苏教版七年级上册数学 期末试卷(Word版 含解析)

合集下载

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册 期末试卷测试卷 (word 版,含解析)一、选择题1.如图,正方形硬纸片ABCD 的边长是8,点E 、F 分别是AB 、BC 的中点,若沿图中的虚线剪开,拼成如图的一座“小房子”,则图中阴影部分的面积是( )A .4B .8C .16D .322.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-= B .20x 4x 5+=C .x x 5204+=D .xx5204204+=+-3.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -= D .22232a b ba a b -=-4.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体5.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .46.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( )A .100.30千克B .99.51千克C .99.80千克D .100.70千克7.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b8.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =9.13-的倒数是( )A .3B .13 C .13- D .3-10.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+ =100 C .()31001003x x --= D .10031003x x --= 11.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2 B .3C .4D .5 12.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .5 13.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分B .3点30分C .6点45分D .9点 14.下列各题中,运算结果正确的是( ) A .325a b ab +=B .22422x y xy xy -=C .222532y y y -=D .277a a a +=15.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元二、填空题16.若221x x -++= 4,则2247x x -+的值是________.17.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.18.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.19.按照下图程序计算:若输入的数是 -3 ,则输出的数是________20.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________.21.已知220x y +-=,则124x y --的值等于______.22.已知∠α=28°,则∠α的余角等于___.23.若代数式M =5x 2﹣2x ﹣1,N =4x 2﹣2x ﹣3,则M ,N 的大小关系是M ___N (填“>”“<”或“=”)24.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).25.已知36a ∠=︒,则a ∠的补角的度数是__________.三、解答题26.在一条直路上的A 、B 、C 、D 四个车站的位置如图所示(单位千米),如果小明家在A 站旁,他的同学小亮家在B 站旁,新华书店在D 站旁,一天小明乘车从A 站出发到D 站下车去新华书店购买一些课外阅读书籍,途径B 、C 两站,当小明到达C 站时发现自己所带钱不够购买自己所要的书籍.于是他乘车返回到B 站处下车向小亮借足了钱,然后乘车继续赶往D 站旁的新华书店.(1)求C 、D 两站的距离;(用含有a 、b 的代数式表示)(2)求这一天小明从A 站到D 站乘车路程.(用含有a 、b 的代数式表示)27.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线,⑴写出所有∠EOC 的补角 ;⑵如果∠AOD=40°,求∠POF 的度数.28.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.29.已知,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,若OA OB ⊥,60BOC ∠=︒,求MON ∠的度数;(2)如图2,若80AOB ∠=︒,:2:7MON AOC ∠∠=,求AON ∠的度数.30.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.31.如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.32.我们知道,任意一个正整数n 都可以进行这样的分解:n p q =⨯(p ,q 是正整数,且p q ≤),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的完美分解.并规定:()p F n q=. 例如18可以分解成1×18,2×9或3×6,因为18-1>9-2>6-3,所以3×6是18的完美分解,所以F (18)=3162=. (1)F (13)= ,F (24)= ;(2)如果一个两位正整数t ,其个位数字是a ,十位数字为1b -,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F (t )的最大值.33.计算:(1)431(2)4-+-÷ (2)115)321248-⨯-+( 四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册 期末试卷测试卷 (word 版,含解析)一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --2.-5的相反数是( ) A .15B .±5C .5D .-153.钟面上8:45时,时针与分针形成的角度为( ) A .7.5° B .15°C .30°D .45°4.方程去分母后正确的结果是( ) A .B .C .D .5.下列四个数中,最小的数是() A .5B .0C .1-D .4- 6.下列合并同类项结果正确的是( )A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 67.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .8.﹣3的相反数为( )A .﹣3B .﹣13C .13D .39.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=10.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定11.一5的绝对值是( )A .5B .15C .15-D .-512.如图正方体纸盒,展开后可以得到( )A .B .C .D .13.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >014.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线15.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A二、填空题16.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.17.一家商店因换季将某种服装打折出售,如果每件服装按标价的5折出售将亏20元, 而按标价的8折出售将赚40元,为保证不亏本,最多打__________折.18.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为_________________________(用含a ,b 的式子表示).19.若4550a ∠=︒',则a ∠的余角为______.20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ;OF 平分∠COE ,若∠AOC =82°,则∠BOF =______°.21. 当m = __时,方程21x m x +=+的解为4x =-.22.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.23.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.24.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.25.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )2kn=(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =13,则:若n =24,则第100次“F ”运算的结果是________.三、解答题26.点,,,A B C O 在数轴上位置如图所示,其中点O 表示的数是0, 点,,A B C 表示的数分别是,,a b c .(1)图中共有___________条线段; (2)若O 是BC 的中点,2,163AC OA AB ==,求,,a b c 的值.27.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ; ()4线段AE 的长度是点______到直线______的距离; ()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)28.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A =80°,则∠A 的半余角的度数为 ;(2)如图1,将一长方形纸片ABCD 沿着MN 折叠(点M 在线段AD 上,点N 在线段CD 上)使点D 落在点D ′处,若∠AMD ′与∠DMN 互为“半余角”,求∠DMN 的度数; (3)在(2)的条件下,再将纸片沿着PM 折叠(点P 在线段BC 上),点A 、B 分别落在点A ′、B ′处,如图2.若∠AMP 比∠DMN 大5°,求∠A ′MD ′的度数.29.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元? 30.先化简,再求值:()()2222233a b ababa b ---+,其中1a =-,13b =. 31.如图,C 为线段AB 上一点,D 在线段AC 上,且23AD AC =,E 为BC 的中点,若6AC =,1BE =,求线段DE 的长.32.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm 秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm 秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且2PA PB =时,点Q 运动到的位置恰好是线段AB 的三等分点, 求点Q 的运动速度;(3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求OB APEF-的值.33.某商店以每盏20元的价格采购了一批节能灯,运输过程中损坏了2 盏,然后以每盏25元的价格售完,共获得利润150元.该商店共购进了多少盏节能灯?四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.36.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)37.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.38.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.39.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.40.尺规作图是指用无刻度的直尺和圆规作图。

苏教版七年级数学上册 期末试卷(Word版 含解析)

苏教版七年级数学上册 期末试卷(Word版 含解析)

苏教版七年级数学上册 期末试卷(Word 版 含解析)一、选择题1.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .2.钟面上8:45时,时针与分针形成的角度为( ) A .7.5° B .15° C .30° D .45° 3.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点4.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定5.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°6.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=7.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .8.如图正方体纸盒,展开后可以得到( )A .B .C .D .9.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4B .-2C .2D .410.如图所示的几何体的左视图是( )A .B .C .D .11.把方程213148x x--=-去分母后,正确的结果是( ) A .2x -1=1-(3-x ) B .2(2x -1)=1-(3-x ) C .2(2x -1)=8-3+x D .2(2x -1)=8-3-x12.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( ) A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯13.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( ) A .m n =B .0.91n m =C .30%n m =-D .30%n m =-14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( ) A .-1B .-2C .1D .215.对于下列说法,正确的是( ) A .过一点有且只有一条直线与已知直线平行 B .不相交的两条直线叫做平行线 C .相等的角是对顶角D .将一根木条固定在墙上,只需打两个钉子就可以了,这种做法的依据是两点确定一条直线二、填空题16.如图,AOB ∠的度数是___________︒17.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 18.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.19.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____. 20.若623mxy -与41n x y -的和是单项式,则n m = _______.21.多项式234ab ab -的次数是______.22.观察一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成如图所示形式.记ij a 对应的数为第i 行第j 列的数,如234a =,那么97a 对应的数为___________.23.正方体切去一块,可得到如图几何体,这个几何体有______条棱.24.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+. 27.计算: (1)()20201|4|23-+-+⨯- (2)()157246812⎛⎫--+⨯- ⎪⎝⎭28.计算: (1)()157-724912⎛⎫+⨯-⎪⎝⎭(2)1377-1-244812⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭29.小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑 0.4m ,两人的运动手环记录时间和步数如下:出发 途中 结束时间 7:007:10a小莉的步数130831838808出发途中结束时间 7:007:107:25 爸爸的步数21684168b(1)表格中 a 表示的结束时间为 , b = ;(2)小莉和她爸爸两人每步分别跑多少米? (3)渡江胜利纪念馆到绿博园的路程是多少米? 30.已知同一平面内,∠AOB=90°,∠AOC=30°, (1)画出图形并求∠COB 的度数;(2)若OD 平分∠BOC ,OE 平分∠AOC ,求∠DOE 的度数.31.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点O 画AD 的平行线CE ,过点B 画CD 的垂线,垂足为F ; (2)四边形ABCD 的面积为____________32.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.33.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOC =50°.求∠BOE 的度数.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册期末试卷测试卷(word版,含解析)一、选择题1.如图,AB∥CD,∠BAP=60°-α,∠APC=50°+2α,∠PCD=30°-α.则α为()A.10°B.15°C.20°D.30°2.下列几何体三视图相同的是()A.圆柱B.圆锥C.三棱柱D.球体方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平3.在55移方法是()(1)(2)A.先向下移动1格,再向左移动1格;B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格:D.先向下移动2格,再向左移动2格4.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A.15°B.20°C.25°D.30°5.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.不确定6.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m7.下列图形中,能够折叠成一个正方体的是( )A .B .C .D .8.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .3079.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( ) A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯10.下列图形,不是柱体的是( ) A .B .C .D .11.二次三项式2x 2﹣3x ﹣1的二次项系数,一次项系数,常数项分别是( ) A .2,﹣3,﹣1B .2,3,1C .2,3,﹣1D .2,﹣3,112.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( ) A .2018 B .2019C .2020D .202113.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( ) A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯14.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-15.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒二、填空题16.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________. 17.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.18.当温度每下降100℃时,某种金属丝缩短0.2mm .把这种15℃时15mm 长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm .19.观察一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成如图所示形式.记ij a 对应的数为第i 行第j 列的数,如234a =,那么97a 对应的数为___________.20.若72α∠=︒,则α∠的补角为_________°.21.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.22.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.23.若线段AB =8cm ,BC =3cm ,且A 、B 、C 三点在同一条直线上,则AC =______cm . 24.若王老师在一次数学过关测试中,以80分为过关线,记下了4名同学的成绩:+8,0,-8,+13,则这4名同学实际成绩最高的是__________分.25.如果1x =是方程240x k +-=的解,那么k 的值是_________三、解答题26.已知关于x 的方程3(2)x x a -=- 的解比223x a x a+-= 的解小52,求a 的值. 27.计算:(1)715|4|--- (2)42112(3)6⎛⎫--⨯-÷-⎪⎝⎭28.(1)如图①,OC 是AOE ∠内的一条射线,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,120AOE ∠=︒,求BOD ∠的度数;(2)如图②,点A 、O 、E 在一条直线上,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,请说明OB OD ⊥. 29.计算: (1)(-23)-(+13)-|-34|-(-14) (2)-12-(1-0.5)×13×[3-(-3)2] 30.解方程:(1)()()23319x x --+= (2)2151146x x +--=- 31.计算. (1)4×(﹣12)÷(﹣2) (2)132(36)249⎛⎫-+-⨯- ⎪⎝⎭ (3)﹣1+(1﹣0.5)÷(﹣3)×[2﹣(﹣3)2] (4)2(a 2﹣ab )+3(23a 2﹣ab )+4ab 32.先化简,再求值:22225(3)4(3)a b ab ab a b ---+,其中a 、b 满足21(1)2a -与12b +互为相反数. 33.解下列方程:(1)76163x x +=-;(2)253164y y---=.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n²−32n+247,1⩽n<16,n为整数。

