人教版九年级数学上册期末试卷含答案【推荐下载】

合集下载

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试卷及答案

人教版九年级上册数学期末考试试题一、单选题1.在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()

A.2B.﹣1C.﹣3D.﹣42.下列属于中心对称图形的是()

A.B.C.D.3.数据4000亿用科学记数法表示为()A.120.410B.10410C.11410D.110.410

4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5B.6C.7D.85.函数2yx中,自变量x的取值范围是()A.2xB.2xC.2xD.2x6.如果数据1x,2x,L,nx的方差是3,则另一组数据12x,22x,L,2

n

x

的方

差是()A.3B.6C.12D.57.若21xy,则342xy的值是()

A.5B.-5C.1D.-18.如图,把△ABC绕着点A逆时针旋转40°得到△ADE,∠1=30°,则∠BAE=()

A.10°B.30°C.40°D.70°9.P为⊙O内一点,3OP,⊙O半径为5,则经过P点的最短弦长为()A.5B.6C.8D.1010.二次函数2yxmx

的图象如图,对称轴为直线2x,关于

x

的一元二次方程20xmxt

(t为实数)在15x的范围内有解,则t的取值范围是()

A.5tB.53tC.34tD.54t二、填空题

11.计算:1013.142____________.12.分解因式:22368xyxy-=__________.13.小红参加学校举办的“我爱我的祖国”主题演讲比赛,她的演讲稿、语言表达、形象风度得分分别为85分,70分,80分,若依次按照40%,30%,30%的百分比确定成绩,则她的平均成绩是________分.14.在平面直角坐标系中,一次函数2yx与反比例函数0kykx的图象交于11,Axy,

22,Bxy

两点,则12yy的值是____________.

人教版九年级上册数学期末考试试题及答案

人教版九年级上册数学期末考试试题及答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列图形中不是..中心对称图形的是()A .B .C .D .2.如图,AB 是O 的直径,弦CD AB ⊥于点E ,30CDB ∠=︒,O 的半径为3cm ,则CD 弦长为()A .32cmB C .D .6cm3.已知,⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,则点P 在⊙O 的()A .外部B .内部C .圆上D .不能确定4.抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是A .y =12(x +1)2﹣2B .y =12(x ﹣1)2+2C .y =12(x ﹣1)2﹣2D .y =12(x +1)2+25.有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张点数为偶数的概率是()A .16B .14C .13D .126.下列事件中,属于必然事件的是()A .小明买彩票中奖B .投掷一枚质地均匀的骰子,掷得的点数是奇数C .等腰三角形的两个底角相等D .a 是实数,0a <7.已知一元二次方程280x x c --=有一个根为2,则另一个根为()A .10B .6C .8D .2-8.若关于x 的一元二次方程2320kx x -+=有实数根,则字母k 的取值范围是()A .98k <且0k ≠B .98k ≤C .98x <D .98k ≤且0k ≠9.下列说法错误的是()A .等弧所对的弦相等B .圆的内接平行四边形是矩形C .90︒的圆周角所对的弦是直径D .平分一条弦的直径也垂直于该弦10.如果a 0,b 0,c 0<>>,那么二次函数2y ax bx c =++的图象大致是()A .B .C .D .二、填空题11.方程(x -1)(x +2)=0的两根分别为________.12.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为23,则n=_____.13.在半径为6的圆中,一个扇形的圆心角是120︒,则这个扇形的弧长等于__________.14.如果m 是一元二次方程2220x x --=的一个根,那么2242m m --的值是__________.15.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.16.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.17.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S = ;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).三、解答题18.解方程:2320x x --=.19.已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式.20.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上.(1)画出ABC 绕B 点顺时针旋转90︒后的111A B C △,并写出1A 的坐标;(2)画出ABC 关于原点O 对称的222A B C △.21.已知抛物线2y x bx c =++经过点()0,3C -和点()4,5D .(1)求抛物线的解析式;(2)设抛物线与x 轴的交点A 、B 的坐标(注:点A 在点B 的左边),求ABC 的面积.22.小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是多少?(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是-红一黑,则小李获胜:若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.23.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.24.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.25.已知二次函数y =x 2-6x+8.求:(1)抛物线与x 轴和y 轴相交的交点坐标;(2)抛物线的顶点坐标;(3)画出此抛物线图象,利用图象回答下列问题:①方程x 2-6x +8=0的解是什么?②x 取什么值时,函数值大于0?③x 取什么值时,函数值小于0?26.如图,ABC 内接于O ,且AB 为O 的直径,过圆心O 作⊥OD AB ,交AC 于点E ,连接DC ,已知2D A ∠=∠.(1)求证:CD 是O 的切线;(2)求证:DE DC =;(3)若5OD =,3CD =,求AC 的长.参考答案1.D 【分析】根据中心对称图形的概念求解.【详解】A 、是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项错误;C 、是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项正确.故选:D .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C 【分析】根据圆周角定理可求出∠COB 的度数,再利用特殊角的三角函数值及垂径定理即可解答.【详解】解:30CDB ∠=︒ ,60COB ∴∠=︒,又3cm OC = ,CD AB ⊥于点E ,·sin 60CE OC ∴=︒=,2CD CE ∴==.故选:C .【点睛】本题考查了垂径定理、勾股定理以及解直角三角形.此题难度不大,注意数形结合思想的应用.3.B 【解析】试题分析:∵⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,5cm >4cm ,∴点P在圆内.故选B.点睛:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.4.D【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【详解】抛物线y=12x2向左平移1个单位,再向上平移2个单位得y=12(x+1)2+2.故选:D.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.5.D【分析】用点数为偶数的张数除以总张数即可得出答案.【详解】有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张一共有6中情形,其中偶数4,8,10三张,由概率公式随机抽取一张点数为偶数的概率P=31= 62,故选择:D.【点睛】本题考查概率公式P(A)=mn求简单事件的概率,关键是应先确定所有结果中的可能性都相同,然后确定所有可能的结果总数n和事件A在总数中的结果数m是解题关键.6.C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A.小明买彩票中奖,是随机事件;B.投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C.等腰三角形的两个底角相等,是必然事件;D.a 是实数,0a <,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B 【分析】设方程的另一根为m ,由根与系数的关系可得:28,m +=解方程可得答案.【详解】解: 一元二次方程280x x c --=有一个根为2,设另一根为m ,828,1m -∴+=-=6,m ∴=故选:.B 【点睛】本题考查的是一元二次方程的根与系数的关系,掌握一元二次方程的根与系数的关系是解题的关键.8.D 【分析】根据一元二次方程根的判别式,b 2-4ac≥0,且二次项系数不为0,即可求出k 的范围.【详解】∵方程有实数根∴b 2-4ac=()23420k --⨯⨯≥解得:98k ≤又∵原方程是一元二次方程∴0k ≠∴k 的取值范围是98k ≤且0k ≠【点睛】本题考查了根的判别式,牢记“当0∆≥时,方程有两个实数根”是解题的关键,且切记不要漏掉二次项系数不为0.9.D 【分析】根据圆的性质逐项判断即可.【详解】A .等弧所对的弦相等,故A 正确,不符合题意.B .根据圆的内接四边形对角互补和平行四边形邻角互补,即可知圆的内接平行四边形是矩形.故B 正确,不符合题意.C .90︒的圆周角所对的弦是直径,故C 正确,不符合题意.D .平分一条弦(非直径)的直径也垂直于该弦.故D 错误,符合题意.故选:D .【点睛】本题考查圆周角定理,垂径定理,圆心角、弧、弦的关系以及圆内接平行四边形的性质.熟练掌握这些知识是判断此题的关键.10.D 【分析】根据a 、b 、c 的符号,可判断抛物线的开口方向,对称轴的位置,与y 轴交点的位置,作出选择.【详解】由a <0可知,抛物线开口向下,排除.D ;由a <0,b>0可知,对称轴x=-b2a-b2a >0,在y 轴右边,排除B ;由c <0可知,抛物线与y 轴交点(0,c)在x 轴下方,排除C ;故答案为:D .【点睛】本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键.11.121,2x x ==-根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程.【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.12.4【分析】根据白球的概率公式列出关于n 的方程,解方程即可得.【详解】由题意得22123n =-+,解得n=4,经检验n=4是方程的根,故答案为4.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.4π【分析】利用扇形的弧长公式:l =180n rπ代入计算即可.【详解】扇形的圆心角为120°.r=6,则扇形弧长l =1206=4180180n r πππ⨯=,故答案为:4π.