每日一学:浙江省嘉兴市2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
每日一学:浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题解答

每日一学:浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题解答答案浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题~~第1题 ~~(2019吴兴.八上期末) 如图1,在平面直角坐标系中,直线 :与轴交于点A ,且经过点B (2,m ),点C(3,0).(1) 求直线BC 的函数解析式;(2) 在线段BC 上找一点D ,使得△ABO 与△ABD 的面积相等,求出点D 的坐标;(3) y 轴上有一动点P ,直线BC 上有一动点M ,若△APM 是以线段AM 为斜边的等腰直角三角形,求出点M 的坐标;(4) 如图2,E 为线段AC 上一点,连结BE ,一动点F从点B 出发,沿线段BE 以每秒1个单位运动到点E,再沿线段EA 以每秒 个单位运动到A 后停止,设点F 在整个运动过程中所用时间为t ,求t 的最小值.考点: 与一次函数有关的动态几何问题;~~ 第2题 ~~(2019吴兴.八上期末) 如图1,△ABC 中,沿∠BAC 的平分线AB 折叠,剪掉重叠部分;将余下部分沿∠B A C 的平分线A B 折叠,剪掉重叠部分;…;将余下部分沿∠B A C的平分线A B 折叠,点B 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1) 如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是;(2) 如果一个三角形的最小角是20°,则此三角形的最大角为时,该三角形的三个角均是此三角形的好角。
~~ 第3题 ~~(2019吴兴.八上期末) 已知等边△ABC 中,在射线BA 上有一点D ,连接CD ,并以CD 为边向上作等边△CDE ,连接BE 和AE.试判断下列结论:①AE=BD ; ②AE 与AB 所夹锐夹角为60°;③当D 在线段AB 或BA 延长线上时,总有∠BDE-∠AE D=2∠BDC ;④∠BCD=90°时,CE +AD =AC +DE .正确的序号有( )A . ①②B . ①②③C . ①②④D . ①②③④浙江省湖州市吴兴区2018-2019学年八年级上学期期末考试数学试题_压轴题解答11112n n n n+1n 2222~~ 第1题 ~~答案:解析:答案:解析:~~ 第3题 ~~答案:C解析:。
嘉兴市2019年八年级上学期数学期末试卷(模拟卷二)

嘉兴市2019年八年级上学期数学期末试卷(模拟卷二)一、选择题1.下列式子中,a 取任何实数都有意义的是( )A. B. C. D.2.生物学家发现:生物具有遗传多样性,遗传密码大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm ,这个数用科学计数法可以表示为( )A .60.210-⨯B .7210-⨯C .70.210-⨯D .-8210⨯ 3.下列各式计算正确的是( ) A .223a a a += B .326()a a -= C .326a a a ⋅=D .()222a b a b +=+ 4.学习整式的乘法时,小明从图1 边长为a 的大正方形中剪掉一个边长为b 的小正方形,将图1 中阴影部分拼成图2 的长方形,比较两个图中阴影部分的面积能够验证的一个等式为( )A .a(a+b)=a 2+abB .(a+b)(a-b)=a 2-b 2C .(a-b)2=a 2-2ab+b 2D .a(a-b)=a 2 -ab 5.下列运算正确的是( ) A.a 2•a 3=a 5B.a 2+a 2=a 4C.a 3÷a=a 3D.(a 2)4=a 6 6.如图,将△ABC 沿直线DE 折叠后,使点B 与点A 重合,已知AC=5cm,△ADC 的周长为14cm,则BC 的长为( )A .8cmB .9cmC .10cmD .11cm7.如图,在△ABC 中,∠BAC =72°,∠C =36°,∠BAC 的平分线 AD 交 BC 于 D , 则图中有等腰三角形( )A.0 个B.1 个C.2 个D.3 个 8.等腰三角形的一条边长为4,一条边长为5,则它的周长为( ) A.13 B.14 C.13或14D.15 9.如图,△ABC 中,AB=AC ,BC=5,,于D ,EF 垂直平分AB ,交AC 于F ,在EF 上确定一点P 使最小,则这个最小值为( )A.3B.4C.5D.610.如图所示,在Rt △ABC 中,∠ABC=90°,AB=BC ,点D 是AC 的中点,直角∠EDF 的两边分别交AB 、BC 于点E 、F ,给出以下结论:①AE=BF ;②S 四边形BEDF =12S △ABC ;③△DEF 是等腰直角三角形;④当∠EDF 在△ABC 内绕顶点D 旋转时D 旋转时(点E 不与点A 、B 重合),∠BFE=∠CDF ,上述结论始终成立的有( )个.A.1B.2C.3D.411.如图,点I 为ABC ∆角平分线交点, 8AB =,6AC =,4BC =,将ACB ∠平移使其顶点C 与I 重合,则图中阴影部分的周长为( )A .9B .8C .6D .412.如图,OC 是∠AOB 的平分线,∠BOD =13∠DOC ,∠BOD =12°,则∠AOD 的度数为( )A .70°B .60°C .50°D .48°13.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、D 、B 三点在同一直线上,BM 为ABC ∠的平分线,BN 为CBE ∠的平分线,则MBN ∠的度数是( )A.30B.45C.55D.6014.如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是( )A .10B .11C .16D .2615.下列运算错误的是( )A.x 3•x 2=x 5B.10﹣3=0.003 =5 D.(a 3)4=a 12 二、填空题16.当2(x+1)﹣1与3(x ﹣2)﹣1的值相等时,此时x 的值是_____.17.把多项式m 3﹣16m 分解因式的结果是_____.【答案】m(m+4)(m-4)18.如图所示,在ABC 中,90C ∠=,BE 平分ABC ∠,ED AB ⊥于D ,若6AC cm =,则AE DE +=________.19.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.20.定义:在平面直角坐标系中,一个图形先向右平移a 个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的()Y a,θ变换.如图,等边ABC 的边长为1,点A 在第一象限,点B 与原点0重合,点C 在x 轴的正半轴上111.A B C 就是ABC 经()Y 1,180变换后所得的图形,则点1A 的坐标是______.三、解答题21.解下列方程(组)(1)23521x y x y +=⎧⎨-=-⎩ (2)231x x=- 22.分解因式:(1)-2x 3+8xy 2(2) 231212a a -+.23.如图,A ,B ,C ,D 是同一条直线上的点,AC BD =,//AE DF ,12∠=∠.求证:BE CF =.24.在ABC △中,ACB ∠的平分线CD 与外角EAC ∠的平分线AF 所在的直线交于点D .(1)如图1,若60B ∠=︒,求D ∠的度数;(2)如图2,把ACD 沿AC 翻折,点D 落在D ¢处.①当AD AD '⊥时,求BAC ∠的度数;②试确定DAD '∠与BAC ∠的数量关系,并说明理由.25.已知:如图,已知△ABC .(1)画出与△ABC 关于x 轴对称的图形△A 1B 1C 1;(2)写出△A 1B 1C 1各顶点的坐标;(3)求△A 1B 1C 1的面积.【参考答案】***一、选择题16.-7.17.无18.6cm19.6420.3,22⎛⎫-- ⎪ ⎪⎝⎭三、解答题21.(1)11x y =⎧⎨=⎩;(2)3x =. 22.(1)-2x (x+2y )(x-2y )(2)3(a-2)223.见解析【解析】【分析】根据等式的性质得出AB DC =,再利用ASA 证明ABE DCF ∆≅∆.【详解】证明:AC AB BC =+,BD BC CD =+,AC BD =,AB DC ∴=,//AE DF ,A D ∴∠=∠,在ABE ∆和DCF ∆中,12A D AB DC ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE DCF ∴∆≅∆,BE CF ∴=.【点睛】考查了全等三角形的判定与性质以及平行线的性质,利用全等三角形的判定定理ASA 证出ABE DCF ∆≅∆是解题的关键.24.(1)30°;(2)①90°;②180DAD BAC '∠+∠=︒,理由详见解析.25.(1)见解析;(2)A 1(0,2),B 1(2,4),C 1(4,1);(3)5.【解析】【分析】(1)直接利用关于x 轴对称点的性质分别得出各对应点位置;(2)直接利用(1)中所画图形进而得出各点坐标;(3)直接利用△A 1B 1C 1所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:A 1(0,2),B 1(2,4),C 1(4,1);(3)△A1B1C1的面积为:3×4﹣12×1×4﹣12×2×2﹣12×2×3=5.【点睛】本题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.。