苏教版七年级上册数学 期末试卷(Word版 含解析)

苏教版七年级上册数学 期末试卷(Word版 含解析)

苏教版七年级上册数学 期末试卷(Word 版 含解析)一、选择题 1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元2.如图,点A 、O 、D 在一条直线上,此图中大于0︒且小于180︒的角的个数是( )A .3个B .4个C .5个D .6个 3.在有理数2,-1,0,-5中,最大的数是( ) A .2B .C .0D . 4.3-的倒数是( )A .3B .13C .13- D .3-5.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 6.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .7.下列图形中1∠和2∠互为余角的是( )A .B .C .D .8.下列四个数中,最小的数是()A .5B .0C .1-D .4-9.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .10.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .35 11.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定 12.下列算式中,运算结果为负数的是( )A .()3--B .()33--C .()23-D .3-- 13.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④ 14.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作. ①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .115.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.在0,1,π,227-这些数中,无理数是___________ . 17.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.18.比较大小:23-______34-. 19.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.21.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.22.﹣|﹣2|=____.23.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.24.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.25.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____. 三、解答题 26.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、27.分别观察下面的左、右两组等式:根据你发现的规律解决下列问题:(1)填空:________2|11|5-=-++;(2)已知42|1|5x--=-++,则x的值是________;(3)设满足上面特征的等式最左边的数为y,求y的最大值,并写出此时的等式.28.在如图所示的方格纸上作图并标上相应的字母.(1)过点P画线段AB的平行线a;(2)过点P画线段AB的垂线,垂足为H;(3)点A到线段PH的距离即线段的长.29.如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O多远?(3)经过几小时,两车相距50千米?30.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0-300(含)a3第二阶梯300-600(含)0.5a+ 3.5第三阶梯600以上 1.5a+5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示); (2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?31.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD=8cm,BD=1cm(1)求AC 的长(2)若点E 在直线AD 上,且EA=2cm,求BE 的长32.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.33.计算:(1)431(2)4-+-÷ (2)115)321248-⨯-+( 四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.36.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”); ()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.37.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册 期末试卷测试卷 (word版,含解析)

