实验10:微带天线(MicrostripAntenna)

合集下载

双频微带天线的研究

双频微带天线的研究

双频微带天线的研究一、本文概述随着无线通信技术的快速发展,微带天线作为一种重要的天线形式,在无线通信、雷达、卫星通信等领域得到了广泛应用。

双频微带天线作为微带天线的一种特殊形式,具有能够在两个不同频段同时工作的特点,因此在多频段无线通信系统中具有重要的应用价值。

本文旨在深入研究双频微带天线的设计理论、性能优化及其在实际应用中的表现,为双频微带天线的进一步发展提供理论支持和实践指导。

本文首先回顾了微带天线的发展历程和研究现状,介绍了双频微带天线的基本原理和设计方法。

在此基础上,对双频微带天线的关键参数进行了详细分析,包括天线的尺寸、介质基板的选取、馈电方式等,并对影响天线性能的主要因素进行了讨论。

接着,本文提出了一种新型的双频微带天线设计方案,并对其进行了仿真分析和实验验证。

仿真结果表明,该设计方案在预定频段内具有良好的阻抗匹配和辐射性能。

本文还对双频微带天线在实际应用中的性能表现进行了评估,为其在无线通信系统中的应用提供了参考依据。

通过本文的研究,不仅能够加深对双频微带天线设计理论和性能优化的理解,还能为双频微带天线在实际应用中的推广提供有力支持。

本文的研究成果也为其他类型的多频段天线设计提供了有益的借鉴和参考。

二、双频微带天线的基本理论双频微带天线是近年来无线通信领域研究的热点之一,其基本理论主要基于电磁波的传播特性和天线的辐射原理。

微带天线是一种薄型、轻质、低剖面的天线,它利用微带线或同轴线等馈电方式,将电磁波辐射到空间中。

双频微带天线则是指能够在两个不同频段内同时工作的天线,这种天线具有多频带、小型化、集成化等优点,在无线通信、雷达、卫星通信等领域具有广泛的应用前景。

双频微带天线的基本理论主要包括天线辐射原理、谐振理论、阻抗匹配等。

天线辐射原理是天线工作的基础,它涉及到电磁波的传播和辐射。

微带天线通过微带线上的电场和磁场分布,将电磁波转化为空间中的辐射波。

双频微带天线则需要在两个不同频段内实现辐射,因此需要通过设计合适的天线结构和馈电方式来实现。

微带天线工作原理

微带天线工作原理

微带天线工作原理
微带天线是一种新型的天线结构,由金属片和介质基板组成。

它的工作原理基于电磁波在金属片和介质基板之间的传播和耦合。

在微带天线中,金属片是天线的辐射元件,它可以是一块导电材料,例如铜片或铝片,形状可以是矩形、圆形或其他形状。

介质基板则是承载金属片的结构,通常由低介电常数的材料制成,例如 FR4 玻璃纤维复合材料。

当电磁波经过微带天线时,它首先与金属片相互作用。

金属片的导电性使得电磁波的能量被吸收,并在金属上产生电流。

这个电流产生的磁场将能量传递到介质基板上,并经过耦合效应进一步传播。

在介质基板中,电磁波会以两种不同的方式传播:表面波模式和耦合模式。

表面波模式是指电磁波沿着金属片和介质基板的表面传播,形成一条沿着金属边缘的电磁波路径。

耦合模式是指电磁波通过介质基板内部的微带传播,与金属片的电流产生进一步耦合效应。

通过控制微带天线的几何形状、基板材料和工作频率,可以调节微带天线的辐射特性。

例如,改变金属片的长度和宽度可以调节天线的频率响应,改变基板的厚度可以调节天线的辐射阻抗。

此外,可以通过添加补偿结构或使用补偿网络来实现天线的宽频工作。

总之,微带天线的工作原理基于电磁波在金属片和介质基板之间的传播和耦合效应。

通过优化微带天线的结构参数,可以实现对天线的频率响应和辐射特性的调节,满足不同应用的需求。

微带天线PPT

微带天线PPT
微带天线
尽管微带天线的研究思想可以追溯到1953年, 但是直到七十年代初期才被人们所重视。微带 天线是在微带电路出现后发展起来的一种新型 天线。从七十年代中期开始,从理论、技术到 应用对这种天线进行了大量的研究,至今势头 不减。微带天线主要用在微波、毫米波段。
微带天线的结构及微带电路

