can automatic track satellite and set up satellite communications link qucikly, and satisfy the needs of the emergency communications and control. This research is a satellite station on board to monitor, it is to control the state of an object in motion to achieve real-time communications, precision positioning capabilities. At the same time would involve moving the satellite communications carrier the understanding of the working principle. The so-called dynamic carrier satellite communications, and its working principle is: the process in the mobile carrier, because of their attitude and location changes, will cause deviation from the original aligned satellite satellite antenna, so that communication interruption, it is necessary to isolate these changes in carrier so that the satellite antenna is not affected and always aligned. This is the antenna stabilization system to solve the main problem is uninterrupted mobile satellite communications carrier the premise. For this research the main task is to achieve satellite station ship monitoring systems, and integrated software development platform using KEIL assisted to achieve the various parts of the antenna control system functions, including electronic compass data acquisition and processing procedures for the preparation, monitoring panel keyboard and monitor procedures for the preparation of procedures for the preparation of liquid crystal display and so on. Key word: Satellite Mobile Communication, mobile communication, Strap-down technology,monopulse tracking

卫星通信系统汇总

Industry Observation 产业观察 DCW 27 数字通信世界 2019.05 从1964年美国成立国际卫星通信组织(Intelsat ),并于次年发射第一颗商用通信卫星(“Early Bird ”)以来,卫星通信技术蓬勃发展,卫星通信作为地面通信的一种补充通信方式取得巨大的成功,卫星通信已经成为了人们生活中不可或缺的一部分。 1 V SAT 技术时代 在卫星通信技术早期,甚小孔径终端(VSAT )解决了天线尺寸和成本对卫星通信发展的限制,这也决定了天线系统的基本拓扑结构是由一个大型中心站与大量小口径天线终端共同构成的一个星型网,通过中心站天线的高G/T 值来弥补小站天线因口径小所导致的链路余量不足的弱点。早期基于VSAT 的卫星通信系统是通信频段集中于L 、S 、C 波段的窄带通信系统。 随着技术进步和人民生活水平提高,对宽带卫星通信的需求应运而生。由于L 、S 、C 的频段带宽资源有限和日趋紧张,国外于上世纪八九十年代就开始了对Ka 频段宽带卫星通信技术的研究。2005年,美国Wild Blue 通信公司成功发射世界第一颗Ka 频段宽带通信卫星并试点应用,此后各国的Ka 频段宽带通信卫星开始向着系统容量更大、用户终端更小、业务速率更大的高通量方向发展。 2 多波束天线技术时代 由于VSAT 天线系统的灵活性不足,并且无法利用频率复用技术来提高频谱效率,卫星通信天线的发展已经转向多波束天线。