苏教版数学七年级上册 期末试卷测试卷 (word 版,含解析)一、选择题1.下列运算中,正确的是( ) A .325a b ab += B .325235a a a += C .22330a b ba -= D .541a a -=2.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为15cm ,则四边形ABFD 的周长等于( )A .17 cmB .18 cmC .19 cmD .20 cm 3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( )A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 4.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点 5.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体 6.已知23a +与5互为相反数,那么a 的值是( )A .1B .-3C .-4D .-17.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-18.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .9.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段 10.-5的倒数是A .15B .5C .-15D .-511.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109B .2.85×108C .28.5×108D .2.85×10612.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣1202013.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=14.2-的相反数是( ) A .2-B .2C .12D .12-15.下列计算中正确的是( ) A .()33a a -=B .235a b ab +=C .22243a a a -=D .332a a a +=二、填空题16.如图是一个正方体的展开图,把展开图折叠成正方体后,与数字3所在的面相对的面上的数字是________.17.已知23a b -=,则736a b +-的值为__________. 18.单项式-4x 2y 的次数是__.19.下图是计算机某计算程序,若开始输入2x =-,则最后输出的结果是____________.20.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.21.今年冬季某天测得的最高气温是9℃,最低气温是1-℃,则当日温差是________℃ 22.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么所列方程是______.23.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=_____.24.单项式312xy -的次数是___. 25.-6的相反数是 .三、解答题26.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯-⎪⎝⎭. 27.如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.(1)数轴上点C 表示的数是 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P 、Q 相遇时,两点都停止运动,设运动时间为t (t >0)秒. ①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果) 28.画出下面图形的三视图.(请把线条加粗加黑!)29.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?30.如图,已知线段AB 上有一点C ,点M ,N 分别是线段AC ,BC 中点,若AB a ,AC b =,且a ,b 满足()210402ba -+-=.(1)求线段AB ,AC 的长度; (2)求线段MN 的长度.31.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S (x ). 例如,a =13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S (13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S (43)= ; (2)若一个“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10,求相异数y ;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例. 32.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11. 33.计算: (1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(2)23151(32)21428⎛⎫---⨯-+⎪⎝⎭ 四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 36.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭37.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______;(2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 38.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.39.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 40.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.41.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .42.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数43.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据同类项与合并同类项的知识进行选择排除即可. 【详解】A .3a 与2b 不是同类项不能合并,所以A 错误; B.32a 与23a 字母指数不同,不是同类项,所以B 错误;C.23a b 与23ba 所含字母相同且相同字母的指数相同,是同类项可以合并,计算正确;D.54a a a -=所以D 错误; 故答案为C. 【点睛】本题考查的是整式的运算,能够熟练掌握同类项与合并同类项的知识点是解题的关键.2.C解析:C 【解析】 【分析】将四边形的边长分解成一个三角形的周长和AD 与BE 的长,加起来即可. 【详解】由题意得,AB=DE,AD=BE=2;四边形ABFD 的周长=EF+DF+AB+AD+BE= EF+DF+DE+AD+BE=△DEF 周长+2+2=19cm; 故选C. 【点睛】本题考查三角形平移、周长算法,关键在于将四边形周长分解成已知条件.3.C解析:C【解析】【分析】a的2倍为2a,a的2倍与b的差为2a-b,然后再平方即可.【详解】依题意得:(2a-b)2,故选C.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.4.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.5.D解析:D【解析】【分析】根据几何体的主视图、左视图、俯视图的形状即可判断.【详解】解:A选项,圆柱的主视图和左视图为长方形,俯视图为圆,不相同,A错误;B选项,圆锥的主视图和左视图为三角形,俯视图为圆及圆心,不相同,B错误;C选项,三棱柱的三视图分别为三角形,三角形,三角形及中心与顶点的连线, C错误;D选项,球体的三视图均为相同的圆,D正确.故选:D【点睛】本题考查了三视图,熟练掌握基础几何体的三视图是解题的关键.6.C解析:C【解析】【分析】由互为相反数的两个数和为0可得a的值.【详解】a+与5互为相反数解:23∴++=a2350a=-.解得4故选:C【点睛】本题考查了相反数,熟练掌握相反数的性质是解题的关键.7.A解析:A【解析】【分析】根据数轴的单位长度为1,点B在点A的右侧距离A点5个单位长度,直接计算即可.【详解】解:点B在点A的右侧距离A点5个单位长度,∴点B 表示的数为:-2+5=3,故选:A.【点睛】本题主要考查数轴,解决此题时,明确数轴上右边的数总是比左边的数大是解题的关键.8.B解析:B【解析】【分析】根据展开图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【点睛】考核知识点:几何体的三视图.9.D解析:D【解析】【分析】根据两点确定一条直线,同角的余角相等,线段的性质,两点之间的距离即可判断.A .两点确定一条直线是正确的,不符合题意;B .同角的余角相等是正确的,不符合题意;C .两点之间,线段最短是正确的,不符合题意;D .两点之间的距离是指连接这两点的线段的长度,原来的说法是错误的,符合题意. 故选D .【点睛】本题考查了对直线的性质,余角或补角,线段的性质的理解和运用,知识点有:两点确定一条直线,同角的余角或补角相等,两点之间线段最短.10.C解析:C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15-.故选C . 11.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】285 000 000=2.85×108.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.13.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.14.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .15.C解析:C【解析】【分析】根据乘方的定义,合并同类项法则依次对各选项进行判断即可.【详解】解:A . ()33()()()a a a a a -=-⋅-⋅-=-,故本选项错误;B . 2a 和3b 不是同类项不能合并,故本选项错误;C . 22243a a a -=,故本选项正确;D . 3332a a a +=,故本选项错误.故选C .【点睛】本题考查乘方的定义和合并同类项.在多项式中只有同类项才能合并,合并同类项法则为:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.二、填空题16.4【解析】【分析】根据正方体中相对的两个面在展开图中隔一相对解答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“6”与“2”是相对面,解析:4【解析】【分析】根据正方体中相对的两个面在展开图中隔一相对解答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“6”与“2”是相对面,“3”与“4”是相对面,∴与数字3所在的面相对的面上的数字是4.故答案为:4.【点睛】本题考查了正方体平面展开图的性质,熟练掌握正方体平面展开图的性质是解题的关键,正方体中相对的两个面在展开图中隔一相对,考查了学生熟练运用知识解决问题的能力.17.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.18.3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解析:3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解题的关键. 19.【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再把−5代入计算:(−5)×4−(−3)=−20+3=−17<−5,即−17为最后结果.故本题答案为:−17【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.20.59°【解析】【分析】根据折叠的性质,得到,再根据平行线的性质得到,求出解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠则故答案是59°.【点睛】本题考查了折叠的性质解析:59°【解析】【分析】根据折叠的性质,得到DEF FEM ∠=∠,再根据平行线的性质得到62EGF ︒∠=,求出118,DEG ︒∠=解决即可.【详解】解:∵把一张长方形纸片ABCD 沿EF 折叠62AEG ︒∠=62,EGF DEF FEM ︒∴∠=∠=∠118,DEG ︒∴∠=则59DEF FEM ︒∠=∠=故答案是59°.本题考查了折叠的性质以及平行线的性质,解决本题的关键是熟练掌握折叠与平行线的性质,找到相等的角.21.10【解析】【分析】先依据题意列出算式,然后依据减法法则计算即可.【详解】解:9-(-1)=9+1=10(℃).故答案为;10.【点睛】本题考查了有理数的减法,掌握有理数的减法法则是解析:10【解析】【分析】先依据题意列出算式,然后依据减法法则计算即可.【详解】解:9-(-1)=9+1=10(℃).故答案为;10.【点睛】本题考查了有理数的减法,掌握有理数的减法法则是解题的关键.22.2(x-1)+3x=13.【解析】【分析】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元”可得方程2(x-1)+3解析:2(x-1)+3x=13.【解析】【分析】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据关键语句“小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元”可得方程2(x-1)+3x=13.【详解】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,由题意得:2(x-1)+3x=13,故答案为:2(x-1)+3x=13.【点睛】考查了由实际问题抽象出一元一次方程,关键是设出其中一种饮料的价格,再表示出另一种饮料的价格,根据关键语句列出方程即可.23.16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,又因相对面上两个数之和为10,可得x=9,y=7,所以x+y=16.解析:16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x ”相对,面“3”与面“y ”相对,又因相对面上两个数之和为10,可得x =9,y =7,所以x +y =16.24.【解析】【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】的次数是4,故答案为:4.【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中 解析:【解析】【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】312xy 的次数是4, 故答案为:4.【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中,所以字母的指数和叫做这个单项式的次数.25.6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.解析:6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.三、解答题26.(1)-8;(2)60.【解析】【分析】(1)先计算乘方和乘法,再计算减法,即可得到答案;(2)利用乘法分配律进行计算,即可得到答案.【详解】(1)解:原式=4-12=-8;(2)解:原式=-30+40+50=60.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.27.(1)-2 ;(2)当t为4秒时,点O恰好是PQ的中点;(3)104025,, 374【解析】【分析】(1)利用中点公式计算即可;(2)①用t表示OP,OQ,根据OP=OQ列方程求解;②分别以P、Q、C为三等分点,分类讨论.【详解】解:(1)∵点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.∴点C表示的数为:-12+8=-2 2故答案为:-2(2)①设t秒后点O恰好是PQ的中点.根据题意t秒后,点由题意,得-12+2t=-(8-t)解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=10-2t,QC=10-t,所以10-2t=2(10-t)或10-t=2(10-2t)解得t=103;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC ∵PC=-10+2t,PQ=20-3t∴-10+2t=2(20-3t)或20-3t=2(-10+2t)解得t=254或t=407; 当点Q 为CP 的三等分点时PQ=2CQ 或QC=2PQ∵当P 、Q 相遇时,两点都停止运动∴此情况不成立.综上,t=104025,,374秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.【点睛】本题考查一元一次方程应用,利用数形结合思想分类讨论是解答的关键.28.见解析.【解析】【分析】根据三视图画出图形解答即可.【详解】根据题意,如图所示:(小正方形之间的拼缝可以不画!轮廓线正确就正确) 主视图 左视图 俯视图【点睛】本题是考查了简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.29.乙还需做3天.【解析】试题分析:等量关系为:甲的工作量+乙的工作量=1,列出方程,再求解即可.试题解析:设乙还需做x 天.由题意得:3311288x ++=, 解之得:x=3.答:乙还需做3天. 考点:一元一次方程的应用.30.(1)10AB =,8AC =;(2)5【解析】【分析】(1)根据非负性即可求解;(2)根据中点的性质即可求解.【详解】(1)解:由题意得:10a =,8b =;10AB =,8AC =.(2)∵M 为AC 中点,8AC =, ∴142MC AC ==. 又∵10AB =,∴1082BC AB AC =-=-=,又∵N 为BC 中点, ∴112CN BC ==, ∴415MN MC CN =+=+=.【点睛】此题主要考查线段间的数量关系,解题的关键是熟知非负性及中点的性质.31.(1)29,7;(2)46;(3)正确,理由详见解析.【解析】【分析】(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”,利用定义进行计算即可,(2)根据“相异数”的定义,由S (y )=10,列方程求出“相异数y ”的十位数字和个位数字,进而确定y ;(3)设出“相异数”的十位、个位数字,根据“相异数”的定义,由S (x )=5,得出十位数字和个位数字之间的关系,进而得出结论.【详解】解:(1)根据“相异数”的定义可知29是“相异数”, 20,77不是“相异数” S (43)=(43+34)÷11=7,故答案为:29,7;(2)由“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10得, 10k +2(k ﹣1)+20(k ﹣1)+k =10×11,解得k =4,∴2(k ﹣1)=2×3=6,∴相异数y 是46;(3)正确;设“相异数”的十位数字为a ,个位数字为b ,则x =10a +b ,由S (x )=5得,10a +b +10b +a =5×11,即:a +b =5, 因此,判断正确. 【点睛】本题主要考查相异数,一元一次方程的应用,掌握相异数的定义及S (x )的求法是解题的关键.32.(1)x =4;(2)x =2. 【解析】 【分析】(1)方程移项合并,把x 系数化为1,即可求出解; (2)方程去括号,移项合并,把x 系数化为1,即可求出解. 【详解】(1)移项得:-5x +3x =-5-3 合并得:﹣2x =﹣8, 解得:x =4;(2)去括号得:4x ﹣3+3x =11, 移项得:4x +3x =11+3 移项合并得:7x =14, 解得:x =2. 【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.33.(1)-1;(2)-5 【解析】 【分析】(1)利用有理数的加减法法则和绝对值的性质,即可求出算式的值. (2)应用乘法分配律,即可求出算式的值. 【详解】 解:(1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭=2﹣3 =﹣1(2)23151(32)21428⎛⎫---⨯-+ ⎪⎝⎭ =﹣1+32×34﹣32×212+32×158=﹣1+24﹣80+52 =﹣5. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.四、压轴题34.(1)8;(2)4或10;(3)t的值为167和329【解析】【分析】(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.35.(1)m=12,n=﹣3;(2)①5;②应64岁;(3)k=6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解; (3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解. 【详解】解:(1)∵|m ﹣12|+(n +3)2=0, ∴m ﹣12=0,n +3=0, ∴m =12,n =﹣3; 故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n , ∴AB =3m n-=5, ∴玩具火车的长为:5个单位长度, 故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y -=+⎧⎨-=-⎩,解得:1264x y =⎧⎨=⎩, 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关, ∴12﹣2k =0, ∴k =6∴3PQ ﹣kB ′A =45﹣30=15 【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想. 36.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】。

苏教版七年级数学上册 期末试卷(Word版 含解析)

