雷达
雷达

3.雷达假回波 (1)旁瓣回波 只有近距离反射雷达电磁波能力很强的物标,对旁瓣发射的电磁波 能量反射较强时,才有可能在雷达荧光屏上出现旁瓣假回波。 旁瓣回波的特点:在真回波的相同距离位置左右出现对称的假回 波,回波强度比真回波弱的多。 消除旁瓣回波的方法是调节“增益”旋钮或使用“海浪干扰抑制” 旋钮,降低回波强度。
(4)明暗扇形干扰回波 当雷达使用“自动频率跟踪(AFT)”时,若自动频率跟踪电路失调, 雷达荧光屏上将出现有规律的明暗扇形干扰回波。 消除方法:将“自动频率跟踪”转换为“手动频率跟踪”。 (5)背景噪声干扰(草波)回波 当雷达的视频放大倍数太大、物标回波太强等原因,使雷达荧光屏上回波处 电子辐射出后又重新落回到回波附近,使回波变大,造成荧光屏上出现成片的背 景噪声干扰回波。 可以通过调扫描亮度和调小增益的方法,消除背景 噪声干扰回波,但不能影响小物标回波的观测。
原因:是大气中存在一层温暖的反射层(逆温层)。
三、雷达回波识别 1.定位物标回波识别 可以用于雷达定位的物标主要有孤立的小岛、岬角、突出陡峭的海 岸、雷达应答标(racon)等。其回波的主要识别方法有: (1)根据雷达荧光屏上物标回波形状与海图上物标形状比较进行识 别。 直观,简便易行。 (2)根据已知准确船位识别。 准确,操作复杂。 (3)根据雷达航标特点识别。 直观,准确,识别方便。
6)雷达电磁波的异常传播
雷达电磁波的异常传播是在特殊环境和特殊大气条件下的传播特性。
(1)分折射(二次折射) 雷达电磁波折射系数减小,使传播方向上翘, 雷达地平能见距离减小的 现象称为分折射。 原因:在冬季冷空气移到温度较高的海面上,温差大(20℃以上),气温随高度激烈 下降或大气中相对湿度增加。 (2)过折射(超折射) 雷达电磁波折射系数增加,使电磁波的传播方向向下弯曲,雷达能见地平距离增 加的现象称为雷达电磁波的过折射。 原因:在夏季干燥的暖空气移到水温较低的海面上时,气温随高度下降变化 剧烈或相对湿度降低。 (3)大气波导 大气波导是雷达电磁波过强的超折射,形成大气层与海面循环往复的折射传 播现象,可使电磁波能量传播的很远。
雷达的工作原理

雷达的工作原理雷达是一种利用电磁波进行探测和测量的仪器。
它可以通过发射电磁波并依据波的反射情况来确定目标的位置、速度和其他相关信息。
雷达在军事、气象、导航等领域都有着广泛的应用。
雷达的工作原理基于电磁波的特性。
电磁波是由电场和磁场组成的,通过空间传播,具有一定的速度和频率。
雷达通常使用的是无线电波或者微波作为探测介质。
无线电波是一种电磁波,可以在空气中传播,并且可以被大气中一些物质(如云、水滴等)反射、散射或者吸收。
雷达由三个主要部分组成:发射机、接收机和显示设备。
发射机负责发射电磁波,接收机负责接收反射的波,并将其转化为有用的信息,显示设备则用于显示结果。
当雷达开始工作时,发射机会产生一束电磁波并将其发射出去。
这束电磁波会朝着预定方向传播,直到遇到目标或者被地物等障碍物反射回来。
当反射波回到雷达时,接收机会接收到这些波,并将其转换成电信号。
在雷达中,发射和接收都是由一个共同的天线完成的。
天线既可以用来发射电磁波,也可以用来接收反射回来的波。
雷达系统中的天线通常由一个或多个指向性的发射和接收元件组成,以便能够在特定的方向上进行探测。
接收到的反射波经过放大和处理后,可以提供目标的位置、速度、大小等相关信息。
雷达通过测量从发射到接收的时间来确定目标的距离。
速度可以通过测量反射波的频率变化来确定,而目标的大小和形状可以根据反射波的幅度和形态来推断。