多波束天线(Multiple Beam Antenna )从2000年开始迅速发展,由于它能够实现高增益的点波束覆盖,又能在广域覆盖范围中实现频率复用,从而在卫星通信天线系统中得到广泛应用。 多波束天线与数字波束成形不同,它使用大量的点波束实现广域范围覆盖,可用带宽被分为很多个子波段,从而在大量空间独立的点波束之间可以实现每个子波段的复用,这与地面蜂窝通信网络相似,显著地增加了频谱利用率和卫星通信容量。多波束天线技术提高了转发器的功率使用效率和频谱资源利用率,是发展大容量卫星通信系统和增强卫星通信市场竞争力的关键技术,高通量通信卫星时代随之而来。 3 窄带卫星通信VS 宽带卫星通信VS 高通量卫星通信 从早期的窄带卫星通信系统实现基本的卫星通信,到Ka 宽带卫星通信以Ka 频段、大容量、提供宽带互联网接入为标志,开辟了卫星互联网接入的新业务,再到今日以多点波束和频率复用(可以在任何频段复用,目前大多采用Ka 频段)和高波束增益为标志的高通量通信卫星(HTS ,High Throughput Satellite ),通信容量通过分配频谱和频率的服用次数得到大幅度扩大,开启了卫星通信新纪元。 高通量卫星(HTS )已成为宽带卫星通信的主流,高通量通信卫星在使用相同频率资源的条件下,大幅提升了容量并降低了单位带宽成本,单颗容量可达几十Gb/s 到上百Gb/s ,通信容量比传统通信卫星高数倍甚至数十倍。 4 市场主流卫星通信系统一览 卫星通信技术的发展和通信容量的需求促进了卫星通信从窄带走向宽带,又走向如今的高通量时代,卫星通信系统作为连接底层卫星天线和上层通信应用的重要环节,也在不断的发展演进,结合自己2016年和2017年两次参加中国卫星应用大会以及平常的关注,将当前市场上主流的卫星通信系统整理如下,个别系统资料不足,还需进一步完善。4.1 C omtech 的Heights 系统 2017年5月,Comtech EF Data 公布了Heights 动态网络接入(H-DNA )技术的性能优势。通过H-DNA ,Heights 网络平台提高了卫星终端用户的体验质量。 Comtech 为Heights 网络平台的返回链路设计了H-DNA 。它为用户、服务提供商和卫星运营商带来了很多新的好处。新的波形、增强带宽管理算法和多级别服务质量(QoS )的应用使得该返回链路接入方案能够自动响应实时流量需求,根据客户的服务水平协议和网络策略提供最佳的解决方案。 H-DNA 提供亚秒级响应时间来改变用户需求和链接条件,而且不会带来通常与其他返回链路接入技术相关联的过度抖动和延迟。另外,H-DNA 还采用了VersaFEC-2高性能低密度奇偶校验(LDPC )波形、自适应编码和调制、动态功率控制、互联网协议优化、较低的帧开销、多级QoS 和WAN 优化,与同类的其他解决方案相比,它提供了最多的每赫兹用户IP 数据。 H-DNA 根据网络范围的需求分配容量,并确保随着需求的变化,为网络中的用户和站点即时提供带宽,还可以按照用户需求和服务协议级别,为用户分配所有可用带宽,以确保随时使用所有容量。4.2 C omtech 的ViperSat 系统 Viper sat 系统主站由570L 、564L/562L 以及VMS 、VCS 、VNO 服务器等组成,远端站由570L 、564L/562L 组成,带有网口,可以直接传输IP 数据。 Vipersat 的网管系统由VMS 服务器(1∶1热备份)、VMS 客户端、VCS 服务器和VNO 服务器。其出境TDM 载波,入境S-TDMA (自适应TDMA )载波,其中TDM 载波为64kb/s ,S-TDMA 载波为128kb/s 。网络为星状网。 Vipersat 系统的业务传输采用的是dSCPC (动态SCPC )载波,modem570L 会自动检测(根据QoS 、协议等)网口收到的数据,并根据需求向主站发送业务申请。主站收到业务申请后会通过TDM 载波发送配置参数,调整远端站(主-远端通信或者(远端-远端)的参数,建立2M 甚至以上的SCPC 通信连接。当通信结束后,modem570L 检测到网口没有收到类似数据时,向主站发送申请,主站通过TDM 下发配置参数,断掉SCPC 链路,远端站改为发S-TDMA 载波。 Vipersat 系统中使用的570L 采用的调制编码与纠错方式是DVB-S 体制,其调制方式为:B/SK/ QPSK/8PSK16QAM 等调制方式,前向纠错编码方式为TPC 、viterb 、RS 和TCM 码。4.3 S TE 的iDirect 系统 iDi rect 系统主站为插卡式设备,主要由电源板、调制板、 卫星通信系统汇总 任 政,陈 霁 摘要:本文综合介绍了各种卫星通信系统,阐述了卫星通信作为地面通信的一种补充通信方式取得巨大的成功,卫星通信已经成为了人们生活中不可或缺的一部分。 关键词:卫星通信系统;VSAT ;多波束;高通量doi :10.3969/J.ISSN.1672-7274.2019.05.015中图分类号:TN927+.2 文献标示码:A 文章编码:1672-7274(2019)05-0027-03