【点睛】本题主要考查扇形的弧长公式,解题的关键是熟知扇形的弧长公式的运用.14.2【分析】利用一元二次方程的解的定义得到m 2-2m=2,再把2m 2-4m-2变形为2(m 2-2m )-2,然后利用整体代入的方法计算.【详解】解:∵m 为一元二次方程x 2-2x-2=0的一个根.∴m 2-2m-2=0,即m 2-2m=2,∴2m 2-4m-2=2(m 2-2m )-2=2×2-2=2.故答案为:2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.4s 【分析】把二次函数的一般式写成顶点式,找出顶点坐标,即可知道多长时间后得到最高点.【详解】解:252012h t t =-++=52-(t-4)2+41,∵52-<0,∴这个二次函数图象开口向下,∴当t=4时,升到最高点,∴从点火升空到引爆需要的时间为4s .故答案为:4s .【点睛】本题考查了二次函数解析式的相互转化,以及二次函数的性质,二次函数的表达式有三种形式,一般式,顶点式,交点式.要求最高(低)点,或者最大(小)值,需要先写成顶点式.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是h=t2+20t+1252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为16.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE ,∠BAC=∠EAF ,又∵∠B =70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF ,∴∠BAE=∠FAG=40°,∵△ABC ≌△AEF ,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.17.①③④【分析】连接OB 、OC ,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE ,于是可判断△BOD ≌△COE ,所以BD=CE ,OD=OE ,则可对①进行判断;利用S △BOD =S △COE 得到四边形ODBE 的面积=13S △ABC ,则可对③进行判断;作OH ⊥DE ,如图,则DH=EH ,计算出S △ODE 2,利用S △ODE 随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于△BDE 的周长,根据垂线段最短,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,计算出此时OE 的长则可对④进行判断.【详解】解:连接OB 、OC ,如图,∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,∵点O 是△ABC 的中心,∴OB=OC ,OB 、OC 分别平分∠ABC 和∠ACB ,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE ,在△BOD 和△COE 中,BOD COE BO COOBD OCE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△BOD ≌△COE (ASA ),∴BD=CE ,OD=OE ,∴①正确;作OH ⊥DE 于H ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=12OE ,332OE ,∴3,∴S △ODE =12×123342,即S △ODE 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S △ODE ≠S △BDE ;设等边三角形ABC 的边长为a ,∵△BOD ≌△COE ,∴S △BOD =S △COE ,∴四边形ODBE 的面积=S △OBC ═13S △ABC =13×24a ,∴四边形ODBE 的面积始终等于定值;故③正确;∵BD=CE ,∴△BDE 的周长,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时OE=6a ,∴△BDE 周长的最小值=a+1322a a =,为定值∴④正确.故答案为:①③④.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.18.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.【点睛】本题考查了一元二次方程的解法,根据题目特点灵活选择解法是解题的关键.19.2441999y x x =-+.【解析】根据()1,1-、()2,1两点纵坐标相同可得,抛物线的对称轴为直线x=12,因为函数图象与x 轴仅有一个交点,则抛物线的顶点为(12,0),可设二次函数解析式为y=a (x ﹣12)2,再将(2,1)代入求解即可.【详解】解:∵二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,∴抛物线的顶点为(12,0),则可设二次函数解析式为y=a (x ﹣12)2,将(2,1)代入得a=49,故二次函数的解析式为:224144192999y x x ⎛⎫=-=-+ ⎪⎝⎭.【点睛】本题主要考查二次函数图象的性质,利用待定系数法求函数解析式,解此题的关键在于熟练掌握其知识点.20.(1)见解析,1A 坐标为(3,1)-;(2)见解析.【分析】(1)分别在网格中找到点A 、C 绕点B 顺时针旋转90︒后的点1A 、1C ,再连接111A B C △,即可解题;(2)分别在网格中找到点A 、B 、C 关于原点O 对称的2A 、2B 、2C ,再连接即可解题.【详解】解:(1)所画图形如下:1A 坐标为(3,1)-;(2)所画图形如下所示:【点睛】本题考查网格作图、坐标与图形变换,是重要考点,难度较易,掌握相关知识是解题关键.21.(1)223y x x =--;(2)6【分析】(1)把点C 和点D 的坐标分别代入抛物线解析式可以得到关于b 、c 的二元一次方程组,解方程组即可得到b 、c 的值,从而得到抛物线的解析式;(2)令抛物线解析式中y=0,可以得到关于x 的一元二次方程,解方程可得A 、B 的坐标,从而得到线段AB 的长度,由题意即得△ABC 的面积为AB 与OC (长度等于C 点纵坐标绝对值)积的一半.【详解】(1)把点()0,3C -和点()4,5D .代入2y x bx c =++得35164cb c-=⎧⎨=++⎩解得23b c =-⎧⎨=-⎩所以抛物线的解析式为:223y x x =--;(2)把0y =代入223y x x =--,得2230x x --=解得11x =-,23x =,∵点A 在点B 的左边,∴点()1,0A -,点()3,0B 由题意得4AB =,3OC =,1143622ABC S AB OC =⨯=⨯⨯=△【点睛】本题考查二次函数与一元二次方程的综合运用,熟练掌握二次函数解析式的求法、通过求解一元二次方程计算二次函数与坐标轴交点坐标、利用函数图象与坐标轴的交点计算直线与坐标轴所围图形的面积是解题关键.22.(1)14;(2)见解析【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到-红一黑,以及两个球都是白色的情况数,求出它们的概率,即可做出判断.【详解】解:(1)4个小球中有1个红球,则任意摸出1个球,恰好摸到红球的概率是:111214=++(2)列表如下:红白白黑红---(白,红)(白,红)(黑,红)白(红,白)---(白,白)(黑,白)白(红,白)(白,白)---(黑,白)黑(红,黑)(白,黑)(白,黑)---所有等可能的情况有12种,其中两次都摸到一红一黑有2种可能,摸出的两个球都是白色的有有2种可能,则P (小李获胜)=21126=,P (小王获胜)=21126=,故游戏公平.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S =120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AODOAD S S ππ⨯-=-- 扇形.【点睛】本题考查了圆周角定理、垂径定理、扇形的面积公式、三角形中位线定理等知识点,较难的是题(2),熟练掌握圆周角定理和扇形的面积公式是解题关键.24.(1)20%;(2)3456【分析】(1)设年平均增长率为x ,一般用增长后的量=增长前的量×(1+增长率),2018年投入教育经费是2000万元,2019年在2018年的基础上增长x ,就是2018年的教育经费数额的(1)x +倍,2020年在2019年的基础上再增长x ,2020年的教育经费数额为20002(1)x +,即可列出方程求解.(2)利用(1)中求得的增长率来求2021年该地区将投入教育经费.【详解】解:(1)设年平均增长率为x,由题意得:2000×(1+x)2=2880,解得:x1=0.2x2=-2.2(舍去),答2018年至2020年洪泽湖初级中学投入教育经费的年平均增长率为20%,(2)2880×(1+20%)=3456(万元),答:2021年该地校将投入教育经费3456万元,【点睛】本题考查了一元二次方程中增长率的知识.掌握增长前的量×(1+年平均增长率)年数=增长后的量是本题的关键.25.(1)(2,0),(4,0),(0,8)(2)(3,-1)(3)①x1=2,x2=4②x<2或x>4③2<x<4【解析】【分析】(1)分别令x=0,y=0即可求得交点坐标.(2)把函数解析式转化为顶点坐标形势,即可得顶点坐标.(3)①根据图象与x轴交点可知方程的解;②③根据图象即可得知x的范围.【详解】(1)由题意,令y=0,得x2-6x+8=0,解得x1=2,x2=4.所以抛物线与x轴交点为(2,0)和(4,0),令x=0,y=8.所以抛物线与y轴交点为(0,8),(2)抛物线解析式可化为:y=x2-6x+8=(x-3)2-1,所以抛物线的顶点坐标为(3,-1),(3)如图所示.①由图象知,x 2-6x+8=0的解为x 1=2,x 2=4.②当x <2或x >4时,函数值大于0;③当2<x <4时,函数值小于0;【点睛】本题考查了二次函数图象上点的坐标特征及函数性质,是基础题型.26.(1)见解析;(2)见解析;(31655【分析】(1)连接OC ,由OA OC =,可得ACO A ∠=∠,可推出2COB A ∠=∠,由2D A ∠=∠,可得D COB ∠=∠.由⊥OD AB ,可求得90D COD ∠+∠=︒即可;(2)由90DCO ∠=︒和⊥OD AB 可得E 90DCE CO ∠+∠=︒,90AEO A ∠+∠=︒,由A ACO ∠=∠,可得DEC DCE ∠=∠即可;(3)由勾股定理求得4OC =,可求AB=8,可证AOE ACB ∽,由性质得OA OE AC BC =,可推出12BC AC =,由勾股定理222AC BC AB +=,转化为222184AC AC +=,解之即可.【详解】(1)证明:连接OC ,如图,OA OC = ,ACO A ∴∠=∠,2COB A ACO A ∴∠=∠+∠=∠,又2D A ∠=∠ ,D COB ∴∠=∠.又OD AB ⊥ ,90COB COD ∴∠+∠=︒.90D COD ∴∠+∠=︒.即90DCO ∠=︒,OC DC ∴⊥,又点C 在O 上,CD ∴是O 的切线;(2)证明:90DCO =︒∠ ,90DCE ACO ∴∠+∠=︒.又OD AB ⊥ ,90AEO A ∴∠+∠=︒,又A ACO ∠=∠ ,DEC AEO ∠=∠,DEC DCE ∴∠=∠,DE DC ∴=;(3)解:90DCO =︒∠ ,5OD =,3DC =,4OC ∴=,28AB OC ∴==,又3DE DC ==,2OE OD DE ∴=-=,A A ∠=∠ ,90AOE ACB ∠=∠=︒,AOE ACB ∴ ∽,OA OE AC BC ∴=,即2142BC OE AC OA ===,12BC AC ∴=,在ABC 中,222.AC BC AB += ,222184AC AC ∴+=,AC ∴=.【点睛】本题考查圆的切线,等腰三角形,相似三角形的判定与性质,勾股定理的应用,掌握圆的切线证明方法,等腰三角形判定方法,相似三角形的判定方法与性质的应用,会用勾股定理构造方程是解题关键.。