雷达的探测范围受到波的频率、功率和天线的特性等多种因素的影响。
通常来说,更高频率的波具有更高的分辨率,但也更容易被地物散射吸收,限制了其探测范围。
同时,雷达的探测范围还受到天线高度、大气传播条件和目标表面反射能力等因素的影响。
雷达技术的不断发展使其在军事、气象、导航、交通等领域得到了广泛应用。
例如,在军事领域,雷达被用于目标探测、导航、火控等方面。
在气象领域,雷达可以用于检测降水、探测风暴等。
在导航和交通控制中,雷达可以用于飞行器和船只的导航和交通管制。
总之,雷达是一种利用电磁波进行探测和测量的仪器。
雷达测距工作原理

雷达测距工作原理雷达是一种常用的测距设备,通过发送电磁波并接收其反射信号来实现目标位置的测量。
雷达测距的工作原理涉及到电磁波传播、反射信号接收和测量计算等过程。
本文将详细介绍雷达测距的工作原理。
一、电磁波传播过程雷达测距主要利用无线电波在空间中传播的特性。
当雷达发射器输入电磁信号时,电磁波以光速传播,经过一定的时间后达到目标物体。
这里的时间可以通过测量发射和接收信号之间的时差来确定。
二、反射信号接收过程当电磁波与目标物体相遇时,部分能量会被目标物体吸收,而另一部分则会被反射回来。
雷达接收器会感应到这些反射信号,并将其转化为电信号进行处理。
反射信号的强度与目标物体的特性、距离和波长等因素相关。
三、测量计算过程通过测量发射信号和接收信号之间的时间差,可以得到电磁波传播的时间。
由于我们已知电磁波的传播速度是光速,可以利用这个时间和速度关系计算出目标物体与雷达的距离。
常用的计算方法有时差法、频率测量法和相位测量法等。
四、应用领域雷达测距广泛应用于许多领域。
在军事上,雷达测距可以用于敌我识别、导弹制导和目标跟踪等。
在民用领域,雷达测距可用于航空、航海、交通和天气等领域。
无论是在军事还是民用领域,雷达测距都发挥着重要的作用。
总结:雷达测距的工作原理涉及到电磁波传播、反射信号接收和测量计算等过程。
通过测量发射信号和接收信号之间的时间差,可以计算出目标物体与雷达的距离。
雷达测距广泛应用于军事和民用领域。
这一技术的发展对于提高探测精度、增强安全性和提供实时信息具有重要意义。
雷达的功能

雷达的功能雷达(Radar)是一种通过发射电磁波并接收其反射信号来探测与跟踪物体的设备。
雷达具有多种功能,包括测量距离、检测速度、确定位置和跟踪目标等。
首先,雷达可以测量目标的距离。
雷达通过发射电磁波并计算从发射到接收的时间来确定目标与雷达之间的距离。
这种距离测量功能广泛应用于军事、航空、航海、交通等领域。
例如,军事上的雷达可以测量敌军舰船或飞机与自己的距离,以便评估敌军的威胁性和采取相应的行动。
其次,雷达可以检测目标的速度。
当电磁波与目标发生接触时,部分波将被目标反射回来,这些反射波的频率会发生改变,称为多普勒频移。
通过测量多普勒频移,雷达可以确定目标的速度。
在交通监控系统中,雷达可以用于检测车辆的速度,帮助交警监测超速行为并采取相应的处罚措施。
雷达还可以确定目标的位置。
当雷达发射电磁波并接收到目标的反射信号后,它可以通过计算反射信号的方向和强度来确定目标的位置。
在航空领域,雷达可以用于航空管制系统,实时监测飞机的位置并确保飞机之间的安全间距。
此外,雷达还有跟踪目标的功能。
当目标进入雷达的监测范围时,雷达可以持续追踪目标的位置和运动。
跟踪功能被广泛应用于军事领域,例如导弹防御系统可以通过雷达追踪来袭的导弹,并计算出合适的反击策略。