低轨卫星星载通信信号处理关键技术研究

低轨卫星星载通信信号处理关键技术研究卫星技术的发展推动了低轨卫星星群化和网络化程度的不断加深。通过星间链路构成的低轨卫星网络可以为全球数据传输和多种业务应用提供支持,长期以来一直受到各国军事和科研部门的关注。 应用需求和承担角色的转变对低轨卫星通信体制与技术提出了一系列挑战。就通信信号处理的角度而言,这些挑战主要包括提高捕获精度、降低星上信号处理开销、提高功率利用率等。 本文以具有星间链路与星上处理能力的低轨卫星系统为背景,以解决低轨卫星星载通信信号处理面临的挑战为目标,围绕上述三方面问题开展工作,对直扩信号高精度捕获技术、稀疏简化时频处理技术、最紧致高阶调制技术进行研究。本文的主要工作和创新性成果如下:提出基于频域重排实现并行高精度捕获的高精度频域重排捕获技术,通过引入相频特性将二维估计转化为一维估计问题从而实现并行捕获。 与传统捕获方法基于信号幅频特性通过能量检测实现捕获的思路不同,高精度频域重排捕获算法充分利用了信号的相频特性。在频域重排捕获算法中,相频特性与幅频特性各自表征一个参量且二者间存在约束关系,因此二维估计问题被转化为一维估计问题,可以通过一次运算同时得到时频估计结果。 引入相频特性使频域重排捕获算法在不降低捕获时效性的基础上获得精度上的改善。文中对影响算法性能的因素和算法的抗噪声性能进行了分析,推导了信噪比门限的非紧致理论界,并对捕获精度进行了仿真。 结果表明,该算法的码相位估计精度和频率估计精度比传统算法分别改善了50%和60%以上。提出基于频域解耦改善算法抗噪声性能的频域重排联合解耦捕

获算法,通过固化幅频特性对相频特性谱的影响减少时频估计受到的限制。 在高精度频域重排捕获算法中,时频二维估计过程在流程上的耦合效应对算法抗噪声性能产生了影响。通过引入联合解耦处理,算法在保持幅频和相频特性各自反映的参量特征不变的基础上,使得二者的处理流程不相关化,减少了对码相位偏移和剩余频率估计过程的限制,从而改善了整体的抗噪声性能。 通过联合解耦处理获得的抗噪声性能的改善不以降低捕获算法的时效性为代价。文中分析了算法的抗噪声性能,推导了信噪比门限的非紧致理论界。 结果表明,频域重排联合解耦捕获算法的信噪比门限比频域重排捕获算法改善了约6dB。提出定位优化的稀疏傅里叶变换算法,充分利用直扩信号的“限带稀疏”特性来降低稀疏处理流程的运算复杂度。 传统稀疏傅里叶变换方法的稀疏处理过程本质上是解欠定方程的问题,必须采用“压缩、解算、选择”的处理流程。与传统方法不同,文中提出的定位优化稀疏傅里叶变换方法充分利用直扩信号优异的“限带稀疏”特性来防止有效谱峰的碰撞。 这使得稀疏处理过程转化为解结果具有一定波动的常规方程的问题,因而可以采用“压缩、预选、解算”的处理流程来降低整体复杂度,且不以最终估计结果的精确性为代价。文中对定位优化的稀疏傅里叶变换算法性能进行了分析,并将其引入前文所述捕获算法中。 结果表明,定位优化的稀疏傅里叶变换算法的复杂度比原稀疏傅里叶变换算法降低约50%;基于定位优化的稀疏傅里叶变换的频域重排捕获算法以及频域重排联合解耦捕获算法的复杂度比传统捕获算法分别降低了约96%和90%。建立最紧致高阶调制方式通用数学模型,基于分类和递推的方法求得抗噪声性能的通用

卫星通信论文

华东交通大学理工学院 论文题目: 卫星通信发展动态 课程:现代通信技术与业务姓名;吕进 专业:通信工程 班级:12 通信2班 学号:20120210420243

卫星通信是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。卫星通信自1945年发展至今,大大加速了社会信息化的进程。我国卫星的研究和使用始于20世纪70年代初。卫星通信应用主要包括数据传输业务中的应用、移动通信系统中的应用、视频广播业务传输中的应用、电话等交互式业务传输中的应用。随着卫星通信技术的进步和卫星通信能力的提高,卫星通信应用范围愈来愈广泛,服务水平愈来愈提高。在当今地面通信飞速发展的情况下,卫星通信在发展市场中虽然遇到很大的困难和风险,甚至遭受重大挫折,但由于它的不可替代的特点决定了它仍要发展和应用。因此,从全局和长远来看,未来卫星通信的发展前景仍是光明而美好的。我国卫星通信方面的发展目标:管好、用好现有卫星通信系统,积极发展新业务、新市场、新系统并坚持自主建设。 【关键词】卫星通信卫星数据传输卫星移动通信卫星视频广播卫星电话交互

