小学三年级奥数讲义全集

合集下载

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。

小学数学3年级培优奥数讲义 第29讲 抽屉原理(含解析)

小学数学3年级培优奥数讲义 第29讲  抽屉原理(含解析)

第29讲 抽屉原理理解抽屉原理的基本概念、基本用法;掌握用抽屉原理解题的基本过程;能够构造抽屉进行解题;利用最不利原则进行解题;;利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决。

二、抽屉原理的定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案1、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里2、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法。

学习目标知识梳理典例分析考点一:直接利用公式解题例1、6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?例2、人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

例3、“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.例4、在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?例5、求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得()()()---是a b c d e f 105的倍数.例6、某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?例7、一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣1分,不答不得分。

小学数学奥数基础教程三年级目30讲全

小学数学奥数基础教程三年级目30讲全

第一讲:数的认识本讲主要介绍了数的认识,包括数的读法、数的编写方法和数的顺序等内容。

通过数的认识,帮助学生培养对数的概念的理解和掌握。

第二讲:数的比较本讲主要介绍了数的比较,包括数的大小比较和数的排序等内容。

通过比较数的大小和排序,帮助学生培养对数的大小关系的理解和掌握。

第三讲:数的加减法本讲主要介绍了数的加法和减法,包括数的加法和减法的基本运算方法和应用等内容。

通过加减法的学习,帮助学生培养对数的运算能力的理解和掌握。

第四讲:数的运算律本讲主要介绍了数的运算律,包括加法的交换律、结合律和减法的借位等内容。

通过学习运算律,帮助学生培养对数的运算规律的理解和掌握。

第五讲:数的乘法本讲主要介绍了数的乘法,包括数的乘法的基本运算方法和应用等内容。

通过乘法的学习,帮助学生培养对数的乘法运算能力的理解和掌握。

第六讲:数的除法本讲主要介绍了数的除法,包括数的除法的基本运算方法和应用等内容。

通过除法的学习,帮助学生培养对数的除法运算能力的理解和掌握。

第七讲:数的整除和余数本讲主要介绍了数的整除和余数,包括整除的概念、整除的规律和余数的计算等内容。

通过学习整除和余数,帮助学生培养对数的整除和余数的理解和掌握。

第八讲:数的倍数和最小公倍数本讲主要介绍了数的倍数和最小公倍数,包括倍数的概念、倍数的计算方法和最小公倍数的求法等内容。

通过学习倍数和最小公倍数,帮助学生培养对数的倍数和最小公倍数的理解和掌握。

第九讲:数的约数和最大公约数本讲主要介绍了数的约数和最大公约数,包括约数的概念、约数的计算方法和最大公约数的求法等内容。

通过学习约数和最大公约数,帮助学生培养对数的约数和最大公约数的理解和掌握。

第十讲:数的分数本讲主要介绍了数的分数,包括分数的概念、分数的读法和分数的计算等内容。

通过学习分数,帮助学生培养对分数的理解和掌握。

第十一讲:数的比例本讲主要介绍了数的比例,包括比例的概念、比例的计算和比例的应用等内容。

通过学习比例,帮助学生培养对比例的理解和掌握。

小学三年级奥数讲义、练习四

小学三年级奥数讲义、练习四

——横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为:24=1×24=2×12=3×8=4×6(两个数之积) 24=1×2×12=2×2×6=…(三个数之积)24=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。

解:(1)由加法运算规则知,□=13-6-5=2;(2)由减法运算规则知,○=28-(15+7)=6;(3)(4)(5)例2下列算式中,□,○,△,☆各代表什么数?(1)□+□+□=48;(2)○+○+6=21-○;(3)5×△-18÷6=12;(4)6×3-45÷☆=13。

解:例3(1)满足58<12×□<71的整数□等于几?(2)180是由哪四个不同的且大于1的数字相乘得到的?试把这四个数按从小到大的次序填在下式的□里。

180=□×□×□×□。

(3)若数□,△满足□×△=48和□÷△=3,则□,△各等于多少?例4在等号左端的两个数中间添加上运算符号,使下列各式成立:(1)4 4 4 4=24;(2)5 5 5 5 5=6。

小学数学3年级培优奥数讲义 第30讲 一题多解(含解析)

小学数学3年级培优奥数讲义 第30讲  一题多解(含解析)