雷达还具有识别目标的能力。
通过分析反射信号的特征,雷达可以区分不同类型的目标。
例如,民航雷达可以将飞机与其他杂波进行区分,使其能够识别并关注真正的飞机目标。
综上所述,雷达具有测量距离、检测速度、确定位置、跟踪目标和识别目标等多种功能。
这些功能使得雷达在军事、航空、航海、交通等领域发挥了重要的作用,提高了工作效率和安全性。
随着技术的发展,雷达的功能也在不断拓展,未来雷达将有更多应用的可能性。
雷达的知识简介

雷达的知识简介雷达是一种利用无线电波进行探测和测量的技术。
它可以通过发射电磁波并接收其反射来探测目标的位置、速度和其他特征。
雷达广泛应用于军事、航空、航海、气象和科学研究等领域。
雷达的工作原理是利用电磁波的特性,通过发射器产生的高频电磁波向周围空间传播。
当这些电磁波遇到物体时,会发生反射、散射和折射等现象。
接收器接收到反射回来的电磁波,并通过信号处理和分析,可以确定目标的位置、距离和速度等参数。
雷达的基本组成部分包括发射器、接收器、天线和信号处理系统。
发射器产生高频电磁波,并将其通过天线发射出去。
接收器接收到反射回来的电磁波,并将其转化为电信号。
天线用于发射和接收电磁波。
信号处理系统对接收到的电信号进行处理和分析,得出目标的相关信息。
雷达的应用十分广泛。
在军事领域,雷达可以用于侦察和监视敌方目标,帮助决策者做出正确的决策。
在航空和航海领域,雷达可以用于导航和防撞系统,提高航行安全性。
在气象预报中,雷达可以用于探测降水、风暴和气象现象,提供准确的天气预报。
在科学研究中,雷达可以用于探测和研究地壳的变化、大气层的结构和太空中的天体等。
雷达技术的发展也带来了许多创新和突破。
例如,通过多普勒雷达可以测量目标的速度,实现对运动目标的跟踪和监测。
通过合成孔径雷达可以提高图像的分辨率,实现对地面目标的高清观测。
此外,还有雷达干涉技术、相控阵技术等,不断推动着雷达技术的发展。
然而,雷达技术也存在一些局限性。
例如,由于电磁波的传播特性,雷达在大气层中的传播会受到影响,导致信号衰减和多径效应。
此外,雷达对目标的探测范围和分辨率也有一定限制,尤其在复杂的环境中。
雷达是一种重要的无线电技术,具有广泛的应用领域和深远的影响。
随着科技的进步和创新的推动,雷达技术将继续发展,为各个领域带来更多的创新和突破。
雷达工作原理

雷达工作原理雷达是一种利用电磁波进行探测和测量目标位置、速度及其它相关信息的仪器。
雷达技术被广泛应用于军事、航空、气象和交通等领域,具有重要的作用和意义。
下面将为您详细介绍雷达的工作原理。
一、概述雷达(Radar)是由“Radio Detection And Ranging”(无线电探测与测距)一词缩写而来。
雷达系统通过发射射频电磁波,并接收目标返回的回波信号来实现对目标的探测和测量。
雷达系统中的主要组件包括发射器、接收器、天线、处理器及显示器等。
二、雷达的工作原理雷达的工作原理可以概括为“发射-接收-处理-显示”的过程。
具体如下:1. 发射信号雷达系统中的发射器通过射频发射装置将电磁信号转换为电磁波,并通过天线辐射出去。
发射信号的参数如频率、脉冲宽度、功率等,对于雷达的性能和性能具有重要影响。
2. 接收回波当发射的电磁波遇到目标时,会发生回波。
目标对电磁波的回波信号取决于目标的散射特性和雷达系统的参数。
接收器接收回波信号,并将其转换为电信号。
3. 信号处理接收到的回波信号经过放大、滤波、时序控制等处理。
主要包括:(1)单脉冲处理:通过单脉冲技术,提取目标的距离信息。