前言 1 第一章卫星通信发展简史 2 第二章卫星通信应用 3 第一节数据传输业务中的应用 3 第二节移动通信系统中的应用 3 第三节视频广播业务传输中的应用 4 第四节电话等交互式业务传输中的应用 4 第三章卫星通信的发展趋势及我国卫星通信的发展目标 5 第一节卫星通信的发展趋势 5 第二节我国卫星通信的发展目标 6 结论7 参考文献8

前言 卫星通信是航天技术和通信技术结合的,由计算机控制的先进通信方式。它是在微波通信基础上发展起来的一种特殊形式的微波通信。 卫星通信是指利用人造地球卫星作为离地面很高的中继站,在两个或多个地球站之间转发无线电信号,从而实现它们相互之间的信息交换和信息传输的通信方式。 它所使用的无线电波频率为微波频段(300MHz~300GHz)。可以认为卫星通信是地面微波中继通信的继承和发展,是微波接力通向太空的延伸。卫星通信是空间通信的一种形式,它主要包括卫星固定通信、卫星移动通信和卫星直接广播三大领域。由于卫星通信具有覆盖面大、频带宽、容量大、适用于多种业务、性能稳定可靠、机动灵活、不受地理条件限制、成本与通信距离无关等优点。多年来,它在国际通信、国内通信、军事通信、移动通信和广播电视等领域得到了广泛应用。下面我们就从卫星通信的发展简史、应用、趋势等方面对卫星通信进行概括和综述。

卫星通信关键技术研究讲解学习

卫星通信关键技术研 究

卫星通信关键技术研究 小组成员:冉文,李鹏翔,杨亚飞 小组分工: 冉文(学号:15085208210015):程序审查,论文校订 李鹏翔(学号:15085208210008):收集资料,编辑文献,结果分析杨亚飞(学号:15085208210023):仿真程序设计 专业:电子与通信工程

引言 卫星通信系统具有覆盖范围广、受地理环境因素影响小等特点,从而使得卫星通信成为当前通信领域中迅速发展的研宄方向和现代信息交换强有力的手段之一。目前,下一代卫星通信网络正朝着更高速率、更大带宽的方向发展,其与地面通信网络联合组成全球无缝覆盖的信息交换网络。随着空间通信技术的飞速发展和业务需求的急速增长,有限的无线资源与多媒体业务不断提高的QoS要求之间的矛盾曰益尖锐,使得设计可以支持高速、高质量多媒体传输的资源管理策略成为当前空间通信领域关注的重点。同时,卫星组网技术直接关系到卫星网络能否实现全球覆盖以及卫星网络的可扩展性问题,是卫星通信系统研宂中的关键问题。相应的,路由协议、链路切换等都要针对卫星网络的特点重新设计,以星上路由交换为核心的新型卫星通信系统是空间通信领域的另一个研究重点。 卫星通信是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。它是微波通信和航天技术基础上发展起来的一门新兴的无线通信技术,所使用的无线电波频率为微波频段(300MHz~300GHz,即波段lm~1min)。这种利用人造地球卫星在地球站之间进行通信的通信系统,则称为卫星通信系统,而把用于现实通信目的的人造卫星称为通信卫星,其作用相当于离地面很高的中继站,因此,可以认为卫星通信是地面微波中继通信的继承和发展,是微波接力通向太空的延伸。卫星通信是空间通信的一种形式,它主要包括卫星固定通信、卫星移动通信和卫星直接广播三大领域。由于卫星通信具有覆盖面大、频带宽、容量大、适用于多种业务、性能稳定可靠、机动灵活、不受地理条件限制、成本与通信距离无关等优点。多年来,它在国际通信、国内通信、军事通信、移动通信和广播电视等领域得到了广泛应用。下面我们就从卫星通信的发展简史、现状、趋势等方面对卫星通信进行概括和综述。