微带天线由一块厚度远 小于波长的介质板(称为 介质基片)和覆盖在它的 上、下两个面上的金属片 构成。其中,下面完全覆 盖介质板的金属片称为接 地板;上面的金属片如果 尺寸可以和波长相比拟, 则称为辐射元;如果上面 的金属是长窄带,就构成 了微带传输线
微带电路:是微波电路的一 种。它是一种微波信号的 传输线。类似于波导。只 是它做在印制电路板上的 带状电路。
微带天线的分类


微带贴片天线:导体贴片通常是规则形状 的面积单元 微带振子天线:它是一个窄长的条状薄片 振子 微带线型天线:它利用微带线的某种形变 来形成辐射 微带缝隙天线:它利用开在接地板上的缝 隙,由介质基片另一侧的微带线或其他馈 线对其馈电
微带天线的工作原理

微带天线的辐射机理实际上是高频的电磁泄漏。 一个微波电路如果不是被导体完全封闭,电路中 的不连续处就会产生电磁辐射。例如微带电路的 开路端, 结构尺寸的突变、折弯等不连续处也会 产生电磁辐射(泄漏)。当频率较低时, 这些部 分的电尺寸很小,因此电磁泄漏小;但随着频率 的增高,电尺寸增大,泄漏就大。再经过特殊设 计,即放大尺寸做成贴片状,并使其工作在谐振 状态。辐射就明显增强,辐射效率就大大提高, 而成为有效的天线。
间接馈电法:与贴片无直接接触, 主要是 电磁耦合法

馈电技术直接影响到天线的阻抗特性
微带天线的设计

微带天线的主要参数

微波仿真论坛微带天线练习课件

微波仿真论坛微带天线练习课件

0 (electr.)
0 (magnet.)
343 (electr.)
281 (magnet.)
0 (electr.)
0 (magnet.)
0 (electr.)
0 (magnet.)
0 max. nodes: MAXNKNO =
12
2 max. conn.: MAXNV =
10
0 max. cuboids: MAXNQUA =
– 剖分部分变量 tri_len=lambda/12 fine_tri=lambda/16 segl=lambda/15 segr=diam/2
建立模型
• 点击图标 创建矩形贴片
– 输入以下坐标 (-len_x/2,-len_y/2,0) (-len_x/2,len_y/2,0) (len_x/2,len_y/2,0) (len_x/2,-len_y/2,0)
1640 0
• 在Edges中修改模型ant中的馈源天线线段名称为feed
网格剖分
• 点击菜单Mesh\Create Mesh进行网格剖分
• 按ALT+2进行Prefeko预处理并保存项目文件
EditFeko 定义
• 按住ALT+1运行EditFeko – 填加快速多极子控制卡 FM – 填加 SF 控制卡进行长度单位换算(mm->m) – 填加 DI 介质定义控制卡
EditFeko 定义
• 完整的EditFeko
PostFeko 结果分析
• 按住Alt+4进行Feko运算 • 按住Alt+3运行PostFeko查看结果
– 由于EditFeko中第三个FF的结果没有写入输出文件,因此这里只有前两个FF的结 果