根据回波信号的时延,可以计算出目标与雷达的距离。
(2)多普勒处理:通过多普勒频移技术,提取目标的速度信息。
根据回波信号的频率偏移,可以计算出目标的速度。
(3)脉冲压缩:通过脉冲压缩技术,使脉冲信号在时间上变短,提高测距精度。
4. 目标显示经过信号处理后,目标的相关信息将通过显示器显示出来。
包括目标的距离、速度、方位角等。
显示器的类型有液晶显示屏、示波器等。
三、雷达的特点和应用1. 雷达的特点(1)无需直接接触目标,远距离可靠探测。
(2)对于不同目标,雷达的工作方式和波段可调节。
(3)具有强抗干扰能力,能够适应恶劣环境。
(4)经过技术改进和发展,雷达具有高分辨率、高精度等优点。
2. 雷达的应用(1)军事领域:雷达在军事中有广泛应用,如目标探测、火炮测量、侦察情报收集等。
雷达工作原理

雷达工作原理雷达是一种利用无线电波进行距离测量和目标检测的设备。
它在军事、民用航空、气象和海洋等领域有着广泛的应用。
本文将介绍雷达的基本工作原理,包括发射、接收和信号处理等方面。
一、发射部分雷达的发射部分包括发射天线、发射器和功率放大器。
当雷达启动时,发射器会产生一段连续的高频信号,并通过功率放大器将信号增强。
然后,信号通过发射天线以电磁波的形式发射出去。
二、接收部分雷达的接收部分包括接收天线、接收器和信号处理器。
接收天线会接收到目标返回的电磁波信号,并将信号传递给接收器。
接收器将接收到的信号放大,然后通过信号处理器进行后续处理。
三、信号处理部分信号处理部分是雷达系统的核心组成部分。
它主要负责对接收到的信号进行处理和分析,从而实现目标检测和距离测量。
常见的信号处理算法包括脉冲压缩、MTI(动目标指示)和CFAR(恒虚警率)等。
1. 脉冲压缩脉冲压缩是雷达信号处理的重要技术之一。
它通过处理接收到的宽脉冲信号,将其压缩成窄脉冲信号。
这样可以提高雷达系统的测量精度和目标分辨能力。
2. MTIMTI技术主要用于消除雷达接收信号中的杂波干扰。
它通过比较连续两个脉冲的相位差异,检测出目标物体是否在运动。
如果目标物体静止不动,它的回波相位不会发生变化,可以将其排除在干扰信号之外。
3. CFARCFAR技术用于对雷达接收信号进行自适应阈值处理,以实现在恒定虚警率的情况下检测弱目标。
CFAR首先对接收到的信号进行统计分析,得到合适的阈值,然后与信号进行比较,判断目标是否存在。
四、工作原理总结综上所述,雷达的工作原理可以总结为以下几个步骤:1. 发射部分将连续高频信号转化为电磁波信号,由发射天线发射出去。
2. 接收部分接收目标返回的电磁波信号,并将信号传递给接收器。
3. 接收器放大接收到的信号,然后通过信号处理器进行后续处理。
4. 信号处理部分对接收到的信号进行脉冲压缩、MTI和CFAR等处理,实现目标检测和距离测量。
雷达作用范围和波束

雷达作用范围和波束
雷达是一种利用电磁波进行探测和测量的设备。
它通过发射电磁波并接收其反射信号来确定目标的位置、速度和方向。
雷达的作用范围和波束是雷达技术中的两个重要概念。
雷达的作用范围是指雷达系统能够探测和测量目标的距离和角度的范围。
作用范围取决于雷达的发射功率、接收灵敏度以及目标的特性。
通常情况下,雷达系统的作用范围可以达到几十公里甚至上百公里。
在这个范围内,雷达可以探测到各种不同类型的目标,例如飞机、船只、汽车和人。
雷达的波束是指雷达发射的电磁波在空间中的传播方向和范围。
波束的方向和大小取决于雷达的天线设计和辐射特性。
雷达系统可以通过调节天线的指向性来控制波束的方向和范围。