第30讲一题多解学习目标通过一题多解培养学生从不同角度解决问题的能力,有助于发散思维。

知识梳理一题多解是指从不同角度,运用不同的思维方式来解答同一道题的思考方法,经常进行一题多解的训练,可以锻炼我们的思维,使头脑更灵活。

典例分析例1、有一个正方形池塘,四周种树,每边种8棵,每个顶点种一棵,每两棵树之间距离都相等。

四周一共种了多少棵树?例2、一瓶花生油连瓶一共重800克,吃掉一半油,连瓶一起称,还剩550克。

瓶里原有多少克油?空瓶重多少克?例3、甲班有42人,乙班有35人,开学时来了25位新同学,怎样分才能使两班学生人数相等?例4、从小青家经小红和小强家到学校有450米,从小青家到小强家有390米,从学校到小红家有320米。

从小红家到小强家有多少米?例5、小青以均匀的速度在公路上散步,从第1根电线杆走到第10根电线杆共用了12分钟,如果她走24分钟,应走到第几根电线杆?例6、一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字?例7、一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?例8、幸福小学原计划买12个篮球,每个72元,从买篮球的钱中先拿出432元买足球,剩下的钱还够买几个篮球?例9、南北两城的铁路长357公里,一列快车从北城开出,同时有一列慢车从南城开出,两车相向而行,经过3小时相遇,快车平均每小时行79公里,慢车平均每小时比快车少行多少公里?例10、一列火车从甲地开往乙地,开出2.5小时,行了150千米。

照这样的速度,再行驶3小时到达乙地。

甲、乙两地相距多少千米?实战演练➢课堂狙击1、在一个正方形的菜地四周围篱笆,每个顶点插一根,每两根篱笆之间的距离相等,每边有12根篱笆,四周一共围了多少根篱笆?2、有一个三角形花圃周围种松树,每个顶点种一棵,每边种10棵,每两颗之间距相等,四周一共种了多少棵?3、少先队员表演节目,围成一个正方形,每个顶点站1人,已知每边站6人,一共站了多少人?4、一袋大米,连袋共重50千克,吃掉一半后,连袋剩下27千克,大米重多少千克?袋重多少千克?5、一筐苹果连筐共重85千克,倒去一半后,连筐共重45千克,苹果和筐各重多少千克?6、甲班有42人,乙班有35人,开学时来了25位新同学,怎样分才能使两班学生人数相等?7、小明有18枝铅笔,小红有15枝铅笔,妈妈又买了13枝铅笔,怎样分,才能使两人铅笔一样多?➢课后反击1、甲仓库有粮食420吨,乙仓库有粮食370吨,又运来粮食180吨,怎样分才能使两仓库粮食一样多?2、有甲、乙两筐苹果,甲筐有苹果25千克,乙筐有苹果18千克,又买来13千克苹果,怎样分才能使两筐苹果一样多?3、池塘边种了150棵柏树,种的杨树的棵树比柏树多45棵,种的柳树的棵树比杨树多32棵。

小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

三年级奥数金典讲义第十一讲鸡兔同笼问题通用版(含答案)

三年级奥数金典讲义(jiǎngyì)第十一讲鸡兔同笼问题通用版(含答案)例1(古典(gǔdiǎn)题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析(fēnxī) 如果 46只都是兔,一共(yīgòng)应有 4×46=184只脚,这和已知的128只脚相比(xiānɡ bǐ)多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。

例2鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

小学数学奥数举一反三(三年级)1-40讲完整版全

小学数学奥数举一反三(三年级)1-40讲完整版全第1 讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1, 2, 3, 4,……双数列: 2, 4, 6, 8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3, 6, 9, 12,(),()(2)1, 2, 4, 7, 11,(),()(3)2, 6, 18, 54,(),()练习1:在括号内填上合适的数。

(1)2, 4, 6, 8, 10,(),()(2)1, 2, 5, 10, 17,(),()(3)2, 8, 32, 128,(),()(4)1, 5, 25, 125,(),()(5)12, 1, 10, 1, 8, 1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15, 2, 12, 2, 9, 2,(),()(2)21, 4, 18, 5, 15, 6,(),()练习2:按规律填数。