人教版九年级(上)期末数学试卷(解析版)

人教版九年级(上)期末数学试卷(解析版)

人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。

【5套打包】宁波市初三九年级数学上期末考试测试题(含答案解析)

【5套打包】宁波市初三九年级数学上期末考试测试题(含答案解析)

最新人教版九年级(上)期末模拟数学试卷(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()A.B.C.D.2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为1C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币20000次,正面朝上的次数一定是10000次3.将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为()A.y=(x﹣2)2+1B.y=x2+1C.y=(x+1)2+1D.y=(x﹣1)24.已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A.B.C.D.6.用配方法解方程x2﹣8x﹣20=0,下列变形正确的是()A.(x+4)2=24B.(x+8)2=44C.(x+4)2=36D.(x﹣4)2=367.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m﹣3等于()A.2B.﹣2C.1D.﹣18.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个9.函数y=﹣(x﹣1)2,当满足()时,y随x的增大而减小.A.x>0B.x<0C.x>1D.x<110.如图,在扇形OAB中,∠AOB=120°,点C是弧AB上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为点D、E.若DE=,则弧AB的长为()A.B.C.D.2π二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。

11.如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是.12.做重复实验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率为.13.已知点A(﹣3,y1),B(2,y2)在抛物线y=上,则y1y2.(填“<”,“>”,“=”)14.如图,四边形OABC的顶点A、B、C均在⊙O上,圆心角∠AOC=100°,则∠ABC°.15.如图,在△ABC中,AB=AC,∠C=72°,△ABC绕点B逆时针旋转,当点C的对应点C1落在边AC上时,设AC的对应边A1C1与AB的交点为E,则∠BEC1=°.16.如图,作半径为1的⊙O的内接正六边形A1B1C1D1E1F1,然后作正六边形A1B1C1D1E1F1的内切圆,得第二个圆,再作第二个圆的内接正六边形A2B2C2D2E2F2,又作正六边形A2B2C2D2E2F2的内切圆,得第三个圆…,如此下去,则第六个圆的半径为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解方程:x(x+4)=﹣3(x+4).18.(6分)如图,P A、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.19.(6分)李师傅今年开一家商店,2月份盈利2400元,4月份盈利3456元,且每月盈利的平均增长率都相等,求每月盈利的平均增长率.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)甲、乙两人面前分别摆有3张完全相同的背面向上的卡片,甲面前的卡片正面分别标有数字0,1,2;乙面前的卡片正面分别标有数字﹣1,﹣2,0;现甲从面前随机抽取一张卡片,卡片正面上的数字记为x,乙从面前随机抽取一张卡片,卡片正面上的数字记为y,设点M的坐标为(x,y).用树形图或列表法求点M在函数y=﹣图象上的概率.21.(7分)如图,一次函数y=x的图象与反比例函数y═的图象交于A,B两点,且点A坐标为(1,m).(1)求此反比例函数的解析式;(2)当x取何值时,一次函数大于反比例函数的值.22.(7分)在Rt△ABC中,∠A=30°,∠ACB=90°,AB=10,D为AC上点.将BD绕点B顺时针旋转60°得到BE,连接CE.(1)证明:∠ABD=∠CBE;(2)连接ED,若ED=2,求的值.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)已知抛物线y1=x2+mx+n,直线y2=2x+1,抛物线y1的对称轴与直线y2的交点为点A,且点A的纵坐标为5.(1)求m的值;(2)若点A与抛物线y1的顶点B的距离为4,求抛物线y1的解析式;(3)若抛物线y1与直线y2只有一个公共点,求n的值.24.(9分)如图,BC为⊙O的直径,点A是弧BC的中点,连接BA并延长至点D,使得AD=AB,连接CD,点E为CD上一点,连接BE交弧BC于点F,连接AF.(1)求证:CD为⊙O的切线;(2)求证:∠DAF=∠BEC;(3)若DE=2CE=4,求AF的长.25.(9分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x (0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.参考答案一、选择题1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据旋转180°后与原图重合的图形是中心对称图形,进而分析即可.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为1C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币20000次,正面朝上的次数一定是10000次【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对选项进行判定;解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币20000次,正面朝上的次数可能为10000次,所以D选项错误.故选:A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.3.将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为()A.y=(x﹣2)2+1B.y=x2+1C.y=(x+1)2+1D.y=(x﹣1)2【分析】抛物线平移不改变a的值,结合平移的规律:左加右减,上加下减,书写新抛物线解析式.解:将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为y=(x﹣1+1)2+1=x2+1,即y=x2+1.故选:B.【点评】主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6<0,∴该反比例函数经过第二、四象限.故选:C.【点评】本题考查了反比例函数的性质.反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A.B.C.D.【分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是:=,故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6.用配方法解方程x2﹣8x﹣20=0,下列变形正确的是()A.(x+4)2=24B.(x+8)2=44C.(x+4)2=36D.(x﹣4)2=36【分析】将方程的常数项移到右边,两边都加上16,左边化为完全平方式,右边合并即可得到结果.解:x2﹣8x﹣20=0,移项得:x2﹣8x=20,配方得:x2﹣8x+16=20+16,即(x﹣4)2=36.故选:D.【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,利用平方根定义开方转化为两个一元一次方程来求解.7.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m﹣3等于()A.2B.﹣2C.1D.﹣1【分析】根据一元二次方程的解的定义即可求出答案.解:由题意可知:m2﹣m﹣2=0,∴m2﹣m=2,∴原式=2﹣3=﹣1,故选:D.【点评】本题考查一元二次方程的解法,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.8.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个【分析】根据直线和圆的位置关系判断方法,可得结论.解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.【点评】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l 和⊙O相离⇔d>r.9.函数y=﹣(x﹣1)2,当满足()时,y随x的增大而减小.A.x>0B.x<0C.x>1D.x<1【分析】由抛物线解析式得出开口方向和对称轴,再根据二次函数的性质求解可得.解:∵y=﹣(x﹣1)2,∴a=﹣1<0,对称轴为直线x=1,则当x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小;故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).10.如图,在扇形OAB中,∠AOB=120°,点C是弧AB上的一个动点(不与点A、B重合),OD ⊥BC,OE⊥AC,垂足分别为点D、E.若DE=,则弧AB的长为()A.B.C.D.2π【分析】如图作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.解:如图作OH⊥AB于H.∵OD⊥BC,OE⊥A C,∴CD=DB,CE=AE,∴AB=2DE=2,∵OH⊥AB,∴BH=AH=,∵OA=OB,∴∠AOH=∠BOH=60°,OB==2,∴的长==,故选:B.【点评】本题考查弧长公式,三角形的中位线定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、单选题1.下列4个图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.平面直角坐标系内一点(-3,4)关于原点对称点的坐标是()A .(3,4)B .(-3,-4)C .(3,-4)D .(4,-3)3.如图,在⊙O 中,OC ⊥AB ,若∠BOC =40°,则∠OAB 等于()A .40°B .50°C .80°D .120°4.抛物线y =﹣2(x ﹣3)2﹣4的对称轴是()A .直线x =3B .直线x =﹣3C .直线x =4D .直线x =﹣45.连续抛掷两次骰子,它们的点都是奇数的概率是()A .136B .19C .14D .126.二次函数y =ax 2+bx+c 的图象如图所示,则一次函数y =﹣bx+c 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,将△ABC 绕点A 顺时针旋转α,得到△ADE ,若点D 恰好在CB 的延长线上,则∠CDE 等于()A .ΑB .90°+2αC .90°﹣2αD .180°﹣2α8.如图,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1=y 2;④4a+2b+c <0,其中说法正确的()A .①②B .①②③C .①②④D .②③④9.已知平面直角坐标系中有点A (﹣4,﹣4),点B (a ,0),二次函数y =x 2+(k ﹣3)x ﹣2k 的图象必过一定点C ,则AB+BC 的最小值是()A .B .C .D .10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°二、填空题11.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是________ 12.为了估计池塘里有多少条鱼,先从池溏里捕捞100条鱼做上记号,然后放回池塘里去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞300条鱼,若其中有15条有标记,那么估计池塘里大约有鱼________条._____.13.如图,扇形AOB的圆心角为120°,弦AB=14.已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是_____.15.已知二次函数y=﹣x2+bx+c与一次函数y=mx+n的图象相交于点A(﹣2,4)和点B(6,﹣2),则不等式﹣x2+bx+c>mx+n的解集是_____.16.如图,已知Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是_____.17.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.三、解答题18.解方程:(x+3)2﹣2x(x+3)=0.19.如图,四边形ABCD内接于⊙O,E为BC延长线上的一点,点C为 BD的中点.若∠DCE =110°,求∠BAC的度数.20.如图,已知△ABC 中,BD 是中线.(1)尺规作图:作出以D 为对称中心,与△BCD 成中心对称的△EAD .(2)猜想AB+BC 与2BD 的大小关系,并说明理由.21.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,又放回.小明摸取了60次,结果统计如下:标号1234次数16142010(1)上述试验中,小明摸取到“2”号小球的频率是;小明下一次在袋中摸取小球,摸到“2”号小球的概率是;(2)若小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,请用列举法求小明两次摸取到小球的标号相同的概率.(3)若小明一次在袋中摸出两个小球,求小明摸出两个小球标号的和为5的概率.22.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.23.在平面直角坐标系中,以坐标原点为圆心的⊙O 半径为3.(1)试判断点A (3,3)与⊙O 的位置关系,并加以说明.(2)若直线y =x+b 与⊙O 相交,求b 的取值范围.(3)若直线y =x+3与⊙O 相交于点A ,B .点P 是x 轴正半轴上的一个动点,以A ,B ,P 三点为顶点的三角形是等腰三角形,求点P 的坐标.24.已知关于x 的一元二次方程﹣212x +ax+a+3=0.(1)求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y =﹣212x +ax+a+3与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C ,连结BC ,BC 与对称轴交于点D .