较小的波束可以提高雷达的分辨率和目标探测能力,但同时也限制了雷达的覆盖范围。
较大的波束可以增加雷达的覆盖范围,但会降低雷达的分辨率。
雷达的作用范围和波束对雷达系统的性能和应用有着重要的影响。
较大的作用范围和较小的波束可以提高雷达的目标探测能力和精度,适用于需要对目标进行精确测量和跟踪的应用,如军事侦察、航空导航和气象预报等。
而较小的作用范围和较大的波束则更适用于需要对大范围区域进行监测和搜索的应用,如交通监控、海上巡航和天空监测等。
雷达的作用范围和波束是雷达技术中的两个重要概念。
它们决定了雷达系统的探测能力、精度和适用范围。
了解和掌握这些概念对于设计和应用雷达系统都是至关重要的。
通过不断的研究和创新,雷达技术可以不断提升,为人类的生活和工作带来更多的便利和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名称:SJ-6000生命探测雷达
编号:Pro200931714519
型号:SJ-6000
出品公司:西安必肯科技
应用领域:地震搜救建筑物坍塌搜救雪崩搜救等典型用户:消防特勤人防专业救援队地震局等
核心优势
1、强穿透性:通过雷达发射电磁波可穿透废墟最远达24米,准确探测废墟下人体的体动、呼吸、心跳等生命信号,不受外界环境干扰;
2、精确定位:通过超宽谱雷达高分辨率特性,对被测目标的定位精度可达厘米级;
3、遥控操作:利用Wi-Fi通讯技术,对雷达进行远距离遥控操作,操作人员可远离危险的环境进行操作,遥控距离最远可达100米;
4、售后服务:完全自主研发制造,可对用户实现终身
随时上门维修,维修期间可免费提供备用设备供用户使用;
5、免费升级:当系统软件有更新时,及时给用户设备进行免费升级,提高设备的功能与性能。
SJ-6000生命探测雷达技术参数(此技术指标已列为西安必肯科技发展有限公司的企业标准)
1、雷达发射类型:超宽谱脉冲雷达
2、天线:400MHz增强型介质耦合超宽带天线
3、探测距离:最远达24m
4、穿透能力:穿透42㎝砖墙后,可探测到18m内静止生命体呼吸信号及24m内运动生命体呼吸信号
5、探测张角:≥±60º(120º)
6、探测范围
最大探测水平面积:5200 m2
最大探测锥体体积:41000 m3
7、扫描方式:分层精确扫描
8、数据传输方式:Wi-Fi无线数据传输和内置式USB 接口数据传输方式
9、遥控距离:雷达生命探测仪与掌上电脑之间为无线遥控操作,遥控距离≥100m
10、定位精度:厘米级距离定位
11、判别方式:智能判别、自动指示生命目标
12、操作系统:全中文操作系统
13、探测软件:生命体识别系统软件V12.0(算法增强版)
14、连续工作时间:≥10小时
15、时间适应性
展开时间≤1min
撤收时间≤1min
16、工作温度:-20℃~ +60℃
17、三防能力:整机具有防水、防震、防尘能力,同时具有抗冲击能力
18、探测主机及掌上电脑:人体工学和抗冲击工程设
计
19、外型尺寸
探测主机:452×358×206㎜
显示控制器:129×74×30㎜
抗震三防外包装箱:625×500×366㎜20、重量
探测主机:≤7.5kg
显示控制器:≤0.23kg
抗震三防外包装箱:8.4kg
21、装箱清单
雷达探测器主机1台
显示控制器1台
雷达探测器充电电源线1套
显示控制器充电器1套
抗震三防外包装箱1套
电池一块(内置)
部分合作用户
上一篇:警视-2穿墙探人雷达
下一篇:SJ-3000生命探测雷达
【刷新页面】【加入收藏】【打印此文】【关闭窗
口】。