卫星通信系统的研究

课程论文(设计) ( 2009 级) 论文(设计)题目卫星通信系统的研究作者 分院、专业 班级 指导教师(职称) 字数 5千字 成果完成时间

卫星通信系统的研究 通信技术 Xxx专业xxx班 xxx 指导教师 xxx 摘要:本文所论述的移动卫星通信系统由卫星和地面基站两大部分组成,是基于人造地球卫星作为中继基站放大或处理无线电信号后进行转发,在两个或多个地面基站之间进行的通信过程或方式。地面基站实际上是卫星系统与地面公众通信网的接口,地面用户通过地面基站接入卫星系统形成通信电路。 关键词:卫星通信;地面基站;中继基站;公众通信网 Study of Communication System Based On Satellite Communications technology Xiong Huafeng Instructor: An kang Abstract: This paper presents the satellite communication system by satellite and ground station two major components, is based on the artificial earth satellite as a relay base station radio signal amplification or processing carried forward, in pair or more of the ground station communication process between or manner. In actually a satellite system ground station and ground public communication network interface, on the ground through the ground station users access to satellite communications system formed the circuit. Key words: Satellite Communications; Ground station; Relay station; Public communication network

卫星通信系统设计

卫星通信系统设计 一、设计要求 1.覆盖东南亚地区(地面终端为手持机); 2.波束:卫星天线有140个点波束,EIRP:73dbw, G/T :15.3db/k; 3.支持数据速率9.6kbps,至少提供10000路双向信道; 4.频段:L波段,上行1626--1660MHZ; 下行1525--1559MHZ。 二、总体设计方案 1.系统组成 卫星通信系统由卫星星载转发器、地球站接收、地球站发送设备组成。本设计系统卫星定位与赤道上空123oE,加里曼丹(即婆罗洲)上空。距地面3.6KM,属地球同步卫星。 系统组成如图1所示 发送端输入的信息经过处理和编码后,进入调制器对载波(中频)进行调制;以调的中频信号经过上变频器将频率搬移至所需求的上行射频频率,最后经过高功率放大器放大后,馈送到发送天线发往卫星。卫星转发器对所接受的上行信号提供足够的增益,还将上行频率变换为下行频率,之后卫星发射天线将信号经下行链路送至接受地球站。地球站将接受的微弱信号送入低噪声模块和下变频器。低噪声模块前端是具有低噪声温度的放大器,保证接收信号的质量。下变频、解调器和解码与发送端的编码、调制和上变频相对应。

2.系统传输技术体制 ○1,调制方式 本系统采用π/4-QPSK调制机制 QPSK(Quadrature Phase Shift Keying)正交相移键控,是一种数字调制方式。在数字信号的调制方式中QPSK四相移键控是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。但是,当QPSK进行脉冲成形(信号发送前的滤波,减小信号间干扰,将信号通过设定滤波器实现)时,将会失去恒包络性质,偶尔发生的弧度为π的相移(当码组0011或0110时,产生180°的载波相位跳变),会导致信号的包络在瞬时通过零点。任何一种在过零点的硬限幅或非线性放大,都将由于信号在低电压时的失真而在传输过程中带来已被滤除的旁瓣。为了防止旁瓣再