①求抛物线的解析式及点B 的坐标;②若点P 是抛物线上的一点,且点P 位于直线BC 的上方,连接PC ,PD ,过点P 作PN ⊥x 轴,交BC 于点M ,求△PCD 的面积的最大值及此时点P 的坐标.25.已知关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0.(1)若方程有两个实数根,求a 的取值范围.(2)若x=2是方程的一个根,求另一个根.(3)在(1)的条件下,试判断直线y=(2a﹣3)x﹣a+5能否过点A(﹣1,3),并说明理由.26.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.参考答案1.B【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选B.2.C【详解】∵P(-3,4),∴关于原点对称点的坐标是(3,-4),故选:C.3.B【详解】解:在⊙O中,OA=OB,∴△AOB为等腰三角形,∵OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,∴∠OAB=(180°-∠AOB)÷2=50°.4.A【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.5.C【详解】解:列表如下:123456 1()1,1()1,2()1,3()1,4()1,5()1,6 2()2,1()2,2()2,3()2,4()2,5()2,6 3()3,1()3,2()3,3()3,4()3,5()3,6 4()4,1()4,2()4,3()4,4()4,5()4,6 5()5,1()5,2()5,3()5,4()5,5()5,6 6()6,1()6,2()6,3()6,4()6,5()6,6由表格信息可得:所有的等可能的结果数有36个,符合条件的结果数有91=. 364故选C6.D【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-2ba<0,得b<0.∴0b ->所以一次函数y =﹣bx+c 的图象经过第一、二、三象限,不经过第四象限.故选:D .7.A【详解】解:由旋转的性质可得:∠ABC=∠ADE ,∵∠ABC+∠ABD=180°,∴∠ABD+∠ADE=180°,即∠ABD+∠ADB+∠CDE=180°,∵∠ABD+∠ADB+∠BAD=180°,∴∠CDE=∠BAD ,∵∠BAD=α,∴∠CDE=α.故选:A .8.B【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确的是①②③,故选:B .9.C【详解】解:二次函数y =x 2+(k ﹣3)x ﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C (2,-2)点C 关于x 轴对称的点C '的坐标为(2,2),连接AC ',如图,∵()4,4A --∴AC '==故选:C 10.B【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.11.3m ≠【详解】解:mx 2+3x-4=3x 2,可变形为2(3)340m x x -+-=,∵2(3)340m xx -+-=是一元二次方程,∴30m -≠,∴3m ≠.故答案为:3m ≠.12.2000100条,由此即可解答.【详解】设该池塘里现有鱼x 条,由题意知,15100300x=,∴x=2000.∴估计池塘里大约有鱼2000条.故答案为2000.13.4π3【详解】解:由题意知:∵OA OB=∴△OAB 为等腰三角形∴()1180120302OAB ∠=︒-︒=︒∵12cos30OA⨯︒=∴2OA =∵π120π24π1801803n r S ⨯⨯===扇1sin 302OAB S OA =⨯⨯︒⨯=∴4π3AOB S S S =-=- 阴扇故答案为:4π314.相切或相交【详解】设直线AB 上与圆心距离为4cm 的点为C ,当OC ⊥AB 时,OC=⊙O 的半径,所以直线AB 与⊙O 相切,当OC 与AB 不垂直时,圆心O 到直线AB 的距离小于OC ,所以圆心O 到直线AB 的距离小于⊙O 的半径,所以直线AB 与⊙O 相交,综上所述直线AB 与⊙O 的位置关系为相切或相交,故答案为:相切或相交.15.26x -<<【详解】解:如图,∵两函数图象相交于点A (-2,4),B (6,-2),∴不等式﹣x 2+bx+c >mx+n 的解集是26x -<<.故答案为:26x -<<.16.【分析】将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N .证明△PBH 是等边三角形,得PH BP =,所以PA PB PC PA PH HG ++=++,推出当A ,P ,G ,H′共线时,PA+PB+PC 的值最小,最小值=AG 的长,再运用勾股定理求出AG 的长即可.【详解】解:将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N ,如图,∵∠90,30ABC ACB ︒︒=∠=,4AC =2,AB ∴=由勾股定理得:BC ==∵将△BCP 绕点B 顺时针旋转60°得到△BHG ,∴△BPC BHG≅∆∴,60BP BH PBH ︒=∠=,,HG PC BC BG ===,∠PBC GBH=∠∴△PBH 是等边三角形,∴PH BP=∴PA PB PC PA PH HG++=++∴当点A ,点P ,点G ,点H 共线时,PA PH HG ++有最小值,最小值为AG ,∵∠150ABP PBH GBH ABP PBC CBH ︒+∠+∠=∠+∠+∠=∴∠150ABG ︒=∴∠30GBN ︒=∵GN AB⊥∴1122GN BG ==⨯=由勾股定理得,3BN ===∴235AN AB BN =+=+=∴AG ===∴PA PB PC ++最小值为故答案为:17【详解】∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,∵CA=CA 1,∴△ACA 1是等边三角形,AA 1=AC=BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB=CB 1,∴△BCB 1是等边三角形,∴BB 1BA 1=2,∠A 1BB 1=90°,∴BD=DB 1∴A 1=18.123,3x x ==-【详解】解:(x+3)2﹣2x (x+3)=0()()3320x x x ++-=()()330x x +-=解得123,3x x ==-19.55°【分析】由圆内接四边形的性质可得110BAD ∠=︒,根据“点C 为 BD的中点”可得AC 是BAD ∠平分线,从而可得结论.【详解】解:∵四边形ABCD 内接于⊙O ,∴DCE BAD∠=∠∵110DCE ∠=︒∴110BAD ∠=︒∵点C 为 BD的中点∴ BC D C=∴111105522BAC DAC BAD ∠=∠=∠=⨯︒=︒20.(1)见详解;(2)AB+BC >2BD .证明见详解.【分析】(1)延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,根据点D 为AC 中点,得出AD=CD ,再证△ADE ≌△CDB (SAS ),根据∠CDB+∠ADB=180°,得出△BCD 绕点D 旋转180°得到△EAD ,(2)根据△ADE ≌△CDB (SAS ),得出AE=BC ,BD=ED ,得出BE=2BD ,在△ABE 中,AB+AE >BE 即可.(1)解:延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,∵点D 为AC 中点,∴AD=CD ,在△ADE 和△CDB 中,AD CD ADE CDB ED BD =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDB (SAS ),∵∠CDB+∠ADB=180°,∴△BCD 绕点D 旋转180°得到△EAD,(2)AB+BC >2BD .证明:∵△ADE ≌△CDB (SAS ),∴AE=BC ,BD=ED ,∴BE=2BD ,在△ABE中,AB+AE>BE,即AB+BC>2BD.【点睛】本题考查尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系,掌握尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系是解题关键.21.(1)7 30,14(2)1 4(3)1 3【分析】(1)摸取到“2”号小球的频率为1460,摸到“2”号小球的概率是14;(2)小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况,进而可求概率;(3)列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况,进而可求概率.(1)解:摸取到“2”号小球的频率为147 6030=摸到“2”号小球的概率是1 4故答案为:71 304,.(2)解:列举法求小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况∵41 164=∴小明两次摸取到小球的标号相同的概率为1 4.(3)解:列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况∵2163=∴小明摸出两个小球标号的和为5的概率为13.【点睛】本题考查了频率,列举法求概率.解题的关键在于正确的列举所有事件.22.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.23.(1)点A 在O 外(2)b -<<(3)(3-+或(3,0)【分析】(1)由勾股定理求出AO 的长,再与圆的半径比较即可得出结论;(2)求出直线y x b =+与O 相切时OB 的长度即可得到b 的取值;(3)分BA BP =,AB AP =和PB PA =三种情况求解即可.(1)∵(3,3)A∴OA ==∵3>∴点A 在O 外(2)如图,当直线y x b =+与O 相切于点C 时,连接OC ,则OC=3∵∠45CBO ︒=∴OB =∴直线y x b =+与O 相交时,b -<(3)∵直线3y x =+与O 相交于点A ,B ,∴(0,3)A ,(3,0)B -∴AB =当BA BP ==P 坐标为:1(3P -+,2(3P--(舍去)当AB AP =时,∵AO x ⊥轴∴BO OP=∴3(3,0)P 当PB PA =时,点P 与点O 重合,∴4()0,0P (舍去)综上,点P 的坐标为:(3-+或(3,0)24.(1)见解析;(2)①y=2142x x -++,点B (4,0);②△PCD 的面积的最大值为1,点P (2,4).【分析】(1)判断方程的判别式大于零即可;(2)①把A (-2,0)代入解析式,确定a 值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B 的坐标;②设点P 的坐标为(x ,2142x x -++),确定直线BC 的解析式y=kx+b ,确定M 的坐标(x ,kx+b ),求得PM=2142x x -++-(kx+b ),从而利用C ,D 的坐标表示=-PCD PCM CDM S S S △△△构造新的二次函数,利用配方法计算最值即可.(1)∵21-+302x ax a ++=,∴△=214(-)(3)2a a -⨯+=2226(1)5a a a ++=++>0,∴无论a 为任何实数,此方程总有两个不相等的实数根.(2)①把A (-2,0)代入解析式21=-+32y x ax a ++,得1-4-2302a a ⨯++=,解得a=1,∴抛物线的解析式为2142y x x =-++,令y=0,得21402x x -++=,解得x=-2(A 点的横坐标)或x=4,∴点B (4,0);②设直线BC 的解析式y=kx+b ,根据题意,得4=0=4k b b +⎧⎨⎩,解得=-1=4k b ⎧⎨⎩,∴直线BC 的解析式为y=-x+4;∵抛物线的解析式为2142y x x =-++,直线BC 的解析式为y=-x+4;∴设点P 的坐标为(x ,2142x x -++),则M (x ,4x -+),点N (x ,0),∴PM=2142x x -++-(4x -+)=2122x x -+,∵219(1)22y x =--+,∴抛物线的对称轴为直线x=1,∴点D (1,3),∵=-PCD PCM CDMS S S △△△=11-(1)22PM x PM x - =21124PM x x =-+=21(2)14x --+,∴当x=2时,y 有最大值1,此时2142y x x =-++=4,∴△PCD 的面积的最大值为1,此时点P (2,4).25.(1)112a ≥-且0a ≠(2)14x =(3)能,理由见解析【分析】(1)根据一元二次方程的定义,以及根的判别式进行判断即可(2)根据方程的解的定义求得a ,进而根据一元二次方程根与系数的关系求解即可;(1)关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0有两个实数根,则0a ≠,()()2242142b ac a a a ∆=-=-+--⎡⎤⎣⎦2244148a a a a=++-+121a =+0≥a 的取值范围为:112a ≥-且0a ≠(2) x =2是方程的一个根,4(21)220a a a ∴-+⨯+-=解得4a =设另一根为2x ,则2212419244a x a +⨯++===214x ∴=∴另一个根为14x =(3)若y =(2a ﹣3)x ﹣a+5过点A (﹣1,3),则()3235a a =---+解得53a = 112a ≥-且0a ≠∴y =(2a ﹣3)x ﹣a+5能经过点A (﹣1,3),26.(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD ,由AB 是圆O 的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD 为⊙O 的切线;(2)根据BE 是⊙O 的切线,则∠EBA=90°,即可求得∠P=30°,再由PD 为⊙O 的切线,得∠PDO=90°,根据三角函数的定义求得OD ,由勾股定理得OP ,即可得出PA ;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF ,由AB 是圆O 的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE 是等边三角形.进而证出四边形DFBE 为菱形.【详解】解:(1)直线PD 为⊙O 的切线,理由如下:如图1,连接OD ,∵AB 是圆O 的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO ,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴tan30OD PD︒=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.。