┃精选3套试卷┃2019届嘉兴市八年级上学期期末考前冲刺必刷模拟数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.点P(4,5)关于y 轴对称的点的坐标是( )A .(-4,5)B .(-4,-5)C .(4,-5)D .(4,5)【答案】A【解析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】点P (4,5)关于y 轴对称的点P 1的坐标为(﹣4,5).故选A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律: (1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图点O 在ABC ∆内,且到三边的距离相等.若50A ∠=︒,则BOC ∠等于( )A .115︒B .105︒C .125︒D .130︒【答案】A 【分析】根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC +∠ACB ,然后求出∠OBC +∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】∵O 到三边AB 、BC 、CA 的距离OF =OD =OE ,∴点O 是三角形三条角平分线的交点,∵50A ∠=︒,∴∠ABC +∠ACB =180︒−50︒=130︒,∴∠OBC +∠OCB =12(∠ABC +∠ACB )=12×130︒=65︒, 在△OBC 中,∠BOC =180︒−(∠OBC +∠OCB )=180︒−65︒=115︒.故选:A .【点睛】本题考查了到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,要注意整体思想的利用.3.(-a5)2+(-a2)5的结果是()A.0B.72a--C.102a2a D.10【答案】A【分析】直接利用幂的乘方运算法则化简进而合并求出答案.【详解】(-a5)2+(-a2)5=a11-a11=1.故选A.【点睛】此题主要考查了幂的乘方运算,正确化简各式是解题关键.4.已知△ABC中,AB=8,BC=5,那么边AC的长可能是下列哪个数()A.15 B.12 C.3 D.2【答案】B【解析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【详解】解:根据三角形的三边关系,8−5<AC<8+5,即3<AC<13,符合条件的只有12,故选:B.【点睛】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.5.如图,将一副直角三角板按如图方式叠放在一起,则∠α的度数是()A.150º B.120ºC.165º D.135º【答案】C【分析】先根据直角三角板的性质得出∠A及∠DCE的度数,再由三角形外角的性质即可得出结论.【详解】∵图中是一副直角三角板,∴∠A=30°,∠DCE=∠B=45°,∴∠ACD=135°,∴α=30°+135°=165°.故选:C .【点睛】本题考查了三角形外角的性质,熟知三角形的外角的性质是解答此题的关键.6.已知2221112222a b c ab bc ac ++=---,则a+b+c 的值是( ) A .2B .4C .±4D .±2 【答案】D【分析】先计算(a+b+c)2,再将2221112222a b c ab bc ac ++=---代入即可求解. 【详解】∵2221112222a b c ab bc ac ++=--- ∴2224222a b c ab bc ac ++=---∴22224222a ()222222c a b c a b c ab bc ac ab bc ab bc ac ++=+---++++++=+=4∴a+b+c=±2故选:D【点睛】本题考查了代数式的求值,其中用到了2222()222a b c a b c ab bc ac ++=+++++.7.如图,直线l 1∥l 2,若∠1=140°,∠2=70°,则∠3的度数是( )A .70°B .80°C .65°D .60°【答案】A 【详解】解:如图,∵直线l 1∥l 2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°.∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°.∵∠3=∠6,∴∠3=70°.故选A.8.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )A.335°°B.255°C.155°D.150°【答案】B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.9.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6 B.4 C.4.8 D.5【答案】D【分析】首先根据勾股定理的逆定理可判定此三角形是直角三角形,则最大边上的中线即为斜边上的中线,然后根据直角三角形斜边上的中线等于斜边的一半,从而得出结果.【详解】解:∵62+82=100=102,∴三边长分别为6cm、8cm、10cm的三角形是直角三角形,最大边是斜边为10cm.∴最大边上的中线长为5cm.故选D.【点睛】本题考查勾股定理的逆定理;直角三角形斜边上的中线.10.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.0.5×10﹣4B.5×10﹣4C.5×10﹣5D.50×10﹣3【答案】C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.00005=5510-⨯,故选C.二、填空题11.如图,在四边形ABCD 中,//3,90AB CD CD AB ADC BCD =∠+∠=︒,,以,,AD AB BC 为斜边均向形外作等腰直角三角形,其面积分别是123,,S S S ,且132S S kS +=,则k 的值为__________.【答案】1【分析】过点B 作BM ∥AD ,根据AB ∥CD ,求证四边形ADMB 是平行四边形,再利用∠ADC+∠BCD=90°,求证△MBC 为直角三角形,再利用勾股定理得出MC 2=MB 2+BC 2,根据等腰直角三角形的性质分别求出三个等腰直角三角形的面积,计算即可.【详解】解:过点B 作BM ∥AD 交CD 于M ,∵AB ∥CD ,∴四边形ADMB 是平行四边形,∴AB=DM ,AD=BM ,∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°,即∠MBC=90°,∴MC 2=MB 2+BC 2,∵△ADE 是等腰直角三角形,∴AE 2+DE 2=AD 2,∴AE 2=DE 2=12AD 2, ∴S 1=12×AE×DE=12AE 2=14AD 2,, 同理:S 2=14AB 2,S 3=14BC 2, S 1+S 3=14AD 2+14BC 2=14BM 2+14BC 2=14MC 2,∵CD=3AB,∴MC=2AB,∴S1+S3 =14×(2AB)2= AB2,∴S1+S3=1S2,即k=1,故答案为:1.【点睛】本题考查了平行四边形的判定与性质,等腰直角三角形的性质,以及勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.用反证法证明在△ABC中,如果AB≠AC,那么∠B≠∠C时,应先假设________.【答案】∠B=∠C【分析】根据反证法的一般步骤即可求解.【详解】用反证法证明在△ABC中,如果AB≠AC,求证∠B≠∠C,第一步应是假设∠B=∠C.故答案为:∠B=∠C【点睛】本题考查的反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判断假设不不正确,从而肯定原命题的结论正确.13.若无理数a满足1<a<4,请你写出一个符合条件的无理数________.【答案】π【分析】估计一个无理数a满足1<a<4,写出即可,如π等.【详解】解:∵1<a<4∴1<a∴a=π故答案为:π.【点睛】此题考查估算无理数的大小,解题关键在于掌握其定义.14.我们把[a,b]称为一次函数y=ax+b的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n的值为_____.【答案】﹣1【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n=﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx (k≠0),是解题关键. 15.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】1【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画1个三角形,故答案为:1.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.16.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________.【答案】15和1;【分析】将3221-利用平方差公式分解因式,根据3221-可以被10到20之间的某两个整数整除,即可得到两因式分别为15和1.【详解】因式分解可得:3221-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=1,24-1=15,∴232-1可以被10和20之间的15,1两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.17.如图,直线443y x =-+分别与x 轴、y 轴交于点D 、点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,则ABC ∆的面积为___________.【答案】4【分析】先根据函数解析式分别求出点A、B、C、D的坐标,再根据ABC∆的面积=△ACD的面积-△BCD 的面积求出答案.