通信工程毕业论文小卫星通信系统关键技术论文

小卫星通信系统关键技术论文 小卫星通信系统具有研发费用少,重量轻,性能稳定, 信号覆盖范围广以及不受地域条件限制等优点,能够对当前大型 同步轨道的卫星通信进行补充作用,在全球范围内得到广泛应用 的同时也受到了众多研究机构的重视,因此对小卫星通信系统的 技术进行研究同时具有实践意义和理论意义。 卫星通信技术在军事、政治、工业、生活等方面均具发 挥着重要作用,而相比之下,小卫星则更具有大型同步卫星所无 法实现的众多优势而受到国内外研究学者的重视,同时,卫星向 小型化趋势发展也是全球卫星产业的主要发展方向。我国从本世 纪初期开始着手小卫星的相关研制和发射工作。 1 小卫星的技术优势 1.1 荷载较少 小卫星在每次的的任务中一般仅需要装载一种特殊设备,进而很好地避免了大型卫星中出现的荷载间复杂配比问题。 1.2 研制时间短、费用低 小卫星的研制一般只需经过一到两年,同时相关的研究 经费也相比大型卫星明显降低,因此更具有经济性,更体现其实 践意义。 1.3 重量轻 小卫星的重量一般较小,就当前国际情况来看,最微型 的小卫星的质量仅有几百克,体积也很小,因此功能密度大,模 块可多次利用。

1.4 信号覆盖范围广 由于小卫星具有较强的组网能力,因此能够形成精度较高,功能强大而且信号覆盖范围广的星座系统,进而具有易于补网和星座功能稳定的优势。 1.5 减缓频率压力 小卫星的星座中包括多颗卫星,可以频率复用,因此具有减小空间任务所具有的频率压力。 2 小卫星通信系统主要技术简介 卫星在通信中起着中转作用,即将地球站传送来的信号经过变频和放大转送到另一端的地球站,地球站是卫星与地面信息系统的链接点,用户通过地球站途径进入卫星通信系统中,形成链接的电路信号链;为了确保系统的运行正常,卫星通信系统必须和地面的监测管理系统和测控系统想链接,测控系统能够对通信卫星运行的轨道进行检测和控制,以保证地面检测系统能够对卫星所传送的通信信息进行有效的监控,保证系统安全与稳定的运行。 小卫星通信的关键技术主要有通信系统的链路预算以及接收机参数估计技术和同步技术等,其中链路预算技术是设计小卫星通信系统的主要计算方法和参考依据,精确的链路预算能够确保通信系统的稳定运行。近年来,通信系统接收技术和相应的算法逐渐由信号模拟技术向数字化转变;由于卫星通信整体码速率有所提升因此对接收机的信息处理速度以及算法的复杂度、同步速度和稳定性也提出了更高的要求;信息传输量的大幅增加使得遥测领域中逐渐采用比特传输速率更高的调制方式;由于卫星通信系统在数字通信过程中的发射机和接收机的晶振不同,以及移动平台引起的多普勒效应,造成发射机和接收机之问会产生相位和频