【人教版】九年级上期末数学试卷13含答案(1)

【人教版】九年级上期末数学试卷13含答案(1)(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )2.用配方法解一元二次方程x 2-4x +1=0时,下列变形正确的为( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=3 D .(x -2)2=3 3.抛物线y =x 2+4x +4的对称轴是( )A .直线x =4B .直线x =-4C .直线x =2D .直线x =-24.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=485.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,∠BCD =54°,则∠A 的度数是( ) A .36° B .33° C .30° D .27°6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A ·12B ·14C ·16D ·1127.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( )A .15°B .20°C .25°D .30°8.如图,在等腰直角三角形ABC 中,AB =AC =4,点O 为BC 的中点,以O 为圆心作半圆O 交BC 于点M ,N ,半圆O 与AB ,AC 相切,切点分别为D ,E ,则半圆O 的半径和∠M ND 的度数分别为( )A .2,22·5°B .3,30°C .3,22·5°D .2,30°(第5题)(第7题)(第8题)(第9题)9.如图所示,MN 是⊙O 的直径,作AB ⊥MN ,垂足为点D ,连接AM ,AN ,点C 为AN ︵上一点,且AC ︵=AM ︵,连接CM ,交AB 于点E ,交AN 于点F ,现给出以下结论:①AD =BD ;②∠MAN =90°;③AM︵=BM ︵;④∠ACM +∠ANM =∠MOB ;⑤AE =12MF ·其中正确结论的个数是( )(第10题)A .2B .3C .4D .510.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0·其中正确结论的个数是( )A .1B .2C .3D .4 二、填空题(每题3分,共30分)11.若关于x 的一元二次方程(m -1)x 2+5x +m 2-1=0的一个根是0,则m 的值是________.12.在平面直角坐标系中,点(-3,2)关于原点对称的点的坐标是________. 13.已知关于x 的一元二次方程x 2+2x +m =0有实数根,则m 的取值范围是________. 14.已知点A(4,y 1),B(2,y 2),C(-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是________.15.工程上常用钢珠来测量零件上小孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的宽口AB的长度为________mm·16.某市组织的“五城联创”演讲比赛中,小明等25人进入总决赛,赛制规定,13人上午参赛,12人下午参赛,小明抽到上午比赛的概率是________.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2·分别以AC,BC为直径画半圆,则图中阴影部分的面积为________.(结果保留π)(第15题)(第17题)(第18题) 18.如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1 cm,则这个扇形的半径是________cm·19.如图所示,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为________.(第19题)(第20题)20.如图,菱形ABCD的三个顶点在二次函数y=ax2-2ax+3 2(a<0)的图象上,点A,B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为__ ______.三、解答题(21题8分,22、23题每题6分,24题10分,27题12分,其余每题9分,共60分) 21.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6·22.已知关于x的方程x2+ax+a-2=0·(1)若该方程的一个根为1,求a的值及该方程的另一个根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.23.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).(第23题)24.如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD·(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r·(第24题)25.学校实施新课程改革以来,学生的学习能力有了很大提高,王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第25题)26.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A,B两种营销方案;方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.27.如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O,A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.(第27题)答案一、1·C 2·D 3·D 4·D 5.A点拨:连接BD ,∵CD 是⊙O 的直径,∴∠DBC =90°,∴∠BDC =90°-∠BCD =90°-54°=36°,∴∠A =∠BDC =36°·6.C 7.C点拨:∵正方形ODEF 是由正方形OABC 绕点O 逆时针旋转40°得到的,∴∠AOC =90°,∠COF =40°,OA =OF ,∴∠AOF =90°+40°=130°,∴∠OFA =180°-130°2=25°· 8.A 9·D 10.B点拨:∵函数图象开口向上,∴a >0·又∵顶点为(-1,0),∴-b2a=-1,∴b =2a >0·由抛物线与y 轴的交点坐标可知:c +2>2,∴c >0,∴abc >0,故①错误.∵抛物线顶点在x 轴上,∴b 2-4a(c +2)=0·又a >0,故②错误.∵顶点为(-1,0),∴a -b +c +2=0·∵b =2a ,∴a =c +2·∵c >0,∴a >2,故③正确.由抛物线的对称性可知x =-2与x =0时的函数值相等,∴4a -2b +c +2>2·∴4a -2b +c >0,故④正确.二、11·-1 12·(3,-2) 13·m ≤1 14·y 3>y 1>y 2 15.8 16·1325 17·5π2-418.3点拨:扇形的弧长等于圆锥底面圆的周长,设扇形的半径为r cm ,则120180×πr =2π×1,解得r =3·19.2r点拨:连接OD ,OE ·易知:BD =BE =r ·∵MN 与⊙O 相切于点P ,且⊙O 是△ABC 的内切圆,∴MD =MP ,NP =NE ·∴△MBN 的周长=BM +MP +PN +BN =BM +MD +NE +BN =BD +BE =2r ·20·⎝⎛⎭⎫2,32 点拨:易知抛物线y =ax 2-2ax +32(a <0)的对称轴是直线x =1,与y 轴的交点坐标是⎝⎛⎭⎫0,32,∴点B 的坐标是⎝⎛⎭⎫0,32·∵菱形A BCD 的三个顶点在二次函数y =ax 2-2ax +32(a <0)的图象上,点A ,B 分别是抛物线的顶点和抛物线与y 轴的交点,∴点B 与点D 关于直线x =1对称,∴点D 的坐标为⎝⎛⎭⎫2,32· 三、21·解:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32·∴(x -1)2=32·∴x -1=±32=±62· ∴x 1=1+62,x 2=1-62· (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0· ∴x +1=0或x +1-6=0· ∴x 1=-1,x 2=5·22.(1)解:将x =1代入方程x 2+ax +a -2=0,得1+a +a -2=0·解得a =12·∴方程为x 2+12x -32=0,即2x 2+x -3=0·解得x 1=1,x 2=-32·故a 的值为12,该方程的另一个根为-32·(2)证明:∵Δ=a 2-4(a -2)=a 2-4a +8=a 2-4a +4+4=(a -2)2+4>0, ∴不论a 取何实数,该方程都有两个不相等的实数根. 23.解:(1)如图.点A 1的坐标为(2,-4). (2)如图.(3)BC =32+22=13,所以C 点旋转到C 2点所经过的路径长=90π·13180=13π2·(第23题)24.解:(1)猜想:AC 与⊙O 相切.证明如下:∵AC =BC ,∠ACB =120°, ∴∠A =∠ABC =30°· ∵OB =OC ,∴∠OCB =∠OBC =30°·∴∠A CO =∠ACB -∠OCB =90°· ∴OC ⊥AC ·又OC 是⊙O 的半径, ∴AC 是⊙O 的切线.(2)四边形BOCD 为菱形.证明如下: 连接OD ,∵CD ∥AB , ∴∠AOC =∠OCD ·∵∠AOC =∠OBC +∠OCB =60°, ∴∠OCD =60°· 又OC =OD ,∴△OCD 为等边三角形. ∴CD =OD =OB ·∴四边形BOCD 为平行四边形. 又OB =OC ,∴▱BOCD 为菱形.(3)在Rt △AOC 中,AC =6,∠A =30°, ∴OA =2OC · ∴OC 2+62=(2OC)2· 解得OC =23(负值舍去). 由(2)得∠AOC =60°, ∴∠COB =120°·根据扇形的弧长等于底面圆的周长,得120π×23180=2πr ·解得r =233·25.解:(1)20 (2)如图:(第25题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2, 男A 1 男A 2 女A 男D(男A 1,男D) (男A 2,男D) (女A ,男D) 女D (男A 1,女D) (男A 2,女D) (女A ,女D)共有6种等可能的结果,其中,一男一女的有3种,所以所选两名学生恰好是一名男生和一名女生的概率为36=12·26.解:(1)由题意得,销售量为250-10(x -25)=-10x +500,则w =(x -20)(-10x +500)=-10x 2+700x -10 000·(2)w =-10x 2+700x -10 000=-10(x -35)2+2 250·∵-10<0,∴函数图象开口向下,w 有最大值.当x =35时,w 最大=2 250·故当销售单价为35元时,该文具每天的销售利润最大.(3)A 方案的最大利润更高,理由如下:A 方案中:20<x ≤30,∵函数w =-10(x -35)2+2250的图象开口向下,对称轴为直线x =35,∴当x =30时,w 有最大值,此时w A 最大=2 000;B 方案中:⎩⎨⎧-10x +500≥10,x -20≥25,故x 的取值范围为45≤x ≤49·∵函数w =-10(x -35)2+2 250的图象开口向下,对称轴为直线x =35,∴当x =45时,w 有最大值,此时w B 最大=1 250·∵w A 最大>w B 最大,∴A 方案的最大利润更高.27.解:(1)∵函数的图象与x 轴相交于O ,∴0=k +1·∴k =-1·∴y =x 2-3x ·(2)设B 点的坐标为(x 0,y 0).∵△AOB 的面积等于6,∴12AO·|y 0|=6·当x 2-3x =0时,即x(x -3)=0,解得x =0或3·∴AO =3·∴|y 0|=4,即|x 02-3x 0|=4·化简得⎝⎛⎭⎫x0-322=254或⎝⎛⎭⎫x0-322=-74(舍去). 解得x 0=4或x 0=-1(舍去). 当x 0=4时,y 0=x 02-3x 0=4,∴点B 的坐标为(4,4).(3)假设存在点P ·设符合条件的点P 的坐标为(x 1,x 12-3x 1) ∵点B 的坐标为(4,4),∴∠BOA =45°,BO =42+42=42·当∠POB =90°时,易得点P 在直线y =-x 上,∴x 12-3x 1=-x 1·解得x 1=2或x 1=0(舍去).∴x 12-3x 1=-2·∴在抛物线上存在点P ,使∠POB =90°,且点P 的坐标为(2,-2). ∴OP =22+22=22·∴△POB 的面积为12PO·BO =12×22×42=8·。