【详解】令443y x=-+中y=0,得x=3,∴D(3,0),令443y x=-+中x=0,得y=4,∴A (0,4),解方程组44 34455y xy x⎧=-+⎪⎪⎨⎪=+⎪⎩,得322xy⎧=⎪⎨⎪=⎩,∴B(32,2),过点B作BH⊥x轴,则BH=2,令4455y x=+中y=0,得x=-1,∴C(-1,0),∴CD=4,,∴ABC∆的面积=S△ACD-S△BCD=1122CD AO CD BH⋅⋅-⋅⋅=114442=422⨯⨯-⨯⨯,故答案为:4.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,两个一次函数交点的坐标的求法,理解方程及方程组与一次函数的关系是解题的关键.三、解答题18.如图,AD为ABC的高,,AE BF为ABC角平分线,若32,72CBF AFB∠=︒∠=.(1)求BAD∠的度数;(2)求DAE ∠的度数;(3)若点G 为线段BC 上任意一点,当GFC 为直角三角形时,则求BFC ∠的度数.【答案】(1)26°(2)12°(3)108︒【分析】(1)根据评价分析的定义求出∠ABC 即可解决问题.(2)根据∠DAE =∠BAE−∠BAD ,求出∠BAE 即可解决问题.(3)根据补角的定义即可求解.【详解】(1)∵BF 平分∠ABC ,∴∠ABC =2∠CBF =64°,∵AD ⊥BC ,∴∠ADB =90°,∴∠BAD =90°−64°=26°,(2)∵∠AFB =∠FBC +∠C ,∴∠C =72°−32°=40°,∵∠BAC =180°−∠ABC−∠C =180°−64°−40°=76°,∵AE 平分∠BAC ,∴∠BAE =12∠BAC =38°, ∴∠DAE =∠BAE−∠BAD =38°−26°=12°.(3)∵72AFB ∠=︒∴BFC ∠=180°-108AFB ∠=︒. 【点睛】本题考查三角形内角和定理,三角形的外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,在□ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点。
2018-2019学年浙江省绍兴市诸暨市八年级(上)期末数学试卷(解析版)

2018-2019学年浙江省绍兴市诸暨市八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列表示天气符号的图形中,不是轴对称图形的是A. 冰雹B. 雷阵雨C. 晴D. 大雪【答案】B【解析】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是A. 1,2,3B. 1,2,4C. 2,3,4D. 2,2,4【答案】C【解析】解:A、,不能组成三角形,故A选项错误;B、,不能组成三角形,故B选项错误;C、,能组成三角形,故C选项正确;D、,不能组成三角形,故D选项错误;故选:C.根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.在平面直角坐标系中,点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】解:点P的横坐标为,纵坐标为,点P在第一象限,故选:A.根据第一象限点的横坐标、纵坐标都为正数,即可解答.本题考查了点的坐标,解决本题的关键是明确第一象限点的横坐标、纵坐标都为正数.4.若,则下列式子中正确的是A. B. C. D.【答案】A【解析】解:A、由可得:,正确;B、由可得:,错误;C、由可得:,错误;D、由可得:,错误;故选:A.利用不等式的基本性质判断即可.此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.5.如图,点P在BC上,于点B,于点C,≌ ,其中,则下列结论中错误是A.B.C.D.【答案】B【解析】解: ≌ ,,,,,是错误的,故选:B.根据全等三角形的性质解答即可.本题考查的是全等三角形的性质,掌握全等三角形的对应边和对应角相等是解题的关键.6.已知一个等腰三角形一内角的度数为,则这个等腰三角形顶角的度数为A. B. C. 或 D. 或【答案】D【解析】解:若等腰三角形一个底角为,顶角为;等腰三角形的顶角为.因此这个等腰三角形的顶角的度数为或.故选:D.已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.本题考查等腰三角形的性质及三角形的内角和定理解答此类题目的关键是要注意分类讨论,不要漏解.7.某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为A. B.C. D.【答案】C【解析】解:因为水费y是随用水量x的增加而增加,而且超过后,增加幅度更大.故选:C.水费y和用水量x是两个分段的一次函数关系式,并且y随x的增大而增大,图象不会与x轴平行,可排除A、B、D.本题考查一次函数图象问题注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.8.直角三角形纸片的两直角边长分别为6,8,现将如图折叠,使点A与点B重合,则折痕DE的长是A. B. C. D.【答案】D【解析】解:直角三角形纸片的两直角边长分别为6,8,,又折叠,,,,设,则,,在中,,即,解得,在中,故选:D.先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.9.如图A所示,将长为20cm,宽为2cm的长方形白纸条,折成图B所示的图形并在其一面着色,则着色部分的面积为A. B. C. D.【答案】B【解析】解:着色部分的面积原来的纸条面积两个等腰直角三角形的面积.故选:B.根据折叠的性质,已知图形的折叠就是已知两个图形全等由图知,着色部分的面积是原来的纸条面积减去两个等腰直角三角形的面积.本题考查图形的折叠变化及等腰直角三角形的面积公式关键是要理解折叠是一种对称变换.10.已知,则直线一定经过的象限是A. 第一、三、四象限B. 第一、二、四象限C. 第一、四象限D. 第二、三象限【答案】C【解析】解:当时,,,此时,,经过第一、四、三象限;当时,,此时,,此时,经过第二、一、四象限.综上所述,一定经过第一、四象限,故选:C.由于的符号不能确定,故进行分类讨论,当时,可利用等比性质求出k的值,当时,可将转化为,然后求出k,得到其解析式,进而判断出直线一定经过哪些象限.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线所在的位置与k、b的符号有直接的关系时,直线必经过一、三象限时,直线必经过二、四象限时,直线与y轴正半轴相交时,直线过原点;时,直线与y轴负半轴相交.二、填空题(本大题共10小题,共30.0分)11.在中,,,则______.【答案】【解析】解:,,.故答案为:.根据直角三角形两锐角互余列式计算即可得解.本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.12.将点向右平移2个单位长度得到点B的坐标是______.【答案】【解析】解:将点向右平移2个单位长度,根据平移的规律向右平移横坐标加2,纵坐标不变,得到点B的坐标是.故答案为:.直接利用平移中点的变化规律;向右左平移,横坐标加减,纵坐标不变;向上下平移,横坐标不变,纵坐标加减,求解即可.此题主要考查了平移规律,利用平移中点的变化规律是:横坐标右移加是解决问题的关键.13.请写出一个图象经过点的一次函数的表达式:______.【答案】不唯一【解析】解:设这个一次函数解析式为:,把代入得,这个一次函数解析式为:不唯一.可设这个一次函数解析式为:,把代入即可.一次函数的解析式有k,b两个未知数当只告诉一个点时,可设k,b中有一个已知数,然后把点的坐标代入即可.14.命题“对顶角相等”的逆命题是______.【答案】相等的角为对顶角【解析】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.交换原命题的题设与结论即可得到其逆命题.本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理也考查了逆命题.15.一个直角三角形的两条直角边长分别为3,4,则第三边为______.【答案】5【解析】解:由勾股定理得:第三边为:,故答案为:5.根据勾股定理计算即可.本题考查了勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么.16.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题【解析】解:设他至少应选对x道题,则不选或错选为道题.依题意得得又应为正整数且不能超过25所以:他至少要答对19道题.求至少要答对的题数,首先应求出在竞赛中的得分,然后根据题意在竞赛中的得分不低于60列出不等式,解答即可.本题考查一元一次不等式组的应用,用不等式解答应用问题时,要注意对未知数的限制条件.17.如图,是不等边三角形,,以D,E为两个顶点作位置不同的三角形,使所作的三角形与全等,这样的三角形最多可以画出______个【答案】4【解析】解:如图,可以作出这样的三角形4个.能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆两圆相交于两点上下各一个,分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆两圆相交于两点上下各一个,分别于D,E连接后,可得到两个三角形.因此最多能画出4个本题考查了学生利用基本作图来做三角形的能力.18.如图,在中,分别以点A和点B为圆心,大于的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接若的周长为10,,则的周长为______.【答案】17【解析】解:在中,分别以点A和点B为圆心,大于的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.是AB的垂直平分线,,的周长为10,,的周长为:.故答案为17.首先根据题意可得MN是AB的垂直平分线,由线段垂直平分线的性质可得,再根据的周长为10可得,又由条件可得的周长.此题考查了线段垂直平分线的性质与作法题目难度不大,解题时要注意数形结合思想的应用.19.