(1)2, 1, 4, 1, 6, 1,(),()(2)3, 2, 9, 2, 27, 2,(),()(3)18, 3, 15, 4, 12, 5,(),()(4)1, 15, 3, 13, 5, 11,(),()(5)1, 2, 5, 14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2, 5, 14, 41,()(2)252, 124,60, 28,()(3)1, 2, 5, 13, 34,()(4)1, 4, 9, 16, 25, 36,()练习3:按规律填数。

(1)2, 3, 5, 9, 17,(),()(2)2, 4, 10, 28, 82,(),()(3)94, 46, 22, 10,(),()(4)2, 3, 7, 18, 47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。

三年级上奥数精品讲义方阵问题

表演方阵(方阵问题)知识图谱表演方阵知识精讲一.方阵问题1.方阵问题就是把人或物按照一定的条件排成正方形,再根据已知条件求出人或物的数量的应用题.2.一般的,方阵里相邻的两层之间每条边上的人数差2,而每层的人数总差8.注意:方阵最里层只有1个人的时候此层不符合要求.空心方阵时此规律仍适用.二.数量关系1.方阵每边人数和四周人数的关系:(1)()14-⨯=每边人数四周人数;(2)41四周人数每边人数.÷+=2.方阵总人数的计算方法:(1)实心方阵:每边人数⨯每边人数=总人数.(2)空心方阵:外边人数⨯外边人数-内边人数⨯内边人数=总人数;若将空心方阵分成4个相等的矩形计算,则:()4-⨯⨯=外边人数层数层数总人数.(3)逐层相加,则:第一层人数+第二层人数+第三层人数+……=总人数.三.三角形阵列1.1个n层实心的三角形阵列,总人数为:1234n++++⋅⋅⋅⋅⋅⋅+.2.类比方阵的计算方法,注意特殊位置.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的观察推理能力.本讲内容是在数列规律的基础上,学习阵列问题.从生活中常见的阵列问题出发,学习实心方阵、空心方阵,掌握阵列中的相关计算.后续课程还会进一步学习数表规律.课堂引入例题1、一年一度的学校运动会就要来临了,学校要求每个班级都要走一个表演方阵.三年级二班在班长及体育委员的带领下,为全班36人组织了一个变化方阵.刚开始还没有入场时,大家可以先站成一个3列的队伍.然后等到入场我们就变换成一个实心方阵.等经过舞台中央时,部分同学组成一个空心阵,然后让其余同学在中间举起我们的口号就可以了!非常棒!如果这个空心阵不好排的话,我们也可以变成圆的嘛!请问:艾小莎所说的这个实心方阵共有几层呢?最外层每条边上有几个同学呢?例题2、若干名同学站成一个8×8的方阵,那么这个方阵一共有________人.实心方阵问题例题1、(1)若干名同学站成一个13×13的方阵,那么这个方阵最外层一共有多少人?(2)若干名同学站成一个13×13的方阵,那么这个方阵一共有多少层?最里层有多少人?(3)若干名同学站成一个16×16的方阵,那么这个方阵一共有多少层?最里层有多少人?方阵的最外层的人数,不是每边的人乘以4吗?例题2、(1)某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?(2)有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?方阵的总人数怎么求,还记得吗?例题3、(1)一个方阵,最外面一层共有64人,如果让这个方阵增加一行一列,一共需要增加多少人?(2)有100人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?方阵增加一行一列,是增加了两条边,但是还有重复……例题4、用红、绿两种颜色的正方形瓷砖共144块铺满一面正方形的墙,最外层是红色,第二层是绿色,第三层是红色,……,就这样下去,那么整面墙上共有红色瓷砖多少块?红色瓷砖有多少层?相邻两层差多少呢?随练1、一个方阵,最外面一层共有108人,如果让这个方阵增加一行一列,一共需要增加多少人?随练2、用红、绿两种颜色的正方形瓷砖共100块铺满一面正方形的墙,最外一层是红色,第二层是绿色,第三层是红色,……,就这样下去,那么整面墙上红色瓷砖比绿色瓷砖多多少块?空心方阵问题例题1、(1)某校少先队员可以排成一个四层空心方阵.如果最外层每边有20个学生,这个空心方阵最里边一层有多少人?这个四层空心方阵共有多少人?(2)一个空心方阵,最外层有56人,最里层有32人,这个方阵有多少层?这个好像跟前面的不一样了,是空心方阵……例题2、(1)共有300人排成一个5层的空心方阵,如果在外部加一层,变成一个六层的空心方阵,那么应该增加多少人?