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列电视台的台标,是中心对称图形的是()A.B.C.D.2.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣23.直径分别为8和6的两圆相切,则这两圆的圆心距等于()A.14B.2C.14或2D.7或14.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠05.若两圆的半径分别为5和2,圆心距是4,则这两圆的位置关系是()A.外离B.外切C.相交D.内含6.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.D.7.当x0>时,函数5yx=-的图象在()A.第四象限B.第三象限C.第二象限D.第一象限8.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A.12B.13C.14D.159.方程(x+1)(x-3)=5的解是A.x1=1,x2=-3B.x1=4,x2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=210.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是()A .(2﹣3x )(1﹣2x )=1B .12(2﹣3x )(1﹣2x )=1C .12(2﹣3x )(1﹣2x )=1D .12(2﹣3x )(1﹣2x )=2二、填空题11.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是________.12.已知点(m -1,y 1),(m -3,y 2)是反比例函数y =mx(m <0)图象上的两点,则y 1____y 2(填“>”“=”或“<”).13.如图,在Rt AOB 中,OA=OB=O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为_____.14.如图,在平面直角坐标系中,抛物线()22y a x k =-+(a 、k 为常数且0a ≠)与x 轴交于点A 、B ,与y 轴交于点C ,过点C 作//CD x 轴与抛物线交于点D .若点A 的坐标为()4,0-,则OBCD的值为____.15.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_____.161x-x的取值范围是_______.173x-x的取值范围是_______.18.边长为1的正三角形的内切圆半径为________三、解答题19.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:D为BC的中点;(2)过点O作OF⊥AC,于F,若AF=74,BC=2,求⊙O的直径.20.已知x2+(a+3)x+a+1=0是关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根为x1,x2,且x12+x22=10,求实数a的值.21.如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2)AN AM CN CM=.22.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.23.如图,已知直线PT与⊙O相交于点T,直线PO与⊙O相交于A、B两点,已知PTA B∠=∠.(1)求证:PT是⊙O的切线;(2)若PT BT==24.如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上是否有一点D (x ,y )使S △ABD =S △ABC ,求点D 的坐标.25.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C ,(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为,求BC 的长.26.如图,直线y =﹣13x +m 与x 轴,y 轴分别交于点B 、A 两点,与双曲线相交于C 、D 两点,过C 作CE ⊥x 轴于点E ,已知OB =3,OE =1.(1)求直线AB 和双曲线的表达式;(2)设点F 是x 轴上一点,使得2CEF COB S S △△=,求点F 的坐标.参考答案1.D 【详解】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D 符合.故选D .2.A 【解析】∵x 2+2x=0,∴x (x+2)=0,∴x=0或x+2=0,∴x 1=0或x 2=﹣2,故选A .3.D 【解析】当两圆外切时,则圆心距等于8÷2+6÷2=7;当两圆内切时,则圆心距等于8÷2-6÷2=1.故选D .4.A 【分析】分两种情况讨论:(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根.【详解】(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根:()4410k ∆=--≥,解得1k ≥-,综上所述,1k ≥-.故选:A .【点睛】本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.5.C 【解析】∵两圆的半径分别为5和2,圆心距为4.则5-2=3<4<5+2=7,∴两圆相交.故选C 6.C 【详解】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM=DN=4,由垂径定理,勾股定理得:,∵AB ,CD 是互相垂直的两条弦,∴∠DPB=90°∵OM AB ⊥,ON CD ⊥,∴∠OMP=∠ONP=90°∴四边形MONP 是正方形,∴=选C 7.A 【分析】根据反比例函数()ky k 0x=≠的性质:当k 0>时,图象分别位于第一、三象限;当k 0<时,图象分别位于第二、四象限.【详解】∵反比例函数5yx=-的系数50-<,∴图象两个分支分别位于第二、四象限.∴当x0>时,图象位于第四象限.故选A.8.C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:1 4,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.9.B【解析】(x+1)(x-3)=5,x²-3x+x-3-5=0,x²-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,故选B.10.A【解析】人行通道的宽度为x千米,则矩形绿地的长为:12(2﹣3x)千米,宽为(1﹣2x)千米,由题意可列方程:2×12(2﹣3x)(1﹣2x)=12×2×1,即:(2﹣3x)(1﹣2x)=1,故选A.【点睛】本题考查了一元二次方程的应用,正确分析,根据题意找到等量关系列出方程是解题的关键.11.29【详解】根据题意,画出树形图如下:∵从树形图可以看出,摸出两球出现的所有等可能结果共有9种,两个球号码之和为5的结果有2种,∴两次摸取的小球标号之和为5的概率是2 9.12.>【解析】分析:m<0,在每一个象限内,y随x的增大而增大.详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,所以y2<y1,即y1>y2.故答案为>.点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.13.【详解】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.14.2【分析】由抛物线解析式可知抛物线对称轴直线x=2,由A、C的横坐标可知B、D的横坐标,进而求出OB=8,CD=4,即可解答OB.【详解】解:∵抛物线的解析式为y=a(x-2)2+k,∴抛物线的对称轴为直线x=2.∵点A的横坐标为-4,点C的横坐标为0,∴点B的横坐标为8,点D的横坐标为4,∴OB=8,CD=4,∴824OBCD==.故答案为2.【点睛】本题考查了抛物线与x轴的交点,根据抛物线的对称轴找出点B、D的横坐标是解题的关键.15.4【分析】要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径.已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高.【详解】解:由题意知:展开图扇形的弧长是2×3π=6π,设母线长为L,则有12×6πL=15π,解得:L=5,∵由于母线,高,底面半径正好组成直角三角形,∴在直角△AOC中高AO4.故填:4.【点睛】此题考查了圆锥体的侧面展开图的计算,揭示了平面图形与立体图形之间的关系,难度一般.x≥16.1【详解】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.17.x≥3【分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x﹣3≥0,解得:x≥3,故答案为x≥3.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.18【解析】如图,∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=12,∴tan∠OBD=O O=∴内切圆半径12=,【点睛】本题主要考查了三角形的内切圆,根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形是解决本题的关键.19.(1)证明见解析;(2)⊙O的直径为4.【解析】试题分析:(1)连接AD,根据直径所对的圆周角是直角,以及三线合一定理即可证得;(2)先根据垂径定理,求得AE=2AF=72;再运用圆周角定理的推论得∠ADB=∠ADC=∠BEA=∠BEC=90°,从而可证得∴△BEC∽△ADC,即CD:CE=AC:BC,根据此关系列方程求解即可得⊙O的直径.试题解析:(1)连接AD∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴点D是BC的中点;(2)∵OF⊥AC于F,AF=7 4,∴AE=2AF=7 2,连接BE,∵AB为直径D、E在圆上,∴∠ADB=∠ADC=∠BEA=∠BEC=90°,∴在△BEC、△ADC中,∠BEC=∠ADC,∠C=∠C,∴△BEC∽△ADC,即CD:CE=AC:BC,∵D为BC中点,∴CD=12 BC,又∵AC=AB,∴12BC2=CE•AB,设AB=x,可得x(x﹣72)=2,解得x1=﹣12(舍去),x2=4,∴⊙O的直径为4.20.(1)证明见解析;(2)a的值为﹣或﹣2【解析】【试题分析】(1)欲证明方程总有两个不相等的实数根,只需证明根的判别式大于0即可.△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4>0,从而得证;(2)根据韦达定理,将x12+x22=10转化为两根之和与两根之积的形式,代入得到关于a的方程,从而求出a即可.x12+x22=(x1+x2)2﹣2x1x2=10,即(a+3)2﹣2(a+1)=10,解得a1=﹣2+,a2=﹣2﹣.【试题解析】(1)证明:△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4,∵(a+1)2≥0,∴(a+1)2+4>0,即△>0,∴方程总有两个不相等的实数根;(2)根据题意得x1+x2=﹣(a+3),x1x2=a+1,∵x12+x22=10,∴(x1+x2)2﹣2x1x2=10,∴(a+3)2﹣2(a+1)=10,整理得a2+4a﹣3=0,解得a1=﹣2+,a2=﹣2﹣,即a的值为﹣2+或﹣2﹣.【方法点睛】本题目是一道一元二次方程的题目,涉及到根的判别式与韦达定理.在证明一元二次方程根的情况时,通常通过证明根的判别式与0的大小关系解决问题.在涉及到两根的等量关系时,通常转化为两根之和与两根之积的形式,从而求出参数.21.(1)证明见解析;(2)证明见解析.【详解】试题分析:(1)要证M为BD的中点,即证BM=DM,由∠BAM=∠DAN,∠BCM=∠DCN,及圆周角的性质易证明△BAM∽△CBM,△DAM∽△CDM得出比例的乘积形式,可证明BM=DM;(2)欲证AN AMCN CM=,可以通过平行线的性质证明,需要延长AM交圆于点P,连接CP,证明PC∥BD,得出比例式,相应解决MP=CM的问题即可.试题解析:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA,又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM,∴△BAM∽△CBM,∴BM AMCM BM=,即BM2=AM•CM,①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则DM AMCM DM=,即DM2=AM•CM,②由式①、②得:BM=DM,即M为BD的中点;(2)如图,延长AM交圆于点P,连接CP,∴∠BCP=∠PAB=∠DAC=∠DBC,∵PC∥BD,∴AN AM NC PM=,③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP,而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM,④由式③、④得:AN AM CN CM=.22.不公平.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.试题解析:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P(姐姐参加)=416=14,P(弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(1)证明见解析;(2)6π【分析】(1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT与⊙O 相切;(2)利用TP=TB得到∠P=∠B,而∠OAT=2∠P,所以∠OAT=2∠B,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12 AB,△AOT为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S扇形OA T-S△AOT进行计算.【详解】(1)证明:连接OT,∵AB是⊙O的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT,∴∠OAT=∠2,∵∠PTA=∠B,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT与⊙O相切;(2)∵PT BT==∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt△ABT中,设AT=a,则AB=2AT=2a,∴a 22=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形,11224AOT S ∴=⨯⨯= .∴阴影部分的面积2Δ 601360464AOT AOT S S ππ⨯=-=-=-扇形.【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.(1)1;(2)B (﹣12,0);(3)D 的坐标是(12,1)或(14,﹣1)或(14,﹣1)【分析】(1)把点A 的坐标代入函数解析式,利用方程来求m 的值;(2)令y =0,则通过解方程来求点B 的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A (1,0)代入y =﹣2x 2+x+m ,得﹣2×12+1+m =0,解得m =1;(2)由(1)知,抛物线的解析式为y =﹣2x 2+x+1.令y =0,则﹣2x 2+x+1=0,故x 134-±-,解得x 1=﹣12,x 2=1.故该抛物线与x 轴的交点是(﹣12,0)和(1,0).∵点为A (1,0),∴另一个交点为B 是(﹣12,0);(3)∵抛物线解析式为y =﹣2x 2+x+1,∴C (0,1),∴OC =1.∵S △ABD =S △ABC ,∴点D 与点C 的纵坐标的绝对值相等,∴当y =1时,﹣2x 2+x+1=1,即x (﹣2x+1)=0解得x =0或x =12.即(0,1)(与点C 重合,舍去)和D (12,1)符合题意.当y =﹣1时,﹣2x 2+x+1=﹣1,即2x 2﹣x ﹣2=0解得x =14.即点(14,﹣1)和(14,﹣1)符合题意.综上所述,满足条件的点D 的坐标是(12,111).【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D 还可以在x 轴的下方是解题关键.25.(1)证明见解析;(2)BC=2.【详解】试题分析:(1)连接OB ,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB ,得出∠BAC=∠OBA ,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC ∽△PBO ,得出对应边成比例,即可求出BC 的长.试题解析:(1)证明:连接OB ,如图所示:∵AC 是⊙O 的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为,∴,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BC AC OB OP=,8=,∴BC=2.考点:切线的判定26.(1)y=﹣13x+1,y=﹣43x;(2)F(﹣7,0)或(5,0);【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)根据三角形面积公式求得EF的长,即可求得点F的坐标;【详解】解:(1)∵OB =3,OE =1,∴B (3,0),C 点的横坐标为﹣1,∵直线y =﹣13x +m 经过点B ,∴0=﹣13×3+m ,解得m =1,∴直线为:y =﹣13x +1,把x =﹣1代入y =﹣13x +1得,y =﹣13×(﹣1)+1=43,∴C (﹣1,43),∵点C 在双曲线y =kx (k ≠0)上,∴k =﹣1×43=﹣43,∴双曲线的表达式为:y =﹣43x ;(2)∵OB =3,CE =43,∴S △COB =12×3×43=2,∵S △CEF =2S △COB ,∴S △CEF =12×EF ×43=4,∴EF =6,∵E (﹣1,0),∴F (﹣7,0)或(5,0).【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的运用.。