苏教版七年级数学上册 期末试卷(Word 版 含解析)一、选择题1.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120202.下列运算正确的是( ) A .332(2)-=- B .22(3)3-=- C .323233-⨯=-⨯D .2332-=-3.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2.5 B .2或10 C .2.5或3 D .34.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab 5.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( ) A .+B .-C .×D .÷6.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=27.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2 B .-1C .1D .28.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .139.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30710.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上11.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ) A .①② B .①③C .②④D .③④12.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .13.-3的相反数为( ) A .-3B .3C .0D .不能确定14.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣1202015.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.18.方程2x+1=0的解是_______________. 19.有理数中,最大的负整数是____.20.已知23a b -=,则736a b +-的值为__________.21.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.22.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.23.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.24.如图,AB =24,点C 为AB 的中点,点D 在线段AC 上,且AD =13CB ,则DB 的长度为___.25.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.28.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元? 29.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).30.计算:(1)﹣2÷8×(﹣12); (2)2312(3)()19---⨯-+.31.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.32.解方程:(1)523(2)x x-=--(2)321143x x---=33.已知,22321A x xy x=+--,2+1B x xy=-+,且36A B+的值与x的取值无关,求y的值.四、压轴题34.已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m﹣12|+(n+3)2=0(1)则m=,n=;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n.则玩具火车的长为个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB以每秒2个单位长度的速度向右运动,同时点P和点Q从N、M出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB运动后对应的位置为A′B′.是否存在常数k使得3PQ﹣kB′A的值与它们的运动时间无关?若存在,请求出k和这个定值;若不存在,请说明理由.35.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B.对于任何正整数n,()111n--=-C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭36.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题: (1)求111112233420192020++++⨯⨯⨯⨯的值;(2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.37.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =38.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q).39.如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.(1)(特殊发现)如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)(类比探究)如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无须证明).40.如图1,点A,B,C,D为直线l上从左到右顺次的4个点.(1) ①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.41.如图,点O在直线AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先将△ODE一边OE与OC重合,然后绕点O顺时针方向旋转,当OE与OB重合时停止旋转.(1)当OD在OA与OC之间,且∠COD=20°时,则∠AOE=______;(2)试探索:在△ODE旋转过程中,∠AOD与∠COE大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.42.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据相反数的定义可直接得出结论. 【详解】解:2020的相反数是−2020. 故选:B . 【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.2.A解析:A 【解析】 【分析】根据幂的乘法运算法则判断即可. 【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误; 故选A. 【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.3.C解析:C 【解析】 【分析】分两种情况讨论,①甲乙没有相遇过;②甲乙相遇过后,根据题意结合这两种情况分别列出关于t 的一元一次方程求解即可. 【详解】解:甲车行驶的路程为110t 千米,乙车行驶的路程为90t 千米 ①当甲乙没有相遇过时,根据题意得550(11090)50t t -+= 解得 2.5t =②当甲乙相遇过时,根据题意得(11090)55050t t +-= 解得3t =综合上述,t 的值为2.5或3. 故选:C 【点睛】本题主要考查了一元一次方程的应用,正确理解题意是解题的关键,难点在于要从相遇前和相遇后两方面去考虑,涉及到了分类讨论的数学思想.4.A解析:A 【解析】 【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案. 【详解】A .﹣xy 与2yx ,所含字母相同,相同字母的指数也相同,是同类项.故选项A 符合题意;B .2ab 与2abc ,所含字母不相同,不是同类项.故选项B 不符合题意;C .x 2y 与x 2z ,所含字母不相同,不是同类项.故选项C 不符合题意;D .a 2b 与ab 2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D 不符合题意.故选A .【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同. 5.C解析:C【解析】【分析】将运算符号放入方框,计算即可作出判断.【详解】解:-3+0.5=-2.5;-3-0.5=-4.5;-3×0.5=-1.5;-3÷0.5=-6,∵-6<-4.5<-2.5<-1.5∴使得算式-1□0.5的值最大时,则“□”中填入的运算符号是×,故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.【详解】解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.8.C解析:C【解析】【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n 的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.B解析:B【解析】【分析】 由线段和差可得35AC BD AB +=,由6AC BD +=即可得AB 的长度,即可得CD 的长度.【详解】 解:∵75AD BC AB += 又∵AD BC AD CD BD AB CD +=++=+ ∴75AB CD AB +=∴25CD AB = ∴35AC BD AB CD AB +=-=∵6AC BD += ∴3=65AB ∴=10AB∴22=10=455CD AB=⨯故选:B【点睛】本题考查了线段和差及倍数关系,掌握线段的和差及转化是解题的关键.10.D解析:D【解析】【分析】直接利用方向角的定义得出∠2的度数.【详解】如图所示:由题意可得:∠1=20°,∠ABC=90°,则∠2=90°-20°=70°,故超市(记作C)在蕾蕾家的南偏东70°的方向上.故选:D.【点睛】本题考查了方向角的定义,正确根据图形得出∠2的度数是解答本题的关键.11.C解析:C【解析】【分析】【详解】试题分析:直接利用直线的性质以及两点确定一条直线的性质分析得出答案.解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选C.考点:直线的性质:两点确定一条直线.12.C解析:C【解析】【分析】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.13.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.14.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.15.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A.考点:同类项的概念.二、填空题16.1838【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62解析:1838分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1838.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838,故答案为:1838.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.17.37【解析】【分析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,∴这个两位数为:37【点睛解析:37【解析】【分析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,∴这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.18.x=-【解析】【分析】先移项,再系数化1,可求出x的值.【详解】移项得:2x=-1,系数化1得:x=-.故答案为:-.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同解析:x=-1 2【解析】【分析】先移项,再系数化1,可求出x的值.【详解】移项得:2x=-1,系数化1得:x=-12.故答案为:-12.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.19.-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.解析:-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.20.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.21.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为1解析:1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为122.【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵,,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=.故答案解析:【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵135AOD ∠=︒,75COD ∠=︒,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=1302AOC ∠=︒.故答案为:30.【点睛】本题考查角度的计算,关键在于结合图形进行计算. 23.【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:∠AOC=∠AOB+∠BOC.x=45°.故答案解析:【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:90,BOC x ∠=︒-∠AOC=∠AOB+∠BOC.39090x x =︒+︒-x =45°.故答案为:45.【点睛】本题考查角度的计算,关键在于利用方程的思想将题目简单化.24.【解析】【分析】根据线段中点的定义可得,再求出,然后根据代入数据计算即可得解.【详解】∵AB =24,点C 为AB 的中点,,,,∴DB =AB ﹣AD =24﹣4=20.故答案为:20.解析:【解析】【分析】 根据线段中点的定义可得12BC AB =,再求出AD ,然后根据DB AB AD =-代入数据计算即可得解.【详解】∵AB =24,点C 为AB 的中点, 11241222CB AB ∴==⨯=, 13AD CB =, 11243AD ∴=⨯=, ∴DB =AB ﹣AD =24﹣4=20.故答案为:20.【点睛】本题考查了两点间的距离,掌握线段中点的定义,灵活运用数形结合思想是解题的关键. 25.﹣5.【解析】【分析】根据:当输入的值为时,输出的值是,可得:,据此求出的值是多少,进而求出当输入的值为时,输出的值为多少即可.【详解】∵当x =12时,y =8,∴12÷3+b =8,解得解析:﹣5.【解析】【分析】根据:当输入x 的值为12时,输出y 的值是8,可得:1238b ÷+=,据此求出b 的值是多少,进而求出当输入x 的值为12-时,输出y 的值为多少即可. 【详解】∵当x =12时,y =8,∴12÷3+b =8,解得b =4,∴当x =﹣12时, y =﹣12×2﹣4=﹣5. 故答案为:﹣5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三、解答题26.(1)-5.5;(2)16. 【解析】【分析】根据有理数的计算法则计算即可.【详解】(1)解:原式=1 6.52--+=-5.5.(2)解:原式=111(29)23--⨯⨯- =716-+=16. 【点睛】本题考查有理数的计算,关键在于熟练掌握计算方法.27.(1)2;(2)−5或1或7;(3)1t =或173t =【解析】【分析】(1)根据题意OA 的长度即为所求;(2)分三种情况进行讨论,①当点P 位于A 点左侧;②点P 位于线段AB 上;③点P 位于B 点右侧,分别求解;(3)分情况讨论,当PA=3或PB=3时,分别求解.【详解】解:(1)由题意OA=2;OB=4∴点O 到线段AB 的“靠近距离”为2故答案为:2;(2)①当点P 位于A 点左侧时,点P 表示-2-3=-5;②点P 位于线段AB 上时,点P 表示-2+3=1,此时PA=PB=1③点P 位于B 点右侧时,点P 表示4+3=7∴m=−5或1或7故答案为:−5或1或7;(3)①当PA=3时, 可得523t -=,或253t -=,解得14t t ==或.而当4t =时,PB=14-4×3=2,PB <PA ,点P 到线段AB 的“靠近距离”为2,不符合题意. 所以1t =.②当PB=3时, 可得14(12)3t -+=,或(12)143t +-=, 解得111733t t ==或. 而当113t =时,PA=1172533⨯-=,PA<PB ,点P 到线段AB 的“靠近距离”为73,不符合题意. 所以173t =. 综上所述,所以1t =或173t =. 【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.28.每件服装的标价是200元【解析】【分析】设每件服装的标价是x元,根据该服装的进价不变,即可得出关于x的一元一次方程,此题得解.【详解】设每件服装的标价是x元,根据题意得,0.5x+20=0.8x-40解得x=200答:每件服装的标价是200元.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.29.(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB 的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.30.(1)3;(2)﹣6.【解析】【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】(1)原式121238=⨯⨯=; (2)原式1427143169⎛⎫=-+⨯-+=--+=- ⎪⎝⎭. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.31.海路长240千米,公路长280千米.【解析】【分析】根据题意列方程求解即可.【详解】设:汽车行驶x 小时,则轮船行驶(x-3)小时,根据题意可列方程,24x=40(x-3)-40,解方程得,x=10,∴公路长40(x-3)=280千米,海路长为24x=240千米.【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找出等量关系.32.(1)1x =;(2)75x =【解析】【分析】(1)根据解一元一次方程的步骤依次去括号、移项、合并同类项、系数化为1,据此计算可得;(2)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1,据此计算可得.【详解】解:(1)523(2)x x -=--去括号得:523+6x x -=-移项得:5+36+2x x =合并同类项得:88x =系数化为1得:1x =(2)321143x x ---= 去分母得:()()1233421x x --=-去括号得: 129+384x x -=-移项得: 3-84-12+9x x =-合并同类项得: -57x =-系数化为1得: 75x =【点睛】 本题主要考查解一元一次方程,解一元一次方程的一般步骤:分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.33.25. 【解析】【分析】 根据3A+6B 的值与x 无关,令含x 的项系数为0,解关于y 的一元一次方程即可求得y 的值.【详解】解:∵A =2x 2+3xy -2x -1,B =-x 2+xy -1,∴3A +6B=15xy-6x-9=(15y-6)x-9,要使3A+6B 的值与x 的值无关,则15y-6=0,解得:y=25. 【点睛】 本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,运用方程思想解题.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y-=+⎧⎨-=-⎩ , 解得:1264x y =⎧⎨=⎩ , 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关,∴12﹣2k =0,∴k =6∴3PQ ﹣kB ′A =45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.35.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义计算即可求出值;(3)将原式变形即可得到结果;(4)根据题意确定出所求即可;(5)原式变形后,计算即可求出值.【详解】 (1)3111111222222⎛⎫=÷÷=÷= ⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯- 21()3=-; 611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=; 故答案为:21()3-,45;(4)由(3)得到规律:21()n n a a -=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a -, 故答案为:21()n a -;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 11186=-- 29=-. 【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序.36.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;。