(2)共有156人排成一个3层的空心方阵,如果在内部加一层,变成一个四层的空心方阵,那么应该增加多少人?是不是先要求出来最外层有多少人呢?例题3、共有132人排成一个3层的空心方阵,如果要在内部加人,变成一个实心方阵,那么还需要增加多少人?空心方阵变成实心方阵,先找出最里层每边多少人.随练1、共有300人排成一个3层的空心方阵,如果要在内部加人,变成一个实心方阵,那么还需要增加多少人?随练2、共有132人排成一个3层的空心方阵,那么这个方阵最外层共有多少人?其他方阵问题例题1、高思小学的学生排成了一个每边为10人的三角阵,请问:最外层有多少人?共有多少层?刚刚还是方阵,怎么变成三角阵了,这可怎么办?例题2、三年级的男生们排成一个每边10人的实心三角形阵之后,女生站在外层,所有人排成一个每边15人的三角阵.请问:三年级男生和女生谁的人数多?多多少人?例题3、如图,一块绿地由3块相同的等边三角形草地和一个水池构成,现在要在草地上种花,要求在草地与草地的公共点处种上花(即图中的A、B、C点),且每块草地上的花朵排成一个三角形实心点阵,每块草地上最外层的每条边上有10朵花.请问:整个绿地一共要种多少朵花?草地A B水池草地草地C随练1、四年级1班共45人,那么可以排成一个每边__________人的三角形阵列.随练2、三年级的男生们排成一个每边8人的实心三角形阵列后,女生继续排在男生外面,男女生一起排成了一个每边11人的三角形阵列,那么女生有__________人.易错纠改例题1、 有杨树和柳树以隔株相间的种法,种成7行7列的方阵,问这个方阵最外一层有杨树和柳树各多少棵?方阵中共有杨树,柳树各多少棵?拓展1、 一个实心方阵,最外面一层共有56人,那么这个方阵一共有________人.2、 若干名同学站成一个12×12的方阵,那么这个方阵一共有__________层.3、 一个方阵,最外面一层共有36人,如果让这个方阵增加一行一列,一共需要增加__________人.4、 共有156人排成一个3层的空心方阵,如果在外面加一层,变成一个四层的空心方阵,那么应该增加__________人.5、 共有200人排成一个5层空心方阵,这个方阵最外面一层每边_________人.6、 如图,一块绿地由3块相同的等边三角形草地和一个水池构成.现在要在草地上种花,要求在草地与草地的公共点都种上(即图中的A 、B 、C 点),且每块草地上的花朵排成了一个三角形点阵,每条边上有8朵花.那么,整个绿地一共要种__________朵花.7、 用红、绿两种颜色的正方形瓷砖共144块铺满一面正方形的墙,最外一层是红色,第二层是绿色,第三层是红色,……,就这样下去,那么整面墙上红色瓷砖比绿色瓷砖多__________块.8、 阳光小学的学生在操场上排成一个方阵,方阵的行距和列距都相等.已知方阵最外面一圈都是男生,往内一圈都是女生,然后是男生……如此下去直到最里面.如果男生总数比女生总数多52人,那么共有学生多少人? 9、 分析并口述题目的做题思路及方法.一批同学站成一个的方阵,请问:最外一层共有多少人?从外向里的第3层有多少人?1010 这个简单,我们求出来最外一层有多少棵树,杨树和柳树隔株相间而种,那就是各自一半.等等,“隔株相间”什么意思?为什么就是杨树和柳树各自一半呢?我还是先思考一下吧.大家快来帮唐小虎解决一下这个问题吧.草地草地草地 水池ABC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学三年级奥数讲义全集 专题一 数图形 专题简析:先确定起始点或起始边,数出图形的数量,再依次以后一个点(或边)数出图形的数量。最后求出它们的和。 例1、数出下面图中有多少条线段? 思路:以A点为左端点的线段有:AB、AC、AD共3条;以B点为左端点的线段有:BC、BD共2条;以C点为左端点的线段有:CD共1条。所以图中共有线段3+2+1=6条。 试一试1:数出下图中有( )条线段。 例2、 数出下图中有几个角? 思路:以AO为一边的角有:∠AOB、∠AOC、∠AOD三个;以BO为一边的角有:∠BOC、∠BOD两个;以CO为一边的角有:∠COD一个。所以图中共有3+2+1=6个角。 试一试2:数出下图中有( )个角。 例3 数出下面图中共有多少个三角形。 思路:数三角形的个数与数线段、数角的方法相同:以AB为边的三角形有:△ABC、△ABD、△ABE三个;以AC为边的三角形有:△ACD、△ACE二个;以AD为边的三角形有:△ADE一个。 所以图中共有三角形3+2+1=6个。 试一试3:数出下面图中共有( )个三角形。 专题二:找规律 专题简析:按照一定次序排列起来的一列数,叫做数列。寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