如图钢架中,焊上等长的7根钢条来加固钢架,若,则的度数是______.【答案】【解析】解:设,,,,,,,,,在中,,即,解得,即.故答案为:.设,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出,,再根据三角形的内角和定理列式进行计算即可得解.本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.20.现在全省各大景区都在流行“真人CS“娱乐项目,其中有一个“快速抢点”游戏,游戏规则:如图,用绳子围成的一个边长为10m的正方形ABCD场地中,游戏者从AB边上的点E处出发,分别先后赶往边BC、CD、DA上插小旗子,最后回到点已知,则游戏者所跑的最少路程是多少______【答案】【解析】解:延长DC到,使,G关于C对称点为,则,作,,H关于C的对称点为,则;再作,E关于的对称点为,则;延长AB至K使,连接,如图所示:容易看出,当E、F、、、在一条直线上时路程最小,最小路程为,故答案为.延长DC到,使,G关于C对称点为,则,作,,H关于C的对称点为,则;再作,E关于的对称点为,则;由两点之间线段最短可知当E、F、、、在一条直线上时路程最小,延长AB至K使,连接,利用勾股定理即可求出的长.本题考查的是正方形的性质以及最短路线问题,解答此题的关键是画出图形,根据两点之间线段最短的道理求解.三、解答题(本大题共6小题,共40.0分)21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形顶点是网格线的交点的三角形的顶点A,C的坐标分别为,.请在如图所示的网格平面内作出平面直角坐标系;请作出关于y轴对称的;写出点的坐标.【答案】解:如图所示;如图所示;由图可知,.【解析】根据顶点A,C的坐标分别为,建立坐标系即可;作出各点关于y轴的对称点,再顺次连接即可;根据点在坐标系中的位置写出其坐标即可.本题考查的是作图轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.22.解下列不等式组:【答案】解:移项得,,合并同类项得,;,由得,;由得,,故此不等式组的解集为:.【解析】移项,合并同类项,系数化为1即可求解;分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.如图:已知D、E分别在AB、AC上,,,求证:.【答案】证明:在和中,,≌ ,.【解析】根据已知条件,利用ASA得到三角形全等,利用全等三角形对应边相等即可得证.此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.已知直线经过点和.求该直线的函数表达式;求该直线与x轴,y轴的交点坐标.【答案】解:直线经过点和点,,解得:.则直线的表达式为;令,解得:,与y轴的交点坐标为;令,解得:,与x轴的交点坐标为:.【解析】将点的坐标代入求出k和b的值,即可得出函数解析式;分别令,即可得出答案.本题考查了待定系数法求函数的解析式及一次函数与坐标轴的交点问题,难度不大,注意解答此类题目的一般步骤.25.如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边的点F处,已知,.求线段BF的长;求的面积.【答案】解:四边形ABCD是矩形,,折叠≌ ,,,在中,在中,,,,.【解析】根据矩形的性质和折叠的性质可得,根据勾股定理可求BF的长;根据勾股定理可求EF的长,根据三角形面积公式可求的面积.本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.26.如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,点为直线上一点,直线过点C.求m和b的值;直线与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动设点P的运动时间为t秒.若点P在线段DA上,且的面积为10,求t的值;是否存在t的值,使为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.【答案】解: 把点 代入直线中得: ,点 ,直线 过点C ,, ; 由题意得: ,中,当 时, ,,,中,当 时, , ,,,的面积为10,, ,则t 的值7秒;存在,分三种情况:当 时,如图1,过C 作 于E ,,,即 ;当 时,如图2,,,;当 时,如图3,,即 ;综上,当 秒或 秒或 秒或8秒时, 为等腰三角形.【解析】 分别令 可得b 和m 的值;根据 的面积公式列等式可得t 的值;存在,分三种情况:当 时,如图1, 当 时,如图2, 当 时,如图3,分别求t 的值即可.本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.。
2018-2019学年浙江省杭州市八年级(上)期末数学试卷-普通用卷

2018-2019学年浙江省杭州市八年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列各组数不可能是一个三角形的边长的是()A. 5,5,5B. 5,7,7C. 5,12,13D. 5,7,123.一次函数y=2x-1的图象经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限4.用不等式表示“a的一半不小于-7”,正确的是()A. B. C. D.5.已知△ABC是直角坐标系中任意位置的一个三角形,现将△ABC各顶点的纵坐标乘以-1,得到△A1B1C1,则它与△ABC的位置关系是()A. 关于x轴对称B. 关于y轴对称C. 关于直线对称D. 关于直线对称6.已知x>2,则下列变形正确的是()A. B. 若,则C. D. 若,则7.)A. B.C. D.8.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(-1,2),则关于x的不等式(k1-k2)x>-m+n的解是()A.B.C.D.9.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A. ①②B. ②③C. ①③D. ①②③10.如图,射线AB∥射线CD,∠CAB与∠ACD的平分线交于点E,AC=4,点P是射线AB上的一动点,连结PE并延长交射线CD于点Q.给出下列结论:①△ACE是直角三角形;②S四边形APQC=2S△ACE;③设AP=x,CQ=y,则y关于x的函数表达式是y=-x+4(0≤x≤4),其中正确的是()A. ①②③B. ①②C. ①③D. ②③二、填空题(本大题共6小题,共24.0分)11.已知正比例函数y=-2x,则当x=-1时,y=______.12.已知等腰三角形的一个内角是100°,则其余两个角的度数分别是______度,______度.13.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置,如果BC=2,那么线段BE的长度为______.14.已知点A是直线x=2上的点,且到x轴的距离等于3,则点A的坐标为______.15.已知2x+y=3,且x≥y.(1)x的取值范围是______;(2)若设m=3x+4y,则m的最大值是______.16.在△ABC中,∠BAC=α,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连结AD,AE,则∠DAE的度数为______.(用含α的代数式表示)三、计算题(本大题共1小题,共6.0分)17.解不等式组>,并求其整数解.四、解答题(本大题共6小题,共60.0分)18.如图,已知线段a,b和∠1,用直尺和圆规作△ABC,使AB=a,AC=b,∠A=∠1.(不写作法,保留作图痕迹)19.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.20.如图,把△ABC平移,使点A平移到点O.(1)作出平移后的△OB'C';(2)写出△OB'C'的顶点坐标,并描述这个平移过程.21.已知△ABC中,BC=m-n(m>n>0),AC=2,AB=m+n.(1)求证:△ABC是直角三角形;(2)当∠A=30°时,求m,n满足的关系式.22.已知y是关于x的一次函数,且点(0,-8),(1,2)在此函数图象上.(1)求这个一次函数表达式;(2)若点(-2,y1),(2,y2)在此函数图象上,试比较y1,y2的大小;(3)求当-3<y<3时x的取值范围.23.如图①,已知∠MON=Rt∠,点A,P分别是射线OM,ON上两定点,且OA=2,OP=6,动点B从点O向点P运动,以AB为斜边向右侧作等腰直角△ABC,设线段OB的长x,点C到射线ON的距离为y.(1)若OB=2,直接写出点C到射线ON的距离;(2)求y关于x的函数表达式,并在图②中画出函数图象;(3)当动点B从点O运动到点P,求点C运动经过的路径长.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:A、5+5>5,能构成三角形;B、5+7>7,能构成三角形;C、5+12>13,能构成三角形;D、7+5=12,不能构成三角形.故选:D.看哪个选项中两条较小的边的和不大于最大的边即可.本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.3.【答案】C【解析】解:在一次函数y=2x-1中,k=2>0,b=-1<0,∴一次函数y=2x-1的图象经过第一、三、四象限.故选:C.根据k=2>0、b=-1<0即可得出一次函数y=2x-1的图象经过第一、三、四象限.本题考查了一次函数图象与系数的关系,熟练掌握“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.4.【答案】A【解析】解:根据题干“a的一半”可以列式为:a;“不小于-7”是指“大于等于-7”;那么用不等号连接起来是:a≥-7.故选:A.抓住题干中的“不小于-7”,是指“大于”或“等于-7”,由此即可解决问题.