苏教版七年级上册数学 期末试卷测试卷 (word版,含解析)

苏教版七年级上册数学 期末试卷测试卷 (word 版,含解析)一、选择题1.如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A .B .C .D .2.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120203.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( )A .-3B .3C .13D .164.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .5.12-的倒数是( ) A . B . C .12- D .126.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行7.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a8.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).A .B .C .D . 9.图中几何体的主视图是( )A .B .C .D .10.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种11.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x --=,整理得36x = 12.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上13.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -14.-5的相反数是( )A .15B .±5C .5D .-1515.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒二、填空题16.地球的半径大约为6400000m ,用科学计数法表示地球半径为___________m .17.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.18.一个角的度数为2018',则这个角的补角的度数是________.19.若m+2n=1,则代数式3﹣m ﹣2n 的值是_____.20.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.21.某同学在电脑中打出如下排列的若干个2、0: 202202220222202222202222220,若将上面一组数字依此规律连续复制得到一系列数字,那么前2020个数字中共有__________个0.22.若一个多边形的内角和是900º,则这个多边形是 边形.23.如图,AB ,CD 相交于点O ,EO AB ⊥,则1∠与2∠互为_______角.24. 若32x +与21x --互为相反数,则x =__.25.在同一平面内,150,110AOB BOC ∠=︒∠=︒,则AOC ∠的度数为_____________.三、解答题26.解下列方程:(1)76163x x +=-;(2)253164y y ---=. 27.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm 秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm 秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且2PA PB =时,点Q 运动到的位置恰好是线段AB 的三等分点, 求点Q 的运动速度;(3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求OB AP EF-的值.28.如图,点P 是∠AOB 的边OB 上的一点(1)过点P 画OA 的平行线PQ(2)过点P 画OA 的垂线,垂足为H(3)过点P 画OB 的垂线,交OA 于点C(4)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离.(5)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC .PH 、OC 这三条线段大小关系是______(用“<“号连接).29.已知高铁的速度比动车的速度快50 km /h ,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h 才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72 min .求高铁的速度和苏州与北京之间的距离.30.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++=探索以上等式的规律,解决下列问题:(1) 13549++++=…( 2);(2)完成第n 个等式的填空: 2135()n ++++=…;(3)利用上述结论,计算51+53+55+…+109 .31.解方程(1)5x ﹣1=3(x +1)(2)2151136x x +--= 32.已知,22321A x xy x =+--,2+1B x xy =-+,且36A B +的值与x 的取值无关,求y 的值.33.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<< ()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC 也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t秒.()1点A表示的数为______,点B表示的数为______.()2用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.()3当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.36.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点A和B在数轴上表示的数分别是20-和40,点C是线段AB的巧点,求点C在数轴上表示的数。

苏教版七年级上册数学 期末试卷测试卷 (word版,含解析)

苏教版七年级上册数学 期末试卷测试卷 (word 版,含解析)一、选择题1.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .2.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 3.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).A .B .C .D .4.如图,几何体的名称是( )A .长方体B .三角形C .棱锥D .棱柱5.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°6.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元.A .100B .140C .90D .120 7.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2B .-1C .1D .2 8.3-的倒数是( )A .3B .13C .13- D .3-9.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109 B .2.85×108 C .28.5×108 D .2.85×10610.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐11.下列四个图中的1∠也可以用AOB ∠,O ∠表示的是( )A .B .C .D .12.下列说法正确的是( )A .如果ab ac =,那么b c =B .如果22x a b =-,那么x a b =-C .如果a b = 那么23a b +=+D .如果b c a a =,那么b c = 13.若关于x y 、的单项式33n x y -与22m x y 的和是单项式,则()n m n -的值是 ( )A .-1B .-2C .1D .2 14.地球上陆地的面积约为1490000002km ,数149000000科学记数法可表示为( )A .90.14910⨯,B .81.4910⨯C .714.910⨯D .614910⨯ 15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.若60A ∠=︒,且A ∠与B 互补,则B ∠=_______________度.17.数a ,b ,c 在数轴上的对应的点如图所示,有这样4个结论:①c a b >>;②0b a +>;③||||a b >;④0abc >其中,正确的是________.(填写序号即可)18.若4550a ∠=︒',则a ∠的余角为______.19.某同学在电脑中打出如下排列的若干个2、0: 202202220222202222202222220,若将上面一组数字依此规律连续复制得到一系列数字,那么前2020个数字中共有__________个0.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.21.有5个面的棱柱是______棱柱.22.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .23.观察一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成如图所示形式.记ij a 对应的数为第i 行第j 列的数,如234a =,那么97a 对应的数为___________.24.下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同.年级 课外小组活动总时间(单位:h ) 文艺小组活动次数 科技小组活动次数七年级 17 6 8 八年级14.5 5 7 九年级 12.5则九年级科技小组活动的次数是_____.25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.如图,数轴上线段AB =2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度也向右匀速运动.(1)运动t 秒后,点B 表示的数是 ;点C 表示的数是 .(用含有t 的代数式表示)(2)求运动多少秒后,BC =4(单位长度);(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式4BD AP PC -=,若存在,求线段PD 的长;若不存在,请说明理由.27.如图,∠AOB 是平角,OD 是∠AOC 的角平分线,∠COE =∠BOE .(1)若∠AOC = 50°,则∠DOE = °;(2)若∠AOC = 50°,则图中与∠COD 互补的角为 ;(3)当∠AOC 的大小发生改变时,∠DOE 的大小是否发生改变?为什么?28.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元?29.计算: (1)()375244128⎛⎫-+-⨯- ⎪⎝⎭ (2)()24123-+⨯-30.已知同一平面内,∠AOB=90°,∠AOC=30°,(1)画出图形并求∠COB 的度数;(2)若OD 平分∠BOC ,OE 平分∠AOC ,求∠DOE 的度数.31.计算.(1)4×(﹣12)÷(﹣2) (2)132(36)249⎛⎫-+-⨯- ⎪⎝⎭ (3)﹣1+(1﹣0.5)÷(﹣3)×[2﹣(﹣3)2](4)2(a 2﹣ab )+3(23a 2﹣ab )+4ab 32.如图,A ,O ,B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)∠AOC 与∠BOD 的度数相等吗,为什么?(2)已知OM 平分∠AOC ,若射线ON 在∠COD 的内部,且满足∠AOC 与∠MON 互余; ①∠AOC =32°,求∠MON 的度数;②试探究∠AON 与∠DON 之间有怎样的数量关系,请写出结论并说明理由.33.计算(1)2212 6.533-+--; (2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.35.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n与层数n之间满足关系式a n=n²−32n+247,1⩽n<16,n为整数。

苏教版七年级数学上册 期末试卷测试卷 (word版,含解析)