例1 在括号内填上合适的数。 (1):3、6、9、12、( )、( ) (2):1、2、4、7、11、( )、( ) (3): 2,6,18,54,( ),( ) 思路:第(1)小题:前一个数加上3就等于后一个数,相邻两个数的差都是3。所以( )里分别填15和18; (2)第(2)小题:相邻两个数的差依次是1,2,3,4……这样下一个数应为11增加5,所以应填16;再下一个数应比16大6,填22。 (3)第(3)小题:后一个数是前一个数的3倍,所以( )里应分别填162和486。 试一试1:先找规律再填数。 (1)2,4,6,8,10,( ),( ); (2)1,2,5,10,17, ( ),( ); (3)1,5,25,125,( ),( );

例2 先找出规律,再在括号里填上合适的数。 (1)15、2、12、2、9、2、( )、( ); (2)21、4,18、5、15、6、( )、( ); 思路:第(1)小题:隔着看,第1、3、5……个数依次减3,第2、4、6……个数不变。所以括号里分别应填6、2; (2)第(2)小题:隔着看,第1、3、5……个数依次减3,第2、4、6……个数依次加1。所以括号里里分别应填12和7。 试一试2:先找规律再填数。 (1)2、1、4、1、6、1、( )、( ); (2)1、15、3、13、5、11、( )、( );

例3 先找出规律,再在括号里填上合适的数。 (1)2、5、14、41、( ); (2)252、124、60、28、( ); (3)1、2、5、13、34、( ); (4)1、4、9、16、25、36、( )。 思路:第(1)小题:相邻两个数,前一个数乘3减1等于后一个数,所以括号里应填122。 第(2)小题:相邻的两个数,前一个数除以2的商减2等于后一个数,所以括号里应填12。 第(3)小题:从第二项开始,每一项乘3等于它前后相邻两数的和,因而括号里应填89。 第(4)小题:依次是1、2、3、4、5、6……的平方,因而第七个数为7×7=49。 试一试3:先找规律再填数。 (1)2、3、5、9、17、( ); (2)94、46、22、10、( )、( ); (3)2、3、7、18、47、( )、( ); (4)1、8、27、64、( )、( )。 专题三 加减巧算 专题简析:加减法的巧算主要是运用“凑整”的方法,把接近整十、百、千的数看作所接近的数进行简算。要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。 可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。 例题1 计算下面各题。 (1)396+55 (2)427+1008 (3)456-298 (4)582-305 思路:396+55=400+55-4=451(多加要减去) 427+1008=427+1000+8=1435(少加要再加) 456-298=456-300+2=158(多减要加上) 582-305=582-300-5=277(少减要再减) 试一试1:速算。 (1)497+28 (2)750+1002 (3)574-397 (4)472―203 (5)402+307―297―99 例题2 你有好办法迅速计算出结果吗? (1)502+799―298―97 (2)9999+999+99+9 思路:先把每个数分别看作整千、整百、或整十数进行加减,再把零头数加减。 502+799―298―97 =500+2+800-1-300+2-100+3 =(500+800-300-100)+(2-1+2+3) =900+6 906 9999+999+99+9 =10000+1000+100+10-1-1-1-1 =11110-4 =11106 试一试2:速算。 307+201―398―99 1999+199+19

例题3 计算: 487+321+113+479 723-251+177 872+284-272 537-142-58 思路:运用加法交换律、结合律把相加、减得整数的先算出来。 487+321+113+479 723-251+177 =(487+113)+(321+479) =723+177-251 =600+700 =900-251 =1300 =649 872+284-272 537-142-58 =872-272+284 =537-(142+58) =600+284 =537-200 =884 =337 试一试3:速算。 321+127+79+73 235-125+65