卫星通信技术论文

卫星通信技术 摘要: 主要是围绕卫星通信展开一系列介绍,根据卫星通信的发展背景,阐述了卫星通信的发展过程,现状及存在的问题,进一步分析了卫星通信技术的发展趋势。最后阐述了卫星通信技术的应用领域及前景。 背景: 卫星通信自20世纪40年代提出,并经过半个多世纪的发展,已逐渐成为区域与跨洋通信、国家基础干线通信、国际军事通信、行业及企业专网通信乃至个人通信的重要手段。进入到21世纪,卫星通信面临地面高密度、大容量光纤通信的严峻挑战,但随着信息全球化、互联网、数字多媒体通信以及视频、音频业务的增长,通信个体化、机动性及无缝覆盖的需求,卫星通信已转向其具有独特优势的方向发展。 卫星通信是现代通信技术、航空航天技术和计算机技术结合的重要成果。卫星通信是当今主要的通信方式之一,在国际通信、国内通信、国防、移动通信及广播电视等领域,得到了广泛的应用。卫星通信与其他通信手段相比,具有频带宽、容量大、适于多种业务、覆盖面积大、性能稳定、不妥地地理条件限制等诸多优点,特别是国际通信卫星、国际卫星移动通信等是近年来的研究热点。 从卫星通信早期的设想到卫星通信广泛应用的今天,卫星通信大致经历了设想阶段、试验阶段和实用阶段。而每一阶段都有一些标志性的重大事件,见证了卫星通信的发展: 卫星通信的设想最早出现在1945年10月英国空军雷达专家阿瑟.克拉克在《无线电世界》杂志上发表的著名论文“地球外的中继站”中,他设想在赤道上空、高度为35786km处设置1颗卫星,以与地球同样的角速度绕太阳同步旋转,就可以实现洲际间的通信。二十年后这一设想才变成了现实。通过不断研究和试验,1964年8月美国发射的第三颗”新康姆”卫星定位于东经155°的赤道上空,通过它成功地进行了电话、电视和传真的传输试验,并于1964 年秋用它向美国转播了在日本东京举行的奥林匹克运动会实况。至此,卫星通信的早期试验阶段基本结束。20世纪60年代中期,卫星通信进入实用阶段。1965年4月,西方国家财团组成的”国际卫星通信组织”将第1代”国际通信卫星”(IN—TELSAT—I,简记IS—I,原名晨鸟)射入西经35°w 的大西洋上空的静止同步轨道,正式承担欧美大陆之间商业通信和国际通信业务。两周后,原苏联也成功地发射了第一颗非同步通信卫星”闪电一1”进入倾角为65°、远地点为40000km、近地点为500km的准同步轨道(运行周期12h),对其北方、西伯利亚、中亚地区提供电视、广播、传真和一些电话业务。这标志着卫星通信开始了国际通信业务。20世纪7O年代初期,卫星通信进入国内通信。1972年,加拿大首次发射了国内通信卫星”ANIK”,率先开展了国内卫星通信业务,获得了明显的规模经济效益。地球站开始采用21m、18m、10m等较小口径天线,用几百瓦级行波管发射级、常温参量放大器接收机等使地球站向小型化迈进,成本也大为下降。此间还出现了海事卫星通信系统,通过大型岸上地球站转接,为海运船只提供通信服务。20世纪80年代,VSAT(Very Small Aperture Terminal,甚小口径终端)卫星通信系统问世,卫星通信进入突破性的发展阶段。VSAT是集通信、电子计算机技术为一体的固态化、智能化的小型无人值守地球站。VSAT技术的发展,为大量专业卫星通信网的发展创造了条件,开拓了卫星通信应用发展的新局面。20世纪90年代,中、低轨道移动卫星通信的出现和发展开辟了全球个人通信的新纪元,大大加速了社会信息化的进程 发展趋势: 随着卫星通信技术的进步和卫星通信能力的提高,卫星通信应用范围愈来愈广泛,服务水平