苏教版七年级数学上册 期末试卷测试卷 (word 版,含解析)一、选择题1.下列运算正确的是( ) A .332(2)-=- B .22(3)3-=- C .323233-⨯=-⨯ D .2332-=-2.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .3.有理数-53的倒数是( ) A .53 B .53-C .35D .354.若x 3=是方程3x a 0-=的解,则a 的值是( ) A .9B .6C .9-D .6-5.2-的相反数是( ) A .2-B .2C .12D .12-6.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( ) A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 7.下列各组中的两个单项式,属于同类项的一组是( )A .23x y 与23xyB .3x 与3xC .22与2aD .5与-38.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .199.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是()A.100.30千克B.99.51千克C.99.80千克D.100.70千克10.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A.15°B.20°C.25°D.30°11.如图,数轴的单位长度为1,如果点A表示的数为-2,那么点B表示的数是()A.3 B.2 C.0 D.-112.-8的绝对值是()A.8 B.18C.-18D.-813.一个小菱形组成的装饰链断了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.3个B.4个C.5个D.6个14.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是().A.-1B.0C.3D.415.下列说法正确的是()A.两点之间的距离是两点间的线段B.与同一条直线垂直的两条直线也垂直C.同一平面内,过一点有且只有一条直线与已知直线平行D.同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题16.在直线l上有四个点A、B、C、D,已知AB=8,AC=2,点D是BC的中点,则线段AD=________.17.地球的半径大约为6400000m,用科学计数法表示地球半径为___________m. 18.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.19.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.20.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.21.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________. 22.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______. 23.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .24.有理数a 、b 、c 在数轴上的位置如图:化简:|b ﹣c |+2|a +b |﹣|c ﹣a |=_____.25.比较大小:227-__________3-. 三、解答题26.(探索新知)如图1,点C 将线段AB 分成AC 和BC 两部分,若BC =πAC ,则称点C 是线段AB 的圆周率点,线段AC 、BC 称作互为圆周率伴侣线段. (1)若AC =3,则AB = ;(2)若点D 也是图1中线段AB 的圆周率点(不同于C 点),则AC DB ;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C 的位置.(3)若点M 、N 均为线段OC 的圆周率点,求线段MN 的长度.(4)图2中,若点D 在射线OC 上,且线段CD 与以O 、C 、D 中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D 所表示的数. 27.计算:(1)1+(―2)+|-3|;(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭.28.如图,直线AB 与CD 相交于O ,OE 是COB ∠的平分线,OE OF ⊥,74AOD ∠=°,求COF ∠的度数.29.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.30.如图,点O 在直线AB 上,OC 、OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =150°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .(请用含α的代数式表示)31.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.32.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+. 33.计算:(1)431(2)4-+-÷ (2)115)321248-⨯-+( 四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .36.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =37.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.38.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 41.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.42.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 43.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据幂的乘法运算法则判断即可. 【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误; 故选A. 【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.2.C解析:C 【解析】 【分析】 【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C . 故选C .3.D解析:D 【解析】 【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案. 【详解】解:-53的倒数是-35, 故选:D . 【点睛】本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.4.A解析:A 【解析】 【分析】把x =3代入方程3x ﹣a =0得到关于a 的一元一次方程,解之即可. 【详解】把x =3代入方程3x ﹣a =0得:9﹣a =0,解得:a =9. 故选A . 【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.B解析:B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6.D解析:D 【解析】由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.7.D解析:D 【解析】 【分析】所含字母相同,相同字母的指数也相同的项叫同类项,由此可确定. 【详解】A 选项,相同字母的指数不同,不是同类项,A 错误;B 选项,3x字母出现在分母上,不是整式,更不是单项式,B 错误;C选项,不含有相同字母,C错误;D选项,都是数字,故是同类项,D正确.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.8.D解析:D【解析】【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.【详解】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=78,解得:x=19,故选:D.【点睛】此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.9.C解析:C【解析】【分析】根据题意,明确“正”和“负”所表示的意义求出合格产品的范围,再求解即可.【详解】依题意,合格面粉的质量应大于等于97.75千克,小于等于100.25千克选项中只有99.75<99.8<100.25故答案选C【点睛】本题考查了正负数的意义,本题难度较小,解决本题的关键是理解正负数的意义. 10.D解析:D【解析】【分析】根据∠1=∠BOD+EOC-∠BOE,利用等腰直角三角形的性质,求得∠BOD和∠EOC的度数,从而求解即可. 【详解】 解:如图,根据题意,有90AOD BOE COF ∠=∠=∠=︒, ∴903555BOD ∠=︒-︒=︒,902565COE ∠=︒-︒=︒, ∴155659030BOD COE BOE ∠=∠+∠-∠=︒+︒-︒=︒; 故选:D. 【点睛】本题考查了角度的计算,正确理解∠1=∠BOD+∠COE -∠BOE 这一关系是解决本题的关键.11.A解析:A 【解析】 【分析】根据数轴的单位长度为1,点B 在点A 的右侧距离A 点5个单位长度,直接计算即可. 【详解】解:点B 在点A 的右侧距离A 点5个单位长度, ∴点B 表示的数为:-2+5=3, 故选:A . 【点睛】本题主要考查数轴,解决此题时,明确数轴上右边的数总是比左边的数大是解题的关键.12.A解析:A 【解析】 绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-8到原点的距离是8,所以-8的绝对值是8,故选A .13.C解析:C 【解析】 【分析】答案中断去的菱形个数均为较小的正整数,由所示的图形规律画出完整的装饰链,可得断去部分的小萎形的个数.【详解】解:如图:断去部分的小菱形的个数最小为5.故选: C.【点睛】本题考查了图形的变化规律.注意按照图形的变化规律得到完整的装饰链是解决本题的关键. 14.C解析:C【解析】【分析】观察数轴根据点B与点A之间的距离即可求得答案.【详解】观察数轴可知点A与点B之间的距离是5个单位长度,点B在点A的右侧,因为点A表示的数是-2,-2+5=3,所以点B表示的数是3,故选C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.15.D解析:D【解析】试题分析:根据线段、垂线、平行线的相关概念和性质判断.解:A、两点之间的距离是指两点间的线段长度,而不是线段本身,错误;B、在同一平面内,与同一条直线垂直的两条直线平行,错误;C、同一平面内,过直线外一点有且只有一条直线与已知直线平行,应强调“直线外”,错误;D、这是垂线的性质,正确.故选D.考点:平行公理及推论;线段的性质:两点之间线段最短;垂线.二、填空题16.3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC 的长,根据线段中点的性质,可得答案. 【详解】当C 在线段AB 的反向延长向上时,由线段的和差解析:3或5 【解析】 【分析】分类讨论:C 在线段AB 的反向延长向上;C 在线段AB 上;根据线段的和差,可得BC 的长,根据线段中点的性质,可得答案. 【详解】当C 在线段AB 的反向延长向上时,由线段的和差,得BC=AB+AC=8+2=10, 由线段中点的性质,得BD=CD=12BC=12×10=5,AD=CD-AC=5-2=3; 当C 在线段AB 上时,由线段的和差,得BC=AB-AC=8-2=6, 由线段中点的性质,得BD=CD=12BC=12×6=3,所以AD=AC+CD=2+3=5. 综上所述,AD =3或5. 故答案为:3或5. 【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.17.【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 解析:66.410⨯【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】6400000=66.410⨯.故填:66.410⨯. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.【解析】【分析】设输入的数是x ,根据题意得出方程(x2-1)÷3=1,求出即可. 【详解】解:设输入的数是x ,则根据题意得:(x2-1)÷3=1, x2-1=3, x=±2, 故答案为:± 解析:2±【解析】 【分析】设输入的数是x ,根据题意得出方程(x 2-1)÷3=1,求出即可. 【详解】解:设输入的数是x , 则根据题意得:(x 2-1)÷3=1, x 2-1=3, x=±2, 故答案为:±2. 【点睛】本题考查平方根的意义及求一个数的平方根,解题关键是能根据题意得出方程.19.【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 解析:52.810⨯【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:280000=52.810⨯, 故答案为:52.810⨯ 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.【解析】 【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC. 【详解】 ∵,,∴∠AOC=∠AOD-∠COD=135°-75°=60°, ∵OB 平分∠AOC, ∴∠BOC=. 故答案解析:【解析】 【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC. 【详解】∵135AOD ∠=︒,75COD ∠=︒, ∴∠AOC=∠AOD-∠COD=135°-75°=60°, ∵OB 平分∠AOC, ∴∠BOC=1302AOC ∠=︒. 故答案为:30. 【点睛】本题考查角度的计算,关键在于结合图形进行计算.21.【解析】 【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值. 【详解】 解:∵ ,, ,, ,, ,, ∴商的最小值为. 故答案为:. 【点睛】 本题考 解析:52-【解析】 【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值. 【详解】 解:∵1242,422,2255,5522, 3344,4433,3355,5533, ∴商的最小值为52-. 故答案为:52-. 【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.22.cm 或15 cm 【解析】 【分析】 【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1, =②当点C 在线段AB 的延长线上时,如图2, =故答案为:5 cm 或15 cm 【点睛】解析:cm 或15 cm 【解析】 【分析】 【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,AC AB BC =-=1055;cm -=②当点C 在线段AB 的延长线上时,如图2,AC AB BC =+=10515.cm +=故答案为:5 cm 或15 cm 【点睛】本题考查线段的和与差,注意分类讨论是本题的解题关键.23.3 【解析】 【分析】求出BC 长,根据中点定义得出CDBC ,代入求出即可. 【详解】∵AB=4cm,AC=10cm , ∴BC=AC﹣AB=6cm . ∵D 为BC 中点, ∴CDBC=3cm. 故答案解析:3 【解析】 【分析】求出BC 长,根据中点定义得出CD 12=BC ,代入求出即可. 