483+254-183 271+97-171 425-172-28 237+(163-28)

例题4 计算下面各题: 321+(279-155) 372-(54+72) 432―(154―68) 思路:去括号时,加括号展开不变号;减括号展开要变号(即减号见面变加号) 321+(279-155) 372-(54+72) =321+279-155 =372-72-54 =600-155 =300-54 =445 =244 432-(154-68) =432+68-154 =500-154 =346 试一试3:速算。 421+(179-125) 523-(175+123)

328―(184―172)

专题四 文字算式谜 专题简析:文字算式是一种数字谜,相同的文字或英文字母应表示相同的数字,不同的文字或英文字母应表示不同的数字。解答时,要仔细观察算式的特征,认真分析,正确选择解题的突破口,最后通过尝试找寻正确答案。 例题1 下式中,每个字各代表一个不同的数字,其中“心”代表9,请问其他汉字分别代表哪个数字? 思路:“心”代表0,“心”ד心”=9×9=81,所以“少”=1,乘积就是111111111。 即:12345679×9=111111111 试一试:下面每个字代表不同的数字,这些汉字分别代表几? (1) (2) (3) 3、在下面的竖式中,a、b、c、d各代表什么数字? 专题五 填数游戏 专题简析:填数游戏不但非常有趣,而且能促使你积极地思考问题、分析问题、发展能力。填数时,要仔细观察图形,确定图形中关键的位置应填几,一般是图形的顶点及中间位置。关键位置的数确定好了,其他问题就迎刃而解了。 例题1 在下图中分别填入1——9,使两条直线上五个数的和相等,和是多少呢?

思路:(1)1—9中间的数是5,所以中心的○内填5,剩下八个数,一大一小搭配即可。 和=1+9+2+8+5=25 (2)中心的○内也可填1,剩下八个数,一大一小搭配即可。和=2+9+3+8+1=23 (3)中心的○内还可填9,剩下八个数,一大一小搭配即可。和=1+8+2+7+9=27 答:每条直线上数字的和可能是23、25、27。 试一试1:把6、8、10、12、14、16、18七个数填在下图的○中,使每排三个数及外圆上三个数的和都是32。

例题2 把数字1——8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。

思路:1——8的和是36,两个五边形上数字和是40,所以重叠部分的两个圆数字的和=40-36=4=1+3。即中间两个圆圈分别是1、3。每个五边形上其他三个圆圈数字和是20-4=16=2+6+8=4+5+7。所以本题应该这样填: 试一试2:将数字1——6填入下图中的小圆圈内,使每个大圆上4个数的和都是15。 例题3 在图中填入2——9,使每边3个数的和等于15。 思路:该题的关键是4个顶点。因为求和时这4个顶点各算了两次,多算了一次。四个顶点的和=四边的和减2——9的和=15×4-(2+3+4+5+6+7+8+9)=16。 我们可选出3+7+4+2=16填入4个顶点。 试一试3:将1——9这九个数填入下图中,使三角形每条边上四个数的和等于19,且有一个顶点的数字为1。 例题4 把1——8填入下图○内,使每边上三个数的和最大。求最大的和是多少? 思路:要使每边上三个数之和最大,容易想到把8、7、6、5填在四角,因为四个角上的数在求和时各用了两次,其他数各用了一次。由此我们可以列出求和的算式为: [(8+7+6+5)×2+4+3+2+1]÷4=62÷4 和不是整数,说明四条边上的总和要减少2才行,这只要将填在角上的5换成3即可。所以,最大的和为:(62-2)÷4=15 试一试4:把3——10填入下图○中,使每边上三个数的和最大,求最大的和是多少?

专题六 有余除法 专题简析:在有余数的除法中,要记住: (1)余数必须小于除数; (2)被除数=商×除数+余数。

例1 □÷6=8……□,根据余数写出被除数最大是几?最小是几? 思路:除数是6,根据余数比除数小,余数可填1、2、3、4、5,根据除数×商+余数=被除数又已知商、除数、余数,可求出最大的被除数为6×8+5=53,最小的被除数为6×8+1=49。

试一试1:下面题中被除数最大可填几,最小可填几?

□÷8=3……□

例2 □÷□=8……15,要使除数最小,被除数应为几? 思路:题中余数是15,除数应比余数15大,最小的应该是16。16是最小的除数,根据商×除

相关文档
最新文档