此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.5.【答案】A【解析】解:∵△ABC各顶点的纵坐标乘以-1,得到△A1B1C1,∴△ABC与△A1B1C1的各顶点横坐标相同,纵坐标互为相反数,∴△A1B1C1与△ABC的位置关系是关于x轴对称.故选:A.纵坐标乘以-1变为原来的相反数再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.【答案】C【解析】解:A、两边乘以不同的数,故A不符合题意;B、x,y无法比较,故B不符合题意;C、两边都除以-2,不等号的方向改变,故C符合题意;D、x,y无法比较,故D不符合题意;故选:C.根据不等式的性质,可得答案.主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.7.【答案】B【解析】解:由表格发现:当0<x≤20时,y=1.20,当20<x≤40,y=2.40,当40<x≤60,y=3.60,故选:B.观察表格发现函数的解析式,然后确定正确的选项即可.本题考查了函数的图象,解题的关键是了解该函数为分段函数,且为常函数,难度不大.8.【答案】B【解析】解:由图形可知,当x>-1时,k1x+m>k2x+n,即(k1-k2)x>-m+n,所以,关于x的不等式(k1-k2)x>-m+n的解集是x>-1.故选:B.根据图形,找出直线l1在直线l2上方部分的x的取值范围即可.本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.9.【答案】D【解析】解:①两边及一边上的中线对应相等的两个三角形全等是真命题;②底边和顶角对应相等的两个等腰三角形全等是真命题;③斜边和斜边上的高线对应相等的两个直角三角形全等是真命题,故选:D.根据全等三角形的判定定理进行判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,掌握全等三角形的判定定理是解题的关键.10.【答案】A【解析】解:如图延长CE交AB于K.∵AB∥CD,∴∠BAC+∠DCA=180°,∵∠ACE=∠DCA,∠CAE=∠BAC,∴∠ACE+∠CAE=(∠DCA+∠BAC)=90°,∴∠AEC=90°,∴AE⊥CK,△AEC是直角三角形,故①正确,∵∠QCK=∠AKC=∠ACK,∴AC=AK,∵AE⊥CK,∴CE=EK,在△QCE和△PKE中,,∴△QCE≌△PKE,∴CQ=PK,S△QCE=S△PEK,∴S=S△ACK=2S△ACE,故②正确,四边形APQC∵AP=x,CQ=y,AC=4,∴AP+CQ=AP+PK=AK=AC,∴x+y=4,∴y=-x+4(0≤x≤4),故③正确,故选:A.①正确.由AB∥CD,推出∠BAC+∠DCA=180°,由∠ACE=∠DCA,∠CAE=∠BAC,即可推出∠ACE+∠CAE=(∠DCA+∠BAC)=90°,延长即可解决问题.②正确.首先证明AC=AK,再证明△QCE≌△PKE,即可解决问题.③正确.只要证明AP+CQ=AC即可解决问题.本题考查三角形综合题、全等三角形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.【答案】2【解析】解:x=-1时,y=-2×(-1)=2故答案为:2将x=-1代入正比例函数中即可求出答案.本题考查正比例函数的定义,解题的关键是将x=-1代入正比例函数中,本题属于基础题型.12.【答案】40 40【解析】解:已知等腰三角形的一个内角是100°,根据等腰三角形的性质,则其余两个角相等,当100°的角为顶角时,三角形的内角和是180°,所以其余两个角的度数是(180-100)×=40;当100°的角为底角时,此时不能满足三角形内角和定理,这种情况不成了.故填40.已知给出了一个内角是100°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.本题主要考查等腰三角形的性质以及三角形的内角和为180度.分类讨论是正确解答本题的关键.13.【答案】【解析】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=1,即△EDB是等腰直角三角形,∴BE=BD=,故答案为:.根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.14.【答案】(2,3)或(2,-3)【解析】解:∵点A是直线x=2上的点,且到x轴的距离等于3,∴点A的横坐标为2,纵坐标为±3,∴点A的坐标为(2,3)或(2,-3).故答案为:(2,3)或(2,-3).根据平行于y轴的直线上的点的横坐标相同求出点A的横坐标,点到x轴的距离等于纵坐标的绝对值求出纵坐标,然后写出点A的坐标即可.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.15.【答案】x≥1 7【解析】解:(1)∵2x+y=3,∴y=-2x+3,∵x≥y,∴x≥-2x+3,解得:x≥1,故答案为:x≥1;(2)∵y=-2x+3,∴m=3x+4y=3x+4(-2x+3)=3x-8x+12=-5x+12,∵x≥1,∴-5x≤-5,则-5x+12≤7,即m的最大值为7,故答案为:7.(1)由2x+y=3知y=-2x+3,依据x≥y得x≥-2x+3,解之可得;(2)将y=-2x+3代入m=3x+4y得m=-5x+12,结合x≥1可得答案.本题主要考查不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.16.【答案】2α-180°或180°-2α【解析】解:分两种情况:①如图所示,当∠BAC≥90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°-α,∴∠DAE=∠BAC-(∠BAD+∠CAE)=α-(180°-α)=2α-180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°-α,∴∠DAE=∠BAD+∠CAE-∠BAC=180°-α-α=180°-2α.故答案为:2α-180°或180°-2α.分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-α,再根据角的和差关系进行计算即可.本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.17.【答案】解:不等式组可化成>,①,②,解不等式①得x>2.5解不等式②得x≤4,∴不等式组的解集2.5<x≤4,整数解为4,3.【解析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.此题考查了一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【答案】解:如图所示,△ABC即为所求.【解析】可先用基本作图法作出∠A=∠1,然后在∠A的两边上分别截取线段AB,AC使得AB=a,AC=b,最后连接BC,得出三角形即可.本题考查的是运用基本作图知识来作复杂图的能力,本题中作图的理论依据是全等三角形判定中的边角边(SAS).19.【答案】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【解析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.20.【答案】解:(1)如图,△OB′C′即为所求;(2)由图可知,O(0,0),B′(-3,-2),C′(-1,-5).将△ABC先向左平移5个单位,再向下平移7个单位即可得到△OB′C′.【解析】(1)根据平移的性质画出平移后的△OB'C'即可;(2)根据各点在坐标系中的位置写出各点坐标,再由平移的方向和距离即可得出结论.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.21.【答案】解:(1)∵BC=m-n(m>n>0),AC=2,AB=m+n,∴AC2+CB2=(m-n)2+4mn=m2+n2-2mn+4mn=m2+n2+2mn=(m+n)2=AB2.∴∠C=90°.∴△ABC是为直角三角形;(2)∵∠A=30°,∴==,∴m=3n.【解析】(1)由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可;(2)根据直角三角形的性质即可得到结论.题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.22.【答案】解:(1)设该一次函数表达式为y=kx+b(k≠0),将(0,-8)、(1,2)代入y=kx+b,,解得:,∴该一次函数表达式为y=10x-8.(2)∵在一次函数y=10x-8中k=10>0,∴y随x的增大而增大.∵-2<2,∴y1<y2.(3)当-3<y<3时,有-3<10x-8<3,解得:0.5<x<1.1.∴当-3<y<3时x的取值范围为0.5<x<1.1.【解析】(1)由点的坐标利用待定系数法即可求出一次函数表达式;(2)由一次项系数k=10>0即可得出一次函数y=10x-8为单调递增函数,结合-2<2即可得出y1<y2;(3)将y=10x-8代入-3<y<3中即可得出关于x的一元一次方程,解之即可得出结论.本题考查了待定系数法求一次函数解析式、一次函数的性质以及解一元一次不等式,解题的关键是:(1)根据点的坐标利用待定系数法求出一次函数关系式;(2)根据k=10>0找出该一次函数为单调递增函数;(3)根据y的取值范围找出关于x的一元一次不等式.23.【答案】解:(1)如图①中,∵OA=OB=2,∠AOB=90°,△ACB是等腰直角三角形,∴四边形OACB是正方形,∴点C到ON的距离为2.(2)如图③中,作CE⊥OA于E,CF⊥ON于F.∵∠ACB=∠ECF=90°,CA=CB,∠CEA=∠CFB=90°,∴△CEA≌△CFB,∴AE=CF,CE=CF,∵∠CEO=∠CFO=∠EOF=90°,∴四边形OECF是矩形,∵CE=CF,∴四边形OECF是正方形,∴CF=CE=OE=OF=y,∵AE=y-2,FB=x-y,∴y-2=x-y,∴y=x+1,可得函数图象如图②所示,(3)如图④中,∵CE=CF,∴OC平分∠MON,∴点C的运动轨迹是线段C′C,∵x=6,y=4,∴OC=4,OC′=,CC′=3∴点C运动经过的路径长为3.【解析】(1)OB=2时,四边形OACB是正方形,由此即可解决问题.(2)如图③中,作CE⊥OA于E,CF⊥ON于F.由△CEA≌△CFB,推出AE=CF,CE=CF,由∠CEO=∠CFO=∠EOF=90°,推出四边形OECF是矩形,由CE=CF,推出四边形OECF是正方形,根据AE=y-2,FB=x-y,可得y-2=x-y,即y=x+1(0≤x≤6),画出图象即可.(3)如图③中,由CE=CF,推出OC平分∠MON,推出点C的运动轨迹是线段CC,因为x=6,y=4,可得C′C=3.本题考查动点问题函数图象、一次函数的应用,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