【详解】∵AB =4cm ,AC =10cm , ∴BC =AC ﹣AB =6cm . ∵D 为BC 中点, ∴CD 12=BC =3cm . 故答案为:3. 【点睛】本题考查了有关两点间的距离的应用,关键是求出BC 的长和得出CD 12=BC . 24.﹣a ﹣3b . 【解析】 【分析】由图可知:,则 ,然后根据绝对值的性质对式子化简再合并同类项即可得出答案. 【详解】解:由图可知:,则∴|b﹣c|+2|a+b|﹣|c ﹣a|=-(b-c )﹣2(解析:﹣a ﹣3b . 【解析】 【分析】由图可知:0a b c <<<,则0,0,0b c a b c a -<+<-> ,然后根据绝对值的性质对式子化简再合并同类项即可得出答案. 【详解】解:由图可知:0a b c <<<,则0,0,0b c a b c a -<+<-> ∴|b ﹣c |+2|a +b |﹣|c ﹣a |=-(b-c )﹣2(a +b )﹣(c ﹣a )=﹣a ﹣3b , 故答案为:﹣a ﹣3b . 【点睛】本题主要结合数轴考查绝对值的性质及代数式的化简,掌握绝对值的性质是解题的关键.25.【解析】 【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案. 【详解】 解:∵, ∴; 故答案为:. 【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 解析:<【解析】 【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案. 【详解】 解:∵2237>, ∴2237-<-; 故答案为:<. 【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则.三、解答题26.(1)3π+3;(2)=;(3)π-1,(4)1、π、π+1π+2、π2+2π+1. 【解析】 【分析】(1)根据线段之间的关系代入解答即可; (2)根据线段的大小比较即可;(3)由题意可知,C 点表示的数是π+1,设M 点离O 点近,且OM=x ,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.【详解】(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1-1-1=π-1;(4)设点D表示的数为x,如图3,若CD=πOD,则π+1-x=πx,解得x=1;如图4,若OD=πCD,则x=π(π+1-x),解得x=π;如图5,若OC=πCD,则π+1=π(x-π-1),解得x=π+1π+2;如图6,若CD=πOC,则x-(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π+1π+2、π2+2π+1.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.(1)2;(2)9.【解析】【分析】(1)有理数的加减混合运算,先将绝对值化简,然后计算;(2)有理数的混合运算,使用乘法分配律使得计算简便.【详解】解:(1)1+(―2)+|-3|= 1—2+3= 2(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭ =1152524+2424326-⨯⨯-⨯ = 25-8+12-20= 9【点睛】 本题考查有理数的混合运算及乘法分配律,掌握运算顺序及运算法则是本题的解题关键. 28.53COF ︒∠=【解析】【分析】根据已知条件求出∠COE 的度数,再根据垂直的性质求出∠EOF 的度数,最后再根据余角的性质即可求出答案.【详解】直线AB 与CD 相较于O ,74BOC AOD ︒∴∠=∠=, OE 是COB ∠的平分线,1372COE BOC ︒∴∠=∠=; ,90OE OF EOF ︒⊥∴∠=90903753COF COE ︒︒︒︒∴∠=-∠=-=【点睛】本题考查了垂线的性质和角平分线,邻补角和余角的性质,求出∠COE 的度数是解题的关键.29.(1) 51°48′,(2). OG 是EOB ∠的平分线,理由详见解析.【解析】【分析】(1)根据平角,直角的性质,解出∠BOG 的度数即可.(2)根据角平分线的性质算出答案即可.【详解】(1)由题意得:∠AOC=38°12′,∠COG=90°,∴∠BOG=∠AOB-∠AOC-∠COG=180°-38°12′-90°=51°48′.(2) OG 是∠EOB 的平分线,理由如下:由题意得:∠BOG=90°-∠AOC,∠EOG=90°-∠COE,∵OC 是∠AOE 的平分线,∴∠AOC=∠COE∴∠BOG=90°-∠AOC=90°-∠COE=∠EOG∴OG 是∠EOB 的平分线.【点睛】本题考查角度的计算,关键在于对角度认识及角度基础运算.30.(1)∠AOC =60°,(2)360°﹣2α.【解析】【分析】(1)利用垂直的定义和角的和差关系可得∠COE ,由角平分线的性质可得∠BOE ,然后根据平角的定义解答即可;(2)根据垂直的定义和角的和差关系可得∠COE ,由角平分线的性质可得∠BOE ,然后利用平角的定义求解即可.【详解】解:(1)∵OC ⊥OD ,∴∠DOC =90°,∵∠DOE =150°,∴∠COE =∠DOE ﹣∠COD =150°﹣90°=60°,∵射线OE 平分∠BOC ,∴∠COE =∠BOE =60°,∴∠AOC =180°﹣∠COE ﹣∠BOE =180°﹣60°﹣60°=60°,(2)∵OC ⊥OD ,∴∠DOC =90°,∵∠DOE =α,∴∠COE =∠DOE ﹣∠COD =α﹣90°,∵射线OE 平分∠BOC ,∴∠COE =∠BOE =α﹣90°,∴∠AOC =180°﹣∠COE ﹣∠BOE =180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,故答案为:360°﹣2α.【点睛】本题考查了垂直的定义、角平分线的性质、平角的定义和角的和差关系,属于基本题型,熟练掌握基本知识是解题关键.31.(1)90︒;(2)COD=10∠︒;(3)1752MON COD ∠=∠+︒,证明见解析 【解析】【分析】(1)利用角平分线定义得出12AOM MOC AOC x ∠=∠=∠=,12BON DON BOD y ∠=∠=∠=,再利用∠AOB 的和差关系进行列方程即可求解; (2)利用8MON COD ∠=∠,表达出∠AOC 、∠BOD ,利用∠AOB 的和差关系进行列方程即可求解;(3)画出图形后利用角的和差关系进行计算求解即可.【详解】解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD ∴设11,22AOM MOC AOC x BON DON BOD y ∠=∠=∠=∠=∠=∠= ∴2,2AOC x BOD y ∠=∠=,30MON MOC COD DON x y ∠=∠+∠+∠=+︒+ ∵2302150AOB AOC BOD COD x y ∠=∠+∠+∠=+︒+=︒∴60x y +=︒∴3090MON x y ∠=+︒+=︒故答案为: 90︒(2)∵8MON COD ∠=∠∴设=,8COD a MON a ∠∠=∵射线OD 恰好平方MON ∠ ∴14,2DOM DON MON a ∠=∠=∠= ∴43,COM DOM COD a a a ∠=∠-∠=-= ∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD ∴113,422AOM MOC AOC a BON DON BOD a ∠=∠=∠=∠=∠=∠= ∴6,8AOC a BOD a ∠=∠= ∵68150AOB AOC BOD COD a a a ∠=∠+∠+∠=++=︒∴=10a ︒∴COD=10∠︒ (3) 1752MON AOC ∠=∠+︒,证明如下: 当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x ∠=∠-∠=︒-∠=︒-∵ON 平分∠BOD∴117522DON BOD x ∠=∠=︒- ∴MON COD DON ∠=∠+∠ 1752x x =+︒- 1752x =︒+ ∴1752MON COD ∠=︒+∠当OC 在OA 的左侧时设∠AOD=a ,∠AOC=b,则∠BOD=∠AOB -∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b ∵ON 平分∠BOD∴117522DON BOD a ∠=∠=︒- ∵OM 平分∠AOC∴1122AOM COM AOC b ∠=∠=∠= ∴∠MON=∠MOA+∠AOD+∠DON117522b a a =++︒-117522b a =++︒ 1752COD =∠+︒当OD 与OA 重合时∵ON 平分∠AOB∴1752AON AOB ∠=∠=︒ ∵OM 平分∠AOC∴12MON AOC ∠=∠ ∴MON MOD AON ∠=∠+∠ 1752AOC =∠+︒ 综上所述 1752MON AOC ∠=∠+︒ 【点睛】本题考查了角平分线的动态问题,掌握角平分线的性质是解题的关键.32.(1)-2a ;(2)297mn m -.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.本题考查整式的计算,关键在于掌握计算法则.33.(1)3-;(2)15-【解析】【分析】(1)根据有理数的运算顺序和运算法则计算即可;(2)根据乘法分配律和各个运算法则计算即可.【详解】解:(1)()34124-+-÷=()184-+-÷=()12-+-=3-(2)115321248-⨯-+⎛⎫⎪⎝⎭ =()()()2421152424381-⨯--⨯+-⨯ =8310-+-=15-【点睛】此题考查的是有理数的混合运算,掌握有理数的运算顺序和运算法则是解决此题的关键.四、压轴题34.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b 是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x )+2(x+5)=x+1-1+x+2x+10当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.35.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可. 【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=;数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -;(2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-,∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<,∵1511c c ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版七年级上册数学 期末试卷(Word 版 含解析)一、选择题1.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等 D .不相交的两条直线叫做平行线 2.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( )A .1B .2C .1-D .2-3.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯ B .49.84610⨯ C .59.84610⨯ D .60.984610⨯ 4.已知23a +与5互为相反数,那么a 的值是( ) A .1B .-3C .-4D .-15.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120206.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .197.12-的倒数是( ) A .B .C .12-D .128.方程1502x --=的解为( ) A .4-B .6-C .8-D .10-9.如图所示的正方体的展开图是( )A .B .C .D .10.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°11.一个小菱形组成的装饰链断了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A .3个B .4个C .5个D .6个 12.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n13.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( ) A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯14.-5的相反数是( ) A .15B .±5C .5D .-1515.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab二、填空题16.在直线l 上有四个点A 、B 、C 、D ,已知AB =8,AC =2,点D 是BC 的中点,则线段AD =________.17.一个角的的余角为30°15′,则这个角的补角的度数为________. 18.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ .19.多项式32ab b +的次数是______.20.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 21.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.22.请写出一个系数是-2,次数是3的单项式:________________. 23.若单项式42m a b 与22n ab -是同类项,则m n -=_______.24.若代数式2434x x +-的值为 1,则代数式2314x x --的值为_________. 25. 若3x 2k -3=5是一元一次方程,则k =________.三、解答题26.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯- 27.已知关于x 的方程3(2)x x a -=- 的解比223x a x a+-= 的解小52,求a 的值. 28.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程.请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______.(2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)29.求不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-+⎩<的整数解.30.先化简,再求值:()()22224333a b ab aba b ---+.其中 1a =-、 2b =-.31.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究: (概念认识)已知点 P 和图形 M ,点 B 是图形M 上任意一点,我们把线段 PB 长度的最小值叫做点P 与图形 M 之 间的距离.例如,以点M 为圆心,1cm 为半径画圆如图1,那么点 M 到该圆的距离等于1cm ;若点N 是圆上一点,那么点 N 到该圆的距离等于 0cm ;连接M N ,若点 Q 为线段 M N 中点,那么点 Q 到该圆的距离等于0.5cm ,反过来,若点 P 到已知点 M 的距离等于1cm ,那么满足条件的所有点 P 就构成了以点 M 为圆心,1cm 为半径的圆.(初步运用)(1)如图 2,若点 P 到已知直线 m 的距离等于1cm ,请画出满足条件的所有点 P .(深入探究)(2)如图3,若点 P 到已知线段的距离等于1cm ,请画出满足条件的所有点 P .(3)如图 4,若点 P 到已知正方形的距离等于1cm ,请画出满足条件的所有点 P .32.如图,已知线段AB 上有一点C ,点M ,N 分别是线段AC ,BC 中点,若AB a ,AC b =,且a ,b 满足()210402ba -+-=.(1)求线段AB ,AC 的长度; (2)求线段MN 的长度.33.