人教版九年级上册数学期末考试试题含答案解析

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.已知函数:(1)xy=9;(2)y=6x ;(3)y=-23x ;(4)y=22x ;(5)y=31x -,其中反比例函数的个数为()A .1B .2C .3D .43.关于x 的一元二次方程(2x -1)2+n 2+1=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判定4.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为A .83cmB .163cmC .3cmD .43cm 5.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为()A .25°B .20°C .15°D .30°6.某楼盘2016年房价为每平方米11000元,经过两年连续降价后,2018年房价为9800元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为()A .9800(1-x)2+9800(1-x)+9800=11000B .9800(1+x)2+9800(1+x)+9800=11000C .11000(1+x)2=9800D .11000(1-x)2=98007.已知三点()11,x y 、()22,x y 、()33,x y 均在双曲线上4y x =,且1230x x x <<<,则下列各式正确的是()A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<8.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A.12B.13C.23D.169.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A2B2C cm2D2 10.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b =0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①④⑤B.①③④⑤C.①③⑤D.①②③二、填空题11.m、n分别为的一元二次方程2410x x--=的两个不同实数根,则代数式24m m mn-+的值为________12.二次函数解析式为21y x mx=--,当x>1时,y随x增大而增大,求m的取值范围__________13.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OCCD的值为__________14.如图,ABC ∆中,60,45,22BAC ABC AB ∠=∠== D 是线段BC 上的一个动点,以AD 为直径画O 分别交,AB AC 于,E F 连接EF ,则线段EF 长度的最小值为__________.15.如图,四边形ABCD 是O 的内接四边形,若O 半径为4,且2C A ∠∠=,则 BD的长为________.(结果保留π)16.如图,O 是ABC 的外接圆,AD 是O 的切线,且//AD BC ,直线CO 交AD 于点E .若44E ∠=︒,则B ∠=______°.三、解答题17.解方程:2(1)x +-2(x+1)=318.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC 的三个顶点A ,B ,C 都在格点上,将△ABC 绕点A 按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB 在变换到AB′的过程中扫过区域的面积.19.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数k y x=的图象上,过点A 的直线y=x+b 交x 轴于点B .(1)求k 和b 的值;(2)求△OAB 的面积.20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球B :乒乓球C :羽毛球D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)21.已知函数解析式为y=(m-2)2-2m x (1)若函数为正比例函数,试说明函数y 随x 增大而减小(2)若函数为二次函数,写出函数解析式,并写出开口方向(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限22.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.23.如图,已知等边△ABC,AB=12.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求△FDG的面积.24.如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P 四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.参考答案1.B【解析】根据轴对称图形与中心对称图形的概念判定即可.【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.2.C【分析】直接根据反比例函数的定义判定即可.【详解】解:反比例函数有:xy=9;y=6x;y=-23x.故答案为C.【点睛】本题考查了反比例函数的定义,即形如y=kx(k≠0)的函数关系叫反比例函数关系.3.C【分析】先对原方程进行变形,然后进行判定即可.【详解】解:由原方程可以化为:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程没有实数根.故答案为C.【点睛】本题考查了一元二次方程的解,解题的关键在于对方程的变形,而不是运用根的判别式.4.A【详解】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:r=83cm.故选A.考点:弧长的计算.5.A【分析】根据圆周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等边对等角即可求解答.【详解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC ∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案为A .【点睛】本题考查了圆周角定理和平行线的性质,灵活应用所学定理以及数形结合思想的应用都是解答本题的关键.6.D【分析】设该楼盘这两年房价每年平均降低率为x ,则第一次降价后房价为每平方米11000(1-x )元,第二次降价后房价为每平方米11000(1-x )2元,然后找等量关系列方程即可.【详解】解:设该楼盘这两年房价每年平均降低率为x ,则由题意得:11000(1-x )2=9800故答案为D .【点睛】本题考查了一元二次方程的应用,审清题意、找到等量关系是解决问题的关键.7.B【分析】根据反比例函数的增减性解答即可.【详解】解:∵k=4>0,∴函数图象在一、三象限,∵1230x x x <<<∴横坐标为x 1,x 2的在第三象限,横坐标为x 3的在第一象限;∵第三象限内点的纵坐标小于0,第一象限内点的纵坐标大于0,∴y 3最大,∵在第三象限内,y 随x 的增大而减小,∴213y y y <<故答案为B .【点睛】本题考查了反比例函数的增减性,对点所在不同象限分类讨论是解答本题的关键.8.A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61122=.故答案为A .【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.9.C【解析】试题解析:∵△ABC 为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC .∵筝形ADOK ≌筝形BEPF ≌筝形AGQH ,∴AD=BE=BF=CG=CH=AK .∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形.∴∠ADO=∠AKO=90°.连结AO ,在Rt △AOD 和Rt △AOK 中,{AO AOOD OK ==,∴Rt △AOD ≌Rt △AOK (HL ).∴∠OAD=∠OAK=30°.设OD=x ,则AO=2x ,由勾股定理就可以求出3,∴3,∴纸盒侧面积=3x (3)32+18x ,3x-32)2+932,∴当32932故选C .考点:1.二次函数的应用;2.展开图折叠成几何体;3.等边三角形的性质.10.C【分析】①根据对称轴x=1,确定a ,b 的关系,然后判定即可;②根据图象确定a 、b 、c 的符号,即可判定;③方程ax 2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y 2<y 1.【详解】解:①∵对称轴为:x=1,∴12ba -=则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a <0∵对称轴在y 轴右侧,∴b >0∵抛物线与y 轴交于正半轴∴c >0∴abc<0,故②不正确;∵抛物线的顶点坐标A (1,3)∴方程ax 2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B (4,0),∴抛物线与x 轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y 2<y 1;故⑤正确.故答案为C .【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.11.0【分析】由一元二次方程的解的定义可得m 2-4m-1=0,则m 2-4m=1,再由根于系数的关系可得mn=-1,最后整体代入即可解答.【详解】解:∵m 、n 分别为的一元二次方程2410x x --=∴m+n=4,mn=-1,m 2-4m-1=0,∴m 2-4m=1∴24m m mn -+=1-1=0故答案为0.【点睛】本题考查了一元二次方程的解和根与系数的关系,其中正确运用根与系数的关系是解答本题的关键.12.m≤2【分析】先确定图像的对称轴x=2m ,当x>1时,y 随x 增大而增大,则2m ≤1,然后列不等式并解答即可.【详解】解:∵21y x mx =--∴对称轴为x=2m∵当x>1时,y 随x 增大而增大∴2m ≤1即m≤2故答案为m≤2.【点睛】本题考查二次函数的增减性,正确掌握二次函数得性质和解一元一次不等式方程是解答本题的关键.13.2【分析】由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC 是30°直角三角形,设DE=a ,将OC ,CD 用a 表示,最后代入即可解答.【详解】解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a ,∴OC=12∴2OC CD a ==故答案为2.【点睛】本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.14.3.【详解】解:如图,连接,OE OF ,过O 点作OH EF ⊥,垂足为H∵60BAC ∠= ,∴2120EOF BAC ∠=∠= .由∵OE OF =,∴30OEF OFE ∠=∠= .而OH EF ⊥,则2EF EH =.在Rt EOH ∆中,3cos 2EH OE OEH OE =⋅∠,∴3EF OE =.所以当OE 最小即O 半径最小时,线段EF 长度取到最小值,故当AD BC ⊥时,线段EF 长度最小.在Rt ADB ∆中,2sin 222AD AB B =⋅∠=,则此时O 的半径为1,∴33EF OE ==315.8π3【分析】连接OB ,OD ,利用内接四边形的性质得出∠A=60°,进而得出∠BOD=120°,再利用弧长公式计算即可.【详解】解:如图,连接OB ,OD ,∵四边形ABCD是⊙O的内接四边形,∠C=2∠A,∴∠C+∠A=3∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴弧BD=120π48π1803⨯=,故答案为:8π3.【点睛】本题考查的是圆内接四边形的性质、圆周角定理以及弧长的计算,掌握圆内接四边形的对角互补、圆周角定理及弧长计算公式是解题关键.16.67【分析】根据切线性质和直角三角形的性质可得∠AOC,再根据圆周角定理即可得解.【详解】解:如图,连接AO,由切线的性质可得:∠OAE=90°,∴∠AOE=90°-∠E=46°,∴∠AOC=134°,∴∠B=134÷2=67°,故答案为67.【点睛】本题考查圆切线的性质,熟练掌握圆切线的性质、圆周角定理是解题关键.17.122,2x x ==-【分析】先将2(1)x +-2(x+1)=3化成2(1)x +-2(x+1)-3=0,再将x+1当作一个整体运用因式分解法求出x+1,最后求出x .【详解】解:∵2(1)x +-2(x+1)=3化成2(1)x +-2(x+1)-3=0∴(x+1-3)(x+1+1)=0∴x+1-3=0或x+1+1=0∴122,2x x ==-【点睛】本题考查了一元二次方程的解法,掌握整体换元法是解答本题的关键.18.(1)见解析;(2)254π.【分析】(1)分别作出点B 、C 绕点A 按顺时针方向旋转90︒得到的对应点,再顺次连接可得;(2)根据扇形的面积公式列式计算可得.【详解】(1)解:如图所示:△AB′C′即为所求(2)解:∵AB=,∴线段AB 在变换到AB′的过程中扫过区域的面积为:2905360π⨯=254π【点睛】本题主要考查作图以及旋转变换,解题的关键是根据旋转的性质作出变换后的对应点及扇形的面积公式.19.(1)k=10,b=3;(2)15 2 .【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=kx,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=12×3×5=7.5考点:一次函数与反比例函数的综合问题.20.解:(1)200.(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21 P126 ==.【详解】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数:3620200360÷=(人).(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可.(3)根据题意列出表格或画树状图,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.21.(1)详见解析;(2)y=-4x2,开口向下;(3)y=-x-1或y=-3x-1,函数在二四象限【分析】(1)根据正比例函数的定义求出m,再确定m-2的正负,即可确定增减性;(2)根据二次函数的定义求出m,再确定m-2的值,即可确定函数解析式和开口方向;(3)由题意可得2m-2=-1,求出m即可确定函数解析式和图像所在象限.【详解】解:(1)若为正比例函数则2m-2=1,,∴m-2<0,函数y随x增大而减小;(2)若函数为二次函数,2m-2=2且m-2≠0,∴m=-2,函数解析式为y=-4x2,开口向下m-2=-1,m=±1,m-2<0,(3)若函数为反比例函数,2解析式为y=-x-1或y=-3x-1,函数在二四象限【点睛】本题考查了正比例、二次函数、反比例函数的定义,理解各种函数的定义及其内涵是解答本题的关键.22.(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【详解】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.23.(1)详见解析;(2;(3【分析】(1)如图所示,连接OD.由题意可知∠A=∠B=∠C=60°,则OD=OB,可以证明△OBD为等边三角形,易得∠C=∠ODB=60°,再运用平行线的性质和判定以及等量代换即可完成解答. (2)先说明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=12CD,则AF=AC-CF=9,最后在Rt△AFG中,根据正弦的定义即可解答;(3)作DH⊥FG,CD=6,CF=3,2,DH=92,最后根据三角形的面积公式解答即可.【详解】解:(1)如图所示,连接OD.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°∵OD=OB∴△OBD为等边三角形,∴∠C=∠ODB=60°,∴AC∥OD,∴∠CFD=∠FDO,∵DF⊥AC,∴∠CFD=∠FDO=90°,∴DF是⊙O的切线(2)因为点O是AB的中点,则OD是△ABC的中位线.∵△ABC是等边三角形,AB=12,∴AB=AC=BC=12,CD=BD=12BC=6∵∠C=60°,∠CFD=90°,∴∠CDF=30°,同理可得∠AFG=30°,∴CF=12CD=3∴AF=12-3=9.∴33939222FG AF =⨯=⨯=.(3)作DH ⊥FG ,CD=6,CF=3,DF=33∴FH=332,DH=92∴△FDG 的面积为12DH FG=8138【点睛】本题考查了切线的性质、等边三角形的性质以及解直角三角形等知识,连接圆心与切点的半径是解决问题的常用方法.24.(1)A 点坐标为(4,0),D 点坐标为(-2,0),C 点坐标为(0,-3);(2)(2,3)-或(117,3)或(117,3);(3)在抛物线上存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形;点P 的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程2333084x x --=可得到A 点和D 点坐标;令x=0,求出y=-3,可确定C 点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标绝对值相等,得出点M 的纵坐标为:3±,分别代入函数解析式求解即可;(3)分BC 为梯形的底边和BC 为梯形的腰两种情况讨论即可.【详解】(1)在233384y x x =--中令2330384x x =--,解得122,4x x =-=,∴A(4,0)、D(-2,0).在233384y x x =--中令0x =,得3y =-,∴C(0,-3);(2)过点C 做x 轴的平行线a ,交抛物线与点1M ,做点C 关于x 轴的对称点C ',过点C '做x 轴的平行线b ,交抛物线与点23M M 、,如下图所示:∵△MAD 的面积与△CAD 的面积相等,且它们是等底三角形∴点M 的纵坐标绝对值跟点C 的纵坐标绝对值相等∵点C 的纵坐标绝对值为:33-=∴点M 的纵坐标绝对值为:3m y =∴点M 的纵坐标为:3±当点M 的纵坐标为3-时,则2333384x x -=--解得:2x =或0x =(即点C ,舍去)∴点1M 的坐标为:(2,3)-当点M 的纵坐标为3时,则2333384x x =--解得:1x =∴点2M 的坐标为:(1,点3M 的坐标为:(1∴点M 的坐标为:(2,3)-或(1或(1;(3)存在,分两种情况:①如图,当BC 为梯形的底边时,点P 与D 重合时,四边形ADCB 是梯形,此时点P 为(-2,0).②如图,当BC 为梯形的腰时,过点C 作CP//AB ,与抛物线交于点P ,∵点C ,B 关于抛物线对称,∴B(2,-3)设直线AB 的解析式为11y k x b =+,则111140{23k b k b +=+=-,解得113{26k b ==-.∴直线AB 的解析式为362y x =-.∵CP//AB ,∴可设直线CP 的解析式为32y x m =+.∵点C 在直线CP 上,∴3m =-.∴直线CP 的解析式为332y x =-.联立2332{33384y x y x x =-=--,解得110{3x y ==-,226{6x y ==∴P(6,6).综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(-2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.25.(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴12BM EC=.在Rt△EDC中,M是斜边EC的中点,∴12DM EC=.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD ,延长DM 至点F ,使得DM=MF ,连结BF 、FC ,延长ED 交AC 于点H .∵DM=MF ,EM=MC ,∴四边形CDEF 为平行四边形,∴DE ∥CF ,ED =CF ,∵ED=AD ,∴AD=CF ,∵DE ∥CF ,∴∠AHE=∠ACF .∵()45459045BAD DAH AHE AHE ∠=-∠=--∠=∠- ,45BCF ACF ∠=∠- ,∴∠BAD=∠BCF ,又∵AB=BC ,∴△ABD ≌△CBF ,∴BD=BF ,∠ABD=∠CBF ,∵∠ABD+∠DBC =∠CBF+∠DBC ,∴∠DBF=∠ABC =90°.在Rt △DBF 中,由BD BF =,DM MF =,得BM=DM 且BM ⊥DM .【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.。