每日一学:浙江省宁波市奉化区2018-2019学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:浙江省宁波市奉化区2018-2019学年八年级上学期数学期末考试试卷_压轴题解答答案浙江省宁波市奉化区2018-2019学年八年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2019宁波.八上期末) 定义:若以三条线段a ,b ,c 为边能构成一个直角三角形,则称线段a ,b ,c 是勾股线段组.(1) 如图①,已知点M ,N 是线段AB 上的点,线段AM ,MN ,NB 是勾股线段组,若AB=12,AM=3,求MN 的长;(2) 如图②,△ABC 中,∠A=18°,∠B=27°,边AC ,BC 的垂直平分线分别交AB 于点M ,N ,求证:线段AM ,MN ,NB 是勾股线段组;(3) 如图③,在等边△ABC 中,P 为△ABC 内一点,线段AP ,BP ,CP 构成勾股线段组,CP 为此线段组的最长线段,求∠APB 的度数.考点: 三角形内角和定理;全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质;勾股定理的逆定理;~~ 第2题 ~~(2019宁波.八上期末) 如图,在锐角△ABC 中,AB=5,∠BAC=45°,∠BAC的平分线交BC 于点D ,M ,N 分别是AD ,AB 上的动点,则BM+MN 的最小值是________.~~ 第3题 ~~(2019宁波.八上期末) 在等腰三角形△ABC (AB=AC ,∠BAC=120°)所在平面上有一点P ,使得△PAB ,△PBC ,△PAC 都是等腰三角形,则满足此条件的点P 有( )A . 1个B . 2个C . 3个D . 4个浙江省宁波市奉化区2018-2019学年八年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:B解析:。
2018-2019学年度沪科版八年级上册期末考试数学试卷含答案
201-2019学年度第一学期期末考试八年级数学试题一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()2.函数=y 1-x 的自变量x 的取值范围是()A .0≥xB .0>xC .1≥xD .1>x 3.将一副三角板按图中方式叠放,则∠α等于() A .75° B .60° C .45°D .30°4.工人师傅常用角尺平分一个任意角.作法如图:∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M 、N 重合.由此可得△MOC ≌△NOC .过角尺顶点C 的射线OC 便是∠AOB 的平分线,在这种作法中,判断△MOC ≌△NOC 的依据是()A .AASB .SASC .ASAD .SSS 5.已知一次函数b kx y +=,当2<x 时,0>y ,则下列判断正确的是() A .图象经过第一、二、四象限 B .图象经过第一、二、三象限 C .图象经过第一、三、四象限D .图象经过第二、三、四象限第4题图 第3题图4530α6.若点P (a ,a -2)在第四象限,则a 的取值范围是() A .-2<a <0 B .0<a <2 C .a >2 D .a <0 7.各边长均为整数、周长为10的三角形有() A .1个B .2个 C .3个 D .4个8.在平面直角坐标系中,把直线x y =向左平移一个单位长度后,其解析式为() A .1+=x y B .x y = C .1-=x y D .2-=x y9.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有() A .1 个 B .2 个 C .3 个 D .4个10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1) →(1,1) →(1,0)→(2,0)→(2,1)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是() A .(4,0) B . (5,5) C .(0,5) D .(5,0)二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.)11.点P 关于x 轴对称的点是(2,-1),则P 点的坐标是 . 12.命题“如果0>ab ,那么a 、b 都是正数”是 .(填“真命题”或“假命题”) 13.如图所示,请用不等号“<”或“>”表示∠1、∠2、∠3的大小关系: .14.如图,△ABC 的周长为30cm ,DE 垂直平分边AC ,交BC 于点D ,交AC 于点E ,连第9题图 第10题图O x y 1 2 3 3 2 1 12 3第13题图 E AB CD 第14题图接AD ,若AE=4cm ,则△ABD 的周长是= .15.某机械油箱中装有油60升,工作时平均每小时耗油5升,则工作时,油箱中剩余油量Q (升)与工作时间t (时)之间的函数关系式是 . 16.若△ABC 的一个外角等于140°,且∠B=∠C ,则∠A= .17.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =;④0<+b kx 的解集是2<x .其中说法正确的有 .(把你认为说法正确的序号都填上). 18.如图,在平面直角坐标系中,已知A (3,4)、B (0,2),在x 轴上有一动点C ,当△ABC 的周长最小时,C 点的坐标为 .三、解答题(本大题共6小题,共46分.)19.(本题满分6分)如图,点A 、C 、B 、D 在同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD .求证:AE=FC . 【证明】第17题图第18题图E A BDF20.(本题满分8分)正比例函数x y 2=的图象与一次函数k x y +-=3的图象交于点P (1,m ). (1)求k 的值;(2)求两直线与y 轴围成的三角形面积. 【解】21.(本题满分8分)如图,已知CD AB ⊥于点D ,BE ⊥AC 于点E ,BE ,CD 交于点O ,且OB =OC . 求证:AO 平分∠BAC .【证明】ABCDEO22.(本题满分8分)如图,一艘船从A 处出发,以每小时10海里的速度向正北航行,从A 处测得礁石C 在北偏西30°方向上,如果这艘船上午8:00从A 处出发,10:00到达B 处,从B 处测得礁石C 在北偏西60°方向上,问: (1)12:00时这艘船距离礁石多远?(2)这艘船在什么时刻距离礁石最近? 【解】 23.(本题满分8分)如图,在△ABC 中,AB=AC ,N 是AB 上任一点(不与A 、B 重合),过N 作NM ⊥AB 交BC 所在直线于M , (1)若∠A=30°.求∠NMB 的度数; (2)如果将(1)中∠A 的度数改为68°,其余条件不变,求∠NMB 的度数; (3)综合(1)(2),你发现有什么样的规律性,试证明之;(4)若将(1)中的∠A 改为直角或钝角,你发现的规律是否仍然成立? 【解】CABD A B M CN某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?【解】八年级数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.D 2.C 3.A 4.D 5.A 6.B 7.B 8.A 9.C 10.D 二、填空题(本大题共8小题,每小题3分,共24分.) 11.(2,1); 12.假命题; 13.∠3<∠2<∠1;14.22cm ; 15.t Q 560-=;16.40°或100°;17.①②③;18.(1,0);三、解答题(本大题共6小题,共46分) 19.证明:∵BE ∥DF ,∴∠ABE =∠D , ……………2分 在△ABC 和△FDC 中,∠ABE =∠D ,AB =FD ,∠A=∠F ∴△A BE ≌△FDC (ASA ), ……………5分 ∴AE =FC . ……………6分20.解:(1)当1=x 时,2=m ,所以P (1,2), ……………2分 将2,1==y x 代入k x y +-=3,得k +-=32,得:k =5, ……………4分(2)该一次函数解析式为53+-=x y ,与y 轴交点坐标为(0,5) 所以两直线与y 轴围成的三角形面积是5.25121=⨯⨯ ……………8分21.(8分)证明:∵OD ⊥AB ,OE ⊥AC ,∴∠ODB =∠OEC=90°,在△BDO 和△CEO 中∵∠DOB =∠EOC , OB =OC ,∴△BDO ≌△CEO (AAS ).…………4分 ∴OD=OE ,∴AO 平分∠BAC .(在一个角的内部,到角的两边距离相等的点在这个角的平分线上)…………8分22.解:(1) 根据题意,得:∠CAD=30°,∠CBD=60°,∴∠C=∠CBD -∠CAD=30° ∴∠C=∠CAD , ∴BC=AB=10×2=20(海里)设12:00时这艘船所在位置为F ,连接FC , 则BF=10×(12-10)=20(海里) ∴BF=BC∴△CBF 是等边三角形(有一个角是60°的等腰三角形是等边三角形)CABG FD∴FC=BF=20 …………4分 (2) 作CG ⊥AB 于G ,则这艘船行至G 处距离礁石最近,∵△BCF 为等边三角形,∴G 为BF 的中点。