卫星通信系统的发展及其关键技术_罗文

卫星通信系统的发展及其关键技术 罗文 (中国民用航空中南地区空中交通管理局广西分局,广西南宁530048) 摘要:卫星通信技术中星上处理(OBP)和异步传输模式(ATM)被认为是未来通信的发展方向和核心技术,本文针对卫星通信技术目前的发展现状,通过分析其在当今通信行业中所处的地位、作用以及面临的挑战,总结其关键技术,给出未来通信的发展方向,这对以后的卫星通信研究具有重要意义。 关键词:星上处理;异步转移模式;宽带IP;卫星通信 中图分类号:TN927.2文献标识码:A文章编号:1673-1131(2013)01-0157-02 1卫星通信系统的发展现状及难点 1.1卫星通信发展现状 卫星通信技术发展十分迅速,20世纪60年代时,卫星通信只是在军事上得到了应用,到了70年代时,卫星通信的发展达到了顶峰,90年代时,光纤通信诞生了,这对卫星通信造成了一次冲击,但卫星有它自己独特的特点,如卫星具有多址连接方式、可以按需分配带宽等特点,这些是光纤通信所不能及的,所以卫星通信在偏远地区,越洋通信中被优先选用。星上交换作为卫星通信的核心部分,受到国内外学者的深度研究,星上技术结合ATM,使得卫星ATM技术成为卫星领域的一个研究热点。目前许多国家就卫星ATM已经展开了深入研究,期望在未来有一个质的飞跃。 1.2现今卫星通信遇到的难点 (1)卫星通信的成本因素。众所周知,在长距离通信中,最需要的技术就是卫星通信,因为卫星通信具有通信容量大、覆盖地域广、不受地理条件限制和通信方式机动灵活等优点。但是随着对通信资费的调整后,长途通信费用大幅下降,但卫星的转发器费用却并没有因此而改变,因此使得卫星通信成本还是很高。 (2)卫星通信中宽带IP问题。当前,宽带IP卫星通信中基本上都是采用ATM传输技术,因为ATM的性能可以满足欧美等地的性能指标要求。但当系统采用RS块编码、交织以及FEC技术时,虽然提高了卫星链路的传输质量,却也在无形中增加了卫星ATM实现的复杂度,这与现在运用的卫星通信技术是不相同的。 (3)卫星通信中数据速率问题。当前是信息时代,需要有更加快捷的方式来及时地传输信息,而传统的基于频分复用和码分复用技术已经无法满足卫星通信的需求,随之出现了分组交换技术;同时,长距离的传输也带来了延时问题,这就需要通过快而有效的方法来解决延时对实时数据的影响问题。2卫星通信系统中的关键技术 2.1数据压缩技术 随着科学技术的发展,数据压缩技术已经发展得很成熟,尤其是在数据处理相关领域。数据压缩可以给通信带来很大的方便,例如节约了时间、提高了频带利用率、节约了存储空间等。数据压缩标准有很多,但被人们广泛采用的标准主要是对静止图像压缩编码的ISO标准以及CCITT的H.26标准。而在卫星通信中主要采用的是MPEG62,该项技术主要是面向对象的,而且在多媒体同步方面发挥了很好的作用,同时它的实时交换、实施表现等方面也做得很完美。2.2智能天线系统 降雨以及大地对电磁波的吸收从很大程度上导致高频段的卫星ATM网络产生突发错误,而且卫星本身也存在各种限制和随机错误,这就需要通过智能天线的多波束来覆盖到更广的区域,例如,可以采用多波束快速跳变系统;同时在低轨道系统中采用蜂窝式天线来实现跟踪和同频复用功能;星上和同步轨道系统要想构成蜂窝式覆盖图就必须要采用相控阵列天线。 2.3多址接入技术 针对接入方式,ATM/TDMA多址接入方式比FDMA和CDMA更适合星上处理卫星对多址接入的要求,因为此种方式有较好的信息传输角度、网络应用灵活性好等特点。但是,TDMA方式对速率和发射功率要求很高,这在无形中就增加了解调器的实现难度,同时也增加了载波功率与噪声功率密度的比值的要求。为了克服上述问题,该领域专家提出了一种新的方式,采用多频质的TDMA,即MF-TDMA(Multiple Frequency-TDMA)多址接入技术,它是将FDMA于TDMA相结合,这样可以降低每个TDMA链路的接入速率和调制解调器的工作速率,同时对上行链路的值C/N0(C/N0=E/N0*Rb)的要求也减弱了。 2.4卫星激光通信技术 卫星通信要求速率很高,这就需要采用激光进行通信。卫星通信采用激光可以提升卫星的通信量和保密性,减轻了卫星的重量和大小;在大气层外,没有大气的干扰,通信更加准确,同时也降低了误码率;运用激光可以提升数据的传输速率以及系统的可靠性;同时卫星通信也互不干扰,最主要的是,采用激光通信可以大幅度地降低延时,使信息能够得到及时传输,激光的这些优点都被发挥得淋漓尽致。有专家预测,激光技术运用到卫星通信中将是很有前途的,对通信行业的发展起到不可替代的作用。 2.5信道纠错编码技术 众所周知,在卫星通信中难免会产生错误,尤其是在卫星通信的过程中。ATM信元在面对突发错误时会产生很大的错误。在ATM信元中,位于ATM信头的最后一个字节是信头差错控制(HEC),它主要是通过检测和纠正单比特错误以及检测是否有多比特来保护ATM信头。所以,在出现丢失信元或者信元误插现象时,主要是由于HEC在多比特发生错误时没有发生作用。因此提出了采用交织技术来降低信元丢失率和检测不出错误的概率来保护ATM信头、改善信息的传输质量。 采用MF-TDMA的多址接入方式的星上ATM系统可为不同的地球站提供不同的QoS服务,而不同的QoS需要不同 2013年第1期(总第123期) 2013 (Sum.No123)信息通信 INFORMATION&COMMUNICATIONS 157

相关文档
最新文档