人教版九年级上册数学期末考试试卷附答案

人教版九年级上册数学期末考试试题一、单选题1.用配方法解方程x 2+2x-1=0时,配方结果正确的是()A .()212x +=B .()222x +=C .()213x +=D .()223x +=2.下列二次函数中,其图象的对称轴为x =﹣2的是()A .y =2x 2﹣2B .y =﹣2x 2﹣2C .y =2(x ﹣2)2D .y =(x+2)23.下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线223y x x =--与x 轴的两个交点间的距离是()A .-1B .-2C .2D .45.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣36.将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为A .110°B .120°C .150°D .160°7.如图,⊙O 的半径为2,点C 是圆上的一个动点,CA ⊥x 轴,CB ⊥y 轴,垂足分别为A 、B ,D 是AB 的中点,如果点C 在圆上运动一周,那么点D 运动过的路程长为()A .4πB .2πC .πD .2π8.如图是二次函数y =ax 2+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,ABCD 为正方形,O 为对角线AC,BD 的交点,则△COD 绕点O 经过下列哪种旋转可以得到△DOA ()A .顺时针旋转90°B .顺时针旋转45°C .逆时针旋转90°D .逆时针旋转45°10.已知二次函数y =ax2+bx+c 的图象与x 轴交于A ,B 两点,对称轴是直线x =﹣1,若点A 的坐标为(1,0),则点B 的坐标是()A .(﹣2,0)B .(0,﹣2)C .(0,﹣3)D .(﹣3,0)二、填空题11.一元二次方程()()320x x --=的根是_____.12.抛物线y =(x+2)2+1的顶点坐标为_____.13.从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.14.如图,△DEC 与△ABC 关于点C 成中心对称,AB =3,AC =1,∠D =90°,则AE 的长是_____.15.已知扇形的圆心角为120°,它所对弧长为20πcm ,则扇形的半径为_____.16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___17.已知点P (x 0,m ),Q (1,n )在二次函数y =(x+a )(x ﹣a ﹣1)(a≠0)的图象上,且m <n 下列结论:①该二次函数与x 轴交于点(﹣a ,0)和(a+1,0);②该二次函数的对称轴是x =12;③该二次函数的最小值是(a+2)2;④0<x 0<1.其中正确的是_____.(填写序号)三、解答题18.解方程:2680x x -+=19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =10cm ,CD =16cm ,求AE 的长.20.已知二次函数2y ax bx =+的图象过点()2,0,()1,6-.(1)求二次函数的关系式;(2)写出它与x 轴的两个交点及顶点坐标.21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a b和c恰好是这个方程的两个根时,求k的值.23.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,求证:AE•AF =2R2.24.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.ΔABC为等腰三角形,O为底边BC的中点,腰AB与 O相切于点D.求证:AC是 O的切线.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案1.A【分析】先把常数项移到方程右边,再把方程两边同时加上一次项系数一半的平方,然后把方程左边写成完全平方形式即可.【详解】解:∵x2+2x﹣1=0,∴x2+2x=1,∴x2+2x+1=2,∴(x+1)2=2.故选:A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.2.D【分析】根据二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质逐项分析即可.【详解】A.y=2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;B.y=﹣2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;C.y=2(x﹣2)2的对称轴是x=2,故该选项不正确,不符合题意;;D.y=(x+2)2的对称轴是x=-2,故该选项正确,符合题意;;故选D【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,y=a(x-h)2+k是抛物线的顶点式,其顶点是(h,k),对称轴是x=h.熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.3.B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选B .【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.D 【分析】求解得到方程的两个根,用较大根减去小根即可.【详解】令y=0,得2230x x --=,解得123,1x x ==-,∴两个交点间的距离是3-(-1)=4,故选D .【点睛】本题考查了抛物线与x 轴的交点,一元二次方程的解法,正确理解题意,找到合理的解题方法是解题的关键.5.A 【分析】根据二次函数平移的规律“上加下减,左加右减”的原则即可得到平移后函数解析式.【详解】解:抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y =2(x ﹣4+4)2﹣1,即y =2x 2﹣1,再向上平移2个单位长度得到的抛物线解析式为y =2x 2﹣1+2,即y =2x 2+1;故选:A .【点睛】本题考查的是二次函数图象平移变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.6.A 【详解】设C′D′与BC 交于点E ,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=110°,∴∠1=∠BED′=110°.故选:A .7.D 【分析】根据题意可知,四边形OACB 是矩形,D 为AB 的中点,连接OC ,可知D 点是矩形的对角线的交点,那么当C 点绕圆O 旋转一周时,D 点也会以OD 长为半径旋转一周,D 点的轨迹是一个以O 为圆心,以OD 长为半径的圆,计算圆的周长即可.【详解】如图,连接OC ,∵CA ⊥x 轴,CB ⊥y 轴,∴四边形OACB 是矩形,∵D 为AB 中点,∴点D 在AC 上,且OD =12OC ,∵⊙O 的半径为2,∴如果点C 在圆上运动一周,那么点D 运动轨迹是一个半径为1圆,∴点D 运动过的路程长为2π•1=2π,故选:D .【点睛】本题考查了动点问题,解决本题的关键是能够判断出D 点的运动轨迹是一个半径为1的圆.8.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵22ba-=-,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.C 【详解】试题分析:因为四边形ABCD 为正方形,所以∠COD=∠DOA=90°,OC=OD=OA ,则△COD 绕点O 逆时针旋转得到△DOA ,旋转角为∠COD 或∠DOA .故选C .考点:旋转的性质10.D 【分析】利用点B 与点A 关于直线x=-1对称确定B 点坐标.【详解】解:∵二次函数y =ax 2+bx+c 的图象与x 轴交于A ,B 两点,∴点A 与点B 关于直线x =﹣1对称,而对称轴是直线x =﹣1,点A 的坐标为(1,0),∴点B 的坐标是(﹣3,0).故选D .【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.123,2==x x 【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y =(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.13.23【详解】从实数-1、-2、1中随机选取两个数共有以下三种等可能情况:①-1,-2;②-1,1;③-2,1;其中乘积为负数的是②、③两种,∴从实数-1,-2,1中随机选取两个数,积为负数的概率是:23.故答案为23.141,3CD AC DE AB ====,再利用勾股定理即可得.【详解】DEC ∆ 与ABC ∆关于点C 成中心对称ABC DEC∴∆≅∆1,3CD AC DE AB ∴====2AD CD AC ∴=+=90D ∠=︒AE ∴===【点睛】本题考查了中心对称图形的性质、勾股定理,熟记中心对称图形的性质是解题关键.15.30cm .【分析】根据扇形弧长公式代入计算即可解决.【详解】根据题意得12020180rππ⨯⨯=,r =30cm ,故答案为30cm .【点睛】本题考查了扇形弧长公式的应用,解决本题的关键是熟练掌握扇形弧长公式.16.0或-1##-1或0【详解】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则2210kx x +-=有两个相等的实数根,即()224k 10∆=-⋅⋅-=,解得:k 1=-,故答案为:0或-1.17.①②④.【分析】(1)根据二次函数的解析式,求出与x 轴的交点坐标,即可判断①;(2)用与x 轴交点的横坐标相加除以2,即可求证结论②;(3)将二次函数交点式转化为顶点式,得到顶点坐标,即可求证③;(4)讨论P 点分别在对称轴的左侧和右侧两种情况,根据函数的增减性,计算x 0的范围即可.【详解】①∵二次函数y =(x+a )(x ﹣a ﹣1),∴当y =0时,x 1=﹣a ,x 2=a+1,即该二次函数与x 轴交于点(﹣a ,0)和(a+1,0).故①结论正确;②对称轴为:12122x x x +==.故②结论正确;③由y =(x+a )(x ﹣a ﹣1)得到:y =(x ﹣12)2﹣(a+12)2,则其最小值是﹣(a+12)2,故③结论错误;④当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得12<x 0<1,综上所述:m <n ,所求x 0的取值范围0<x 0<1.故④结论正确.故答案是:①②④.【点睛】本题考查了二次函数性质的应用,解决本题的关键是熟练掌握二次函数不同形式解析式之间的相互转化,正确理解掌握二次函数的性质.18.x 1=4,x 2=2【分析】原方程运用因式分解法求解即可【详解】解:2680x x -+=(x -4)(x -2)=0x -4=0或x -2=0∴x 1=4,x 2=2【点睛】本题主要考查了解一元二次方程,灵活选用方法是解答本题的关键19.AE =16cm .【分析】根据垂径定理,计算出CE 的长度,再根据勾股定理计算OE 的长度,两者相加即可解决问题.【详解】∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴6OE ===(cm ),∴AE =AO+OE =10+6=16(cm ).【点睛】本题考查了圆中计算问题,解决本题的关键是:①熟练掌握垂径定理及其推论,②熟练掌握勾股定理.20.(1)224y x x=-(2)与x 轴的两个交点坐标分别是:()0,0,()2,0;顶点坐标是()1,2-【分析】(1)把点(2,0),(−1,6)代入二次函数y =ax 2+bx ,得出关于a 、b 的二元一次方程组,求得a 、b 即可;(2)将(1)中解析式转化为两点式或顶点式,即可求得抛物线与x 轴的交点坐标和顶点坐标.(1)解:把点()2,0,()1,6-代入二次函数2y ax bx =+,得4206a b a b +=⎧⎨-=⎩,解得24a b =⎧⎨=-⎩,因此二次函数的关系式224y x x =-;(2)解:∵224y x x =-=2x (x−2),∴该抛物线与x 轴的两个交点坐标分别是(0,0),(2,0).∵224y x x =-=2(x−1)2−2,∴二次函数224y x x =-的顶点坐标(1,−2).21.(1)袋子中白球有2个;(2)59.【分析】(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.22.(1)见解析;(2)3【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC 中,根据勾股定理,得(b+c )2﹣2bc 2,由此可以求得k 的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k ﹣3)=4k 2﹣12k+13=(2k ﹣3)2+4,∴无论k 取什么实数值,总有=(2k ﹣3)2+4>0,即△>0,∴无论k 取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b 和c 恰好是方程x 2﹣(2k+1)x+4k ﹣3=0的两个根,得∴b+c =2k+1,bc =4k ﹣3,又∵在直角△ABC 中,根据勾股定理,得b 2+c 2=a 2,∴(b+c)2﹣2bc2,即(2k+1)2﹣2(4k﹣3)=31,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.23.见解析【详解】连接BE,根据圆周角定理可的∠AEB=90,再有AB⊥CD,公共角∠A,即可证得△AOF∽△AEB,根据相似三角形的对应边成比例即得结果.解:如图,连接BE,∵AB为⊙O的直径∴∠AEB=90°∵AB⊥CD∴∠AOF=90°∴∠AOF=∠AEB=90°又∠A=∠A∴△AOF∽△AEB∴AE•AF=AO•AB∵AO=R,AB=2R所以AE•AF=2R2.24.(Ⅰ)a=﹣1,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);2②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.25.见解析.【分析】过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【详解】证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是O的半径,∵AC经过O的半径OE的外端点且垂直于OE,∴AC是O的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学科期末检测模拟试题一、选择题(本大题每小题3分,满分42分)1.2的相反数是

A.21 B.2

1 C.2 D.2

2.在实数2、0、1、2中,最小的实数是().A.2B.0C.1D.2

3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为A. 237×106 吨 B. 2.37×107 吨 C. 2.37×108吨 D. 0.237×109吨4.下列运算,正确的是A.523aaa B.abba532 C.326aaa D.523aaa

5. 下列各图中,是中心对称图形的是

6. 方程04

2

x的根是

A. 2,2

21xx

B. 4x C. 2x D. 2x

7. 不等式组102xx的解集是

A. 1x B. 2x C. 2x D. 21x

8.函数1xy中,自变量x的取值范围是 A. 1x B. 1x C. 0x D. 1x

9.下列各点中,在函数xy2图象上的点是

A.(2,4) B.(-1,2) C.(-2,-1) D.(2

1,1)

10.一次函数2xy的图象不经过...

A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75

A B C D 跳高人数1 3 2 3 5 1 这些运动员跳高成绩的中位数和众数分别是 A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则( )A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定13. 如图1,AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数为()A. 80° B. 90° C. 100° D. 110°

14.如图2,正方形ABCD的边长为2cm ,以B 点为圆心、AB长为半径作AC

,则图中

阴影部分的面积为()A.2)4(cm B. 2)8(cm C. 2)42(cm D. 2)2(cm

二、填空题(本大题满分12分,每小题3分)15. 计算:283 . 16.在一个不透明的布袋中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.

若从中随机摸出一个球,它是黄球的概率是54,则n= . 17.如图3,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE= cm.

18. 如图4,∠ABC=90°,O为射线BC上一点,以点O为圆心,21BO长为半径作⊙O,当射线BA绕点B按顺时针方向旋转度时与⊙0相切. 三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)

图4 A B O C A B C 图3E D

A B C O E 1 D 图1

A

图2 D B C A (1)231(3)4(2)2(2)化简:(a+1)(a-1)-a(a-1). 20.(满分8分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?

21.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:

共计145元共计280元

第21题图第21题答案图yA

OxB

C

(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?

22.(本题满分8分)如图5的方格纸中,ABC

的顶点坐标分别为5,2A、1,4B和3,1C

(1)作出ABC关于x轴对称的111CBA,并写出

点A、B、C的对称点1A、1B、1C的坐标;

(2)作出ABC关于原点O对称的222CBA,并写

出点A、B、C的对称点2A、2B、2C的坐标;

(3)试判断:111CBA与222CBA是否关于y轴对称

(只需写出判断结果).

23.(本大题满分11分)如图6,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F. (1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.

24.(13分)如图7,已知二次函数图象的顶点坐标为C(1,0),直线mxy与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x

①求h与x之间的函数关系式,并写出自变量x的取值范围;

E B

A

C P 图7 O x

y

D A B C D

E F

图6G ②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?

解:(1)∵60%10

6

,∴这次考察中一共调查了60名学生.

(2)∵%25%20%20%10%251∴90%25360∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3)12%2060,∴补全统计图如下图

(4)∵450%251800∴可以估计该校学生喜欢篮球活动的约有450人

参考答案一、选择题(本大题每小题3分,满分42分)

二、填空题(本大题满分12分,每小题3分)题号1 2 3 4 5 6 7

选择项D D C A B A D

题号8 9 10 11 12 13 14

选择项A C D A A C A B2

yCA

BC1B1A1C2

A2

Ox

15.2516.8 17.6 18.60°或120°三、解答题(本大题满分56分)19.(本题满分8分,每小题4分)

(1)原式=3 - 2 +(-8)(2)原式=a2-1-a2+a =a-1 = -7 20.(满分8分)

解:设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元. 依题意,得280321452yx

yx

解这个方程组,得10125y

x

答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. 21、满分(8分)解:(1)111CBA如图,)5,2(1A、)1,4(1B、)3,1(1C

(2)222CBA如图,)5,2(2A、)1,4(2B、)3,1(2C(3)111CBA与222CBA关于y轴对称

22.(本题满分8分)解:(1)∵60%10

6

,∴这次考察中一共调查了60名学生.

(2)∵%25%20%20%10%251∴90%25360∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3)12%2060,∴补全统计图如下图(4)∵450%251800∴可以估计该校学生喜欢篮球活动的约有450人23. (满分11分)

(1) ΔAED≌ΔDFC. ∵四边形ABCD是正方形, ∴ AD=DC,∠ADC=90o. 又∵ AE⊥DG,CF∥AE,∴∠AED=∠DFC=90o,…∴∠EAD+∠ADE=∠FDC+∠ADE=90o,

A B C D

E F

G

第21题答案图∴∠EAD=∠FDC. ∴ΔAED≌ΔDFC (AAS). (2) ∵ΔAED≌ΔDFC,∴ AE=DF,ED=FC. …∵ DF=DE+EF,∴ AE=FC+EF. )24. (1) ∵点A(3,4)在直线y=x+m上,∴ 4=3+m. ∴ m=1. 设所求二次函数的关系式为y=a(x-1)2. ∵点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2, ∴ a=1. ∴所求二次函数的关系式为y=(x-1)2. 即y=x2-2x+1. (2) 设P、E两点的纵坐标分别为yP和yE . ∴ PE=h=yP-yE =(x+1)-(x2-2x+1) =-x2+3x.…即h=-x2+3x (0<x<3). (3)E B A

C P 图7 O x

y

D

相关文档
最新文档