浙江省嘉兴市2018-2019学年八年级(下)期末考试数学试卷(含解析)
2018-2019学年浙江省嘉兴市八年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)下列各式中,正确的是()A.=﹣2B.﹣=﹣2C.(﹣)2=﹣2D.=±2 3.(3分)如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()A.2B.﹣2C.﹣3D.34.(3分)方程(x﹣1)(x+2)=x﹣1的解是()A.x=﹣2B.x1=1,x2=﹣2C.x1=﹣1,x2=1D.x1=﹣1,x2=3 5.(3分)某企业1~5月份利润的变化情况如图所示,则以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的方差与1~5月份利润的方差相同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元6.(3分)利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设()A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角7.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A 到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)如图,将平行四边形纸片ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC,②MN=AM.下列说法正确的是()A.①②都错B.①对②错C.①错②对D.①②都对9.(3分)已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或310.(3分)如图,正方形ABCD在平面直角坐标系中的点a和点b的坐标为A(1,0)、B (0,3),点D在双曲线y=(k≠0)上.若正方形沿x轴负方向平移m个单位长度后,点C恰好落在该双曲线上,则m的值是()A.1B.2C.3D.4二、填空题(共10题,共30分)11.(3分)一组数据为:1,2,3,4,5,6,则这组数据的中位数是.12.(3分)化简:4=.13.(3分)若某多边形的内角和比外角和大900°,则这个多边形的边数为.14.(3分)已知反比例函数y=在第一象限的图象如图所示,点A在其图象上,点B为x 轴正半轴上一点,连接AO、AB且AO=AB,则S△AOB=.15.(3分)平行四边形的一个内角平分线将该平行四边形的一边分为3cm和4cm两部分,则该平行四边形的周长为.16.(3分)关于x的一元二次方程x2+2x﹣=0有实数根,则a的取值范围是.17.(3分)准备在一块长为30米,宽为24米的长方形花埔内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为米.18.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.19.(3分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.20.(3分)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共6题,共40分)21.(1)计算:﹣(2﹣)(2+)﹣;(2)解方程:x2+6x+8=0.22.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2])(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.23.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?24.图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,A,C两点都在格点上,连结AC,请完成下列作图:(1)以AC为对角线在图1中作一个正方形,且正方形各顶点均在格点上.(2)以AC为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.(3)以AC为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上.25.如图,在平面直角坐标系中,O是原点,▱ABCO的顶点A、C的坐标分别为A(﹣3,0)、C(1,2),反比例函数y=的图象经过点B.(1)求点B的坐标;(2)求k的值;(3)将▱ABCO沿x轴翻折,点C落在点C′处.判断点C′是否落在反比例函数y=的图象上,请通过计算说明理由.26.如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t=以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)2018-2019学年浙江省嘉兴市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共10题,共30分)1.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.2.【解答】解:A、=﹣2,故错误;B、﹣=﹣2,故正确;C、(﹣)2=﹣2,故错误;D、=±2,故错误;故选:B.3.【解答】解:根据题意,得﹣2=,即2=k﹣1,解得,k=3.故选:D.4.【解答】解:方程整理得:(x﹣1)(x+2)﹣(x﹣1)=0,分解因式得:(x﹣1)(x+1)=0,解得:x1=﹣1,x2=1,故选:C.5.【解答】解:A、根据折线图1~2月以及2~3月的倾斜程度可以得出:2~3月份利润的增长快于1~2月份利润的增长;故本选项错误;B、1~4月份利润的平均数为:(100+110+130+115)÷4=113.75,方差为:[(100﹣113.75)2+(110﹣113.75)2+(130﹣113.75)2+(115﹣113.75)2]=117.1875,1~5月份利润的平均数为:(100+110+130+115+130)÷5=117,方差为:[(100﹣117)2+(110﹣117)2+2×(130﹣117)2+(115﹣117)2]=136,所以1~4月份利润的方差小于1~5月份利润的方差,故本选项错误;C、由图可知130出现次数最多,所以130万元是众数,故本选项正确;D、1~5月份利润的中位数是:从小到大排列后115万元位于最中间,所以1~5月份利润的中位数为115万元,故本选项错误.故选:C.6.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.故选:B.7.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选:D.8.【解答】解:∵平行四边形ABCD,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故选:D.9.【解答】解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.10.【解答】解:过点D作DE⊥x轴,垂足为E,过点C作CF⊥y轴,垂足为F,交反比例函数的图象于点G,∵A(1,0)、B(0,3),∴OA=1,OB=3,∵ABCD是正方形,∴AB=BC=AD,∠BAD=∠ABC=90°,∴∠OAB=∠ADE=∠BFC=90°,∵∠AOB=∠AED=∠FBC,∴△AOB≌△DEA≌△BFC(AAS),∴DE=OA=BF=1,AE=OB=CF=3,OF=OB+BF=4,∴C(3,4)∴D(4,1)代入y=得,k=3,∴反比例函数的关系式为:y=,当y=4时,x=1,∴G(1,4)因此点C平移到点G的距离为:3﹣1=2,故选:B.二、填空题(共10题,共30分)11.【解答】解:题目中数据共有6个,故中位数是按从小到大排列后第3、第4两个数的平均数,故这组数据的中位数是×(3+4)=3.5.故填3.5.12.【解答】解:原式=4﹣7×2+2×4=4﹣14+8=﹣2.故答案为:﹣2.13.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=900°,解得n=9.故答案为:9.14.【解答】解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.15.【解答】解:∵ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3cm,CE=4cm,AB=3cm,则周长为20cm;②当BE=4cm时,CE=3cm,AB=4cm,则周长为22cm.故答案为:20cm或22cm.16.【解答】解:根据题意得△=22﹣4×(﹣)≥0,解得a>0或a≤﹣1.故答案为a>0或a≤﹣1.17.【解答】解:设小路的宽度为x米,则小正方形的边长为4x米,依题意得:(30+4x+24+4x)x=80整理得:4x2+27x﹣40=0解得x1=﹣8(舍去),x2=.故答案为:.18.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.19.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.20.【解答】解:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(﹣,﹣),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k===.