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值. 35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 36.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.37.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ 若存在,求出t 的值;若不存在,请说明理由.38.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.39.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?40.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由. 41.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).42.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .43.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】 【分析】根据各项定义性质判断即可. 【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线. 故选D. 【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.2.C解析:C 【解析】 【分析】根据题意将解代入方程解出a 即可. 【详解】将x =-a 代入方程得:-a -3a =4, 解得:a =-1. 故选C. 【点睛】本题考查一元一次方程的解题方法,熟练掌握解题方法是关键.3.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将98.46万用科学记数法表示为59.84610⨯. 故选:C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C解析:C 【解析】 【分析】由互为相反数的两个数和为0可得a 的值. 【详解】 解:23a +与5互为相反数∴++=a2350a=-.解得4故选:C【点睛】本题考查了相反数,熟练掌握相反数的性质是解题的关键.5.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.6.D解析:D【解析】【分析】根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步列方程即可.【详解】解:1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…x张长方形餐桌的四周可坐4x+2人;则依题意得:4x+2=78,解得:x=19,故选:D.【点睛】此题考查图形的变化规律和由实际问题抽象出一元一次方程,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.7.A解析:A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A 8.D解析:D【解析】【分析】根据一元一次方程的解法即可求解.【详解】1502x --= 152x -= x=-10故选D.【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知方程的解法.9.A解析:A【解析】【分析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A 正确. 故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.10.B解析:B【解析】【分析】由折叠的性质及平角等于180°可求出∠BEH 的度数,由AB ∥CD ,利用“两直线平行,内错角相等”可求出∠DHE 的度数,再利用对顶角相等可求出∠CHG 的度数.【详解】由折叠的性质,可知:∠AEF =∠FEH .∵∠BEH =4∠AEF ,∠AEF +∠FEH +∠BEH =180°,∴∠AEF =16×180°=30°,∠BEH =4∠AEF =120°. ∵AB ∥CD ,∴∠DHE =∠BEH =120°,∴∠CHG =∠DHE =120°.故选:B .【点睛】 本题考查了四边形的折叠问题,掌握折叠的性质以及平行的性质是解题的关键.11.C解析:C【解析】【分析】答案中断去的菱形个数均为较小的正整数,由所示的图形规律画出完整的装饰链,可得断去部分的小萎形的个数.【详解】解:如图:断去部分的小菱形的个数最小为5.故选: C.【点睛】本题考查了图形的变化规律.注意按照图形的变化规律得到完整的装饰链是解决本题的关键. 12.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.13.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:448300 4.8310=⨯;故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.C解析:C【解析】解:﹣5的相反数是5.故选C.15.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A.考点:同类项的概念.二、填空题16.3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差解析:3或5【解析】【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC=8+2=10,由线段中点的性质,得BD=CD=12BC=12×10=5,AD=CD-AC=5-2=3;当C在线段AB上时,由线段的和差,得BC=AB-AC=8-2=6,由线段中点的性质,得BD=CD=12BC=12×6=3,所以AD=AC+CD=2+3=5.综上所述,AD=3或5.故答案为:3或5.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.17.120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.18.0【解析】【分析】根据题意,有,则,然后利用整体代入法进行求解,即可得到答案.【详解】解:根据题意,有,∴,∴;故答案为:0.【点睛】本题考查了求代数式的值,解题的关键是得到,熟解析:0【解析】【分析】根据题意,有24a b -=,则122a b -=,然后利用整体代入法进行求解,即可得到答案. 【详解】解:根据题意,有24a b -=, ∴122a b -=,∴1122()22022a b a b -+=--=-=; 故答案为:0.【点睛】 本题考查了求代数式的值,解题的关键是得到122a b -=,熟练运用整体代入法进行解题. 19.3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.解析:3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式32ab b +的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.20.两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案解析:两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案为:两点确定一条直线.【点睛】此题主要考查了直线的性质,熟记直线的性质是解题的关键.21.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75, 17340.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升510463⨯=cm,①当甲比乙高16cm时,此时乙中水位高56cm,用时1分;②当乙比甲水位高16cm 时,乙应为76cm,757=665÷分,当丙的高度到5cm时,此时用时为5÷103=32分,因为73<52,所以75分乙比甲高16cm.③当丙高5cm时,此时乙中水高535624⨯=cm,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm,当乙的水位达到5cm时开始流向甲,此时用时为355+5243⎛⎫-÷⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm,当甲的水位高为546cm时,乙比甲高16cm,此时用时155201734146340⎛⎫+-÷=⎪⎝⎭分;综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm.【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点.22.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解析:-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.23.【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【详解】由题意得:,,解得:,,∴,故答案为:.【点睛】本题考查同类项的定义,同类项解析:1-【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【详解】由题意得:1m =,42n =,解得:1m =,2n =,∴121m n -=-=-,故答案为:1-.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点.24.【解析】【分析】根据题意表达出,将其代入计算即可.【详解】解:∵代数式的值为 1∴∴∴∴故答案为:【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键. 解析:1-4【解析】【分析】 根据题意表达出235=44x x +,将其代入2314x x --计算即可. 【详解】解:∵代数式2434x x +-的值为 1∴2434=1x x +-∴243=5x x + ∴235=44x x +∴23511=1-=-444x x -- 故答案为:1-4 【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键.25.2【解析】分析:根据未知数的指数等于1列方程求解即可.详解:由题意得,2k-3=1,∴k=2.故答案为2.点睛:本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且解析:2【解析】分析:根据未知数的指数等于1列方程求解即可.详解:由题意得,2k -3=1,∴k =2.故答案为2.点睛:本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.三、解答题26.(1)42;(2)56.【解析】【分析】(1)直接利用乘法分配律进行计算,即可得到答案;(2)先计算乘方,然后计算乘除法,最后计算加减法,即可得到答案.【详解】解:(1)35116()824⨯+- =6404+-=42;(2)3242(2)(3)3--÷⨯-=32(8)94--⨯⨯ =254+=56.【点睛】 本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的运算法则.以及利用乘法分配律进行计算.27.a=1【解析】【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.28.(1)72a =;(2)2222a ab -+,452 【解析】【分析】(1)由差解方程的定义可知13x a =+-,将x 的值代入方程可求得a 的值;(2)由差解方程的定义可3x a b a =+-=,可得b 的值,再将x a =代入方程可得a 的值,然后去括号化简代数式求值即可.【详解】解:(1)由差解方程的定义可知132x a a =+-=-,代入31x a =+得3(2)1a a -=+, 解得72a =. (2)由差解方程的定义可3x ab a =+-=得3b =将x a =,3b =代入3x a b =+得33a a =+解得32a = ()22224222ab a ab a b ⎡⎤---⎣⎦22224(224)a b a ab a b =--+22224224a b a ab a b =-+-2222a ab =-+ 将32a =,3b =代入得 222233452()2322222a ab =-⨯⨯+=-+⨯. 所以代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值452. 【点睛】本题属于一元一次方程的实践创新题,同时涉及了整式的加减混合运算,正确理解差解方程的定义是解题的关键.29.不等式组的解集为 12x -≤<.【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】()21511325131x x x x -+⎧-≤⎪⎨⎪-+⎩①<②, 解不等式①,得x≥-1,解不等式②,得x <2,所以,原不等式组的解集是-1≤x <2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.30.223a b ab -; 2-【解析】【分析】原式去括号合并得到最简结果,将a ,b 值代入计算即可求值.【详解】解:()()2222 4333a b ab ab a b ---+2222 12439a b ab ab a b =-+-22 3a b ab =-,当 1a =-、 2b =-时,原式()()()()()()2231212=642=-⨯---⨯----=-.【点睛】本题考查了整式的加减化简求值,掌握去括号和合并同类项法则是解答此题的关键.31.(1)见解析;(2)见解析;(3)见解析;【解析】【分析】(1)根据题意及平行线间的距离相等画图;(2)根据题意及平行线段之间的距离相等和圆的定义画图;(3)根据题意及平行线段之间的距离相等和圆的定义画图;【详解】(1)平行于直线m 且与m 间距离为1cm 的两条直线,如图,(2)平行于直线m 且与m 间距离为1cm 的两条线段,及分别以A,B 为圆心,1cm 为半径的两个半圆,如图,(3)平行于正方形的各边且距离为1cm 的8条线段及分别以正方形4个顶点为圆心,1cm 为半径,圆心角为90°的4个弧,如图,【点睛】本题考查新定义题目,读懂题意,结合平行线间的距离定义,圆的定义,解答此题的关键是用新的思路和方法解决新题型.32.(1)10AB =,8AC =;(2)5【解析】【分析】(1)根据非负性即可求解;(2)根据中点的性质即可求解.【详解】(1)解:由题意得:10a =,8b =;10AB =,8AC =.(2)∵M 为AC 中点,8AC =, ∴142MC AC ==. 又∵10AB =,∴1082BC AB AC =-=-=,又∵N 为BC 中点, ∴112CN BC ==, ∴415MN MC CN =+=+=.【点睛】此题主要考查线段间的数量关系,解题的关键是熟知非负性及中点的性质.33.(1)908t ;-(2)152744t t ==,(3)①5或10,②3∠NOD +4∠BOM =270°. 【解析】【分析】(1)把旋转前∠NOD 的大小减去旋转的度数就是旋转后的∠NOD 的大小.(2)相对MO 与CO 的位置有两种情况,所以要分类讨论,然后根据∠NOD =4∠COM 建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO 没有追上CO 与MO 超过CO 两种情况,然后分别列方程即可.②分别用t 的代数式表示∠NOD 和∠BOM ,然后消去t 即可得出它们的关系.【详解】(1)∠NOD 一开始为90°,然后每秒减少8°,因此∠NOD =90﹣8t .故答案为90﹣8t .(2)当MO 在∠BOC 内部时,即t 458<时,根据题意得: 90﹣8t =4(45﹣8t )解得:t 154=; 当MO 在∠BOC 外部时,即t 458>时,根据题意得: 90﹣8t =4(8t ﹣45)解得:t 274=.。

相关文档
最新文档