故答案为:.三、解答题(共6题,共40分)21.【解答】解:(1)原式=3﹣1﹣2=2﹣2;(2)分解因式得:(x+2)(x+4)=0,解得:x1=﹣2,x2=﹣4.22.【解答】解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,乙的中位数:(7+8)÷2=7.5,填表如下:(2)①从平均数和方差相结合看,甲的成绩好些;②从平均数和中位数相结合看,乙的成绩好些;③选乙参加.理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.故答案为:(1)1.2,7,7.5;(2)①甲;②乙.23.【解答】解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.24.【解答】解:(1)如图1,正方形ABCD为所求作的正方形.(2)如图2所示,矩形ABCD为所求作的矩形.(3)如图3所示,平行四边形ABCD为所求作的平行四边形.25.【解答】解:(1)∵四边形ABCO是平行四边形,∴OA=BC.∵点A的坐标为(﹣3,0),∴BC=OA=3.∵点C的坐标为(1,2),∴点B的坐标为(﹣2,2).(2)将B(﹣2,2)代入y=得:2=,∴k=﹣4.(3)点C′不落在反比例函数y=﹣的图象上,理由如下:∵将▱ABCO沿x轴翻折,点C落在点C′处,∴点C′的坐标为(1,﹣2).当x=1时,y=﹣=﹣4≠﹣2,∴点C′不落在反比例函数y=﹣的图象上.26.【解答】解:(1)如图1,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=1cm,AP=2cm,∴AB=6﹣2=4cm.∴S==5cm2.答:四边形BCQP面积是5cm2;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=9,解得:t=.如图2,作PE⊥CD于E,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm,BP=CE=6﹣2t.∵CQ=t,∴QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t=.综上所述:t=或;(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.∵PQ=DQ,∴PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t=.如图4,当PD=PQ时,作PE⊥DQ于E,∴DE=QE=DQ,∠PED=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∵DQ=6﹣t,∴DE=.∴2t=,解得:t=;如图5,当PD=QD时,∵AP=2t,CQ=t,∴DQ=6﹣t,∴PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1=,t2=(舍去).综上所述:t=,,,.故答案为:,,,.。
每日一学:黑龙江省大庆市黑龙江万宝学校2018-2019学年八年级上学期数学期末考试试卷(五四制)_压轴题解答
每日一学:黑龙江省大庆市黑龙江万宝学校2018-2019学年八年级上学期数学期末考试试卷(五四制)_压轴题解答答案黑龙江省大庆市黑龙江万宝学校2018-2019学年八年级上学期数学期末考试试卷(五四制)_压轴题~~ 第1题 ~~(2019荆州.中考模拟) 如图1,在矩形ABCD 中,AC 为对角线,延长CD 至点E 使CE=CA ,连接AE .F 为AB 上的一点,且BF=DE ,连接FC .(1) 若DE=1,CF= ,求CD 的长;(2) 如图2,点G 为线段AE 的中点,连接BG 交AC 于H ,若∠BHC+∠ABG=60°,求证:AF+CE= AC .考点: 全等三角形的判定与性质;等腰三角形的性质;勾股定理;矩形的性质;锐角三角函数的定义;~~ 第2题 ~~(2019大庆.八上期末) 如图,设正方形ABCD 的边长为1,在各边上依次取A , B , C , D , 使,顺次连接得正方形A , B C , D , 用同样方法作得正方形,A BC D , 并重复作下去,使新的正方形的顶点在上一个正方形的边上,且使A A =,…,这样正方形A B C D 的边长等于________.~~ 第3题 ~~(2019大庆.八上期末) 已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE,DE ,过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB= .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 ;③EB ⊥ED ;④S +S =1+ .其中符合题意结论的序号是( )A . ①②③B . ①②④C . ②③④D . ①③④黑龙江省大庆市黑龙江万宝学校2018-2019学年八年级上学期数学期末考试试卷(五四制)_压轴题解答~~ 第1题 ~~答案:111111112222125555△A PD △A PB解析:答案:解析:~~ 第3题 ~~答案:A解析:。
浙江省嘉兴市2019年八年级上学期数学期末检测试题(模拟卷三)
浙江省嘉兴市2019年八年级上学期数学期末检测试题(模拟卷三)一、选择题1.若关于x 的方程212x m x +=-+的解是负数,则m 的取值范围是:( ) A .2m <- B .2m >- C .2m <-且4m ≠ D .2m >-且4m ≠2.如图,在框中解分式方程的4个步骤中,根据等式基本性质的是( )A .①③B .①②C .②④D .③④ 3.解分式方程12211x x x +=-+时,在方程的两边同时乘以(x ﹣1)(x+1),把原方程化为x+1+2x (x ﹣1)=2(x ﹣1)(x+1),这一变形过程体现的数学思想主要是( ) A.类比思想B.转化思想C.方程思想D.函数思想 4.下列等式由左边到右边的变形中,属于因式分解的是( )A.x 2+5x -1=x(x +5)-1B.x 2-4+3x =(x +2)(x -2)+xC.x 2-9=(x +3)(x -3)D.(x +2)(x -2)=x 2-4 5.下列计算错误的是A.33354a a a -=B.()3263a b a b =C.()()()325a b b a a b --=-D.236m n m n +⨯=6.下列乘法运算中,能用平方差公式的是( )A.(b+a )(a+b )B.(﹣x+y )(x+y )C.(1﹣x )(x ﹣1)D.(m+n )(﹣m ﹣n ) 7.如图,△ABC 中,AB=AC=15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( )A .16B .14C .12D .6 8.下面图形中是轴对称不是中心对称图形的是 ( )A .正方形B .正六边形C .圆D .正五边形 9.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )A .B .C .D .10.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为( )A .3B .4C .3或5D .3或4或511.如图,在△ABC 中,点P ,Q 分别在BC ,AC 上,AQ =PQ ,PR =PS ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,则下面结论错误的是( )A .∠BAP =∠CAPB .AS =ARC .QP ∥ABD .△BPR ≌△QPS 12.作∠AOB 的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是( )A .SASB .ASAC .AASD .SSS 13.如图,直线相交于,平分,给出下列结论:①当时,;②为的平分线;③与相等的角有三个;④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题Байду номын сангаас答
浙 江 省 嘉 兴 市 2018-2019学 年 八 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题
~~ 第1题 ~~ (2019嘉兴.八上期末) 甲、乙两位同学从学校出发沿同一条绿道到相距学校l500m的图书馆去看书,甲步行,乙骑自行 车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象.
~~ 第1题 ~~
答案:
解析:
~~ 第2题 ~~
答案: 解析:
~~ 第3题 ~~
答案:C
解析:
(1) 求线段AC所在直线的函数表达式;
(2) 设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象(标注必要的数据);
(3) 当x在什么范围时,甲、乙两人之间的路程至少为180m.
考点: 通过函数图象获取信息并解决问题;待定系数法求一次函数解析式;一次函数的实际应用;
答案
~~ 第2题 ~~ (2019嘉兴.八上期末) 如图,在一张直角三角形纸片ABC中,∠ACB=90°,BC=1,AC= ,P是边AB上的一动点, 将△ACP沿着CP折叠至△A1CP.当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP的度数为________。
~~ 第3题 ~~
(2019嘉兴.八上期末) 如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△AC E,连结DE,CA的延长线交DE于点F,则与线段AF相等的是( )
A . AC B . AB C . BC D . AB
浙 江 省 嘉 兴 市 2018-2019学 年 八 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题 解 答