微带天线

微带天线
微带天线
用于卫星通信技术的金属贴片
01 简介
03 结构与分类 05 分析模型
ቤተ መጻሕፍቲ ባይዱ目录
02 特点 04 圆极化技术 06 运用
微带天线的结构一般由介质基板、辐射体及接地板构成。介质基板的厚度远小于波长,基板底部的金属薄层 与接地板相接,正面则通过光刻工艺制作具有特定形状的金属薄层作为辐射体。辐射片的形状根据要求可进行多 种变化。
简介
mps在1953年开始提出了微带天线的概念。但是,直到70年代初期,理论模型的建立更加完备且微波集成技 术快速发展,此时,微带天线才得以实际使用。
一般要求微带天线介质基片的介电常数小于等于10,厚度h小于等于波长;辐射器的形状可以是矩形、圆形、 三角形或其他的规则形状。辐射贴片的形状不同,辐射特性也有所差异。
由于微带阵列天线可以实现提高增益、增强方向性、提高辐射效率、降低副瓣、形成赋形波束和多波束等特 性,故微带阵列天线越来越多的应用于各个领域,而国内外的学者对于微带阵列天线的研究也给予了广泛的。
特点
优点
缺点
微带天线在结构及物理性能等方面具有许多优点。
第一,剖面低,即微带天线可以做的很薄,非常适合于高速飞机及空间飞行器使用。
多元圆极化微带天线实际上是一个微带阵列,即利用多个线极化的辐射源,在相位上相差90°,保持振幅不 变以获得圆极化波,这一原理与多馈点的单个圆极化微带天线比较类似。
分析模型
目前为了更准确地求得其辐射特性,已经出现了多种物理模型来模拟微带天线。但不管是哪种理论分析法, 它们都是在求特定边界条件下的麦克斯韦方程组,只是处理特定边界条件的方法不同,推导过程中的具体解法不 同。
已提出的物理模型有传输线模型、腔体模型、模式展开模型、金属线模型、以及辐射孔径模型等。这些方法 相互补充,各有所长,各有所短。

微波技术与天线实验报告

微波技术与天线实验报告

�����
=
2.65代入式子,可以计算出微带天线矩形
贴片的宽度,即
w = 46.26mm
(2)、有效介电常数ε������ 把h = 3mm w = 46.26mm ε������ = 2.65代入,可计算出有效介电常数,即
ε������ = 2.444 (3)、辐射缝隙的长度∆L
把h = 3mm w = 46.26mm ε������ = 2.444代入式子,可以计算出微带天线辐射 缝隙的长度,即
五、HFSS 的实验结果 根据之前的参数设计得出的 HFSS 模型如图.2,进行仿真后的结果如图.3。查
看天线信号端口回波损耗(即 S11)的扫频分析结果,给出天线的谐振点。生成 如图所示的 S11 在 1.8~3.2GHz 频段内的扫频曲线报告。从图中可以看出,当 S11 最小时,频率是 2.36GHz。
������
=
0.412ℎ
(������������ (������������
+ −
0.3)(���ℎ��� + 0.264) 0.258)(���ℎ��� + 0.8)
对于同轴线馈电的微带贴片天线,在确定了贴片长度L和宽度������之后,还需要确
定同轴线馈电点的位置,馈电点的位置会影响天线的输入阻抗,在微波应用中通
算结果就可以达到足够的准确,因此设计中参考地的长度������������������������和宽度������������������������只需 满足以下两式即可
������������������������ > L + 6h ������������������������ > w + 6h
标(������������, ������������),即

微带线天线研究

微带天线研究摘要通信系统的开展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,很具有研究前景与实用意义。

特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。

本文简要介绍了微带天线和微带缝隙天线的分类、分析方法、主要参数,然后提出了一种三角形缝隙微带天线。

在介质基板的一面一个三角形缝隙,另一面采用一个等腰三角形微带线进行馈电。

通过仿真给出了天线的s参数,VSWR和方向图。

关键词:天线参数,微带天线,微带缝隙天线,三角形缝隙微带天线设计目录一、绪论 (3)1.1 简介 (3)1.2 微带天线的开展 (3)1.3 微带天线的特点 (3)二、微带天线根本知识 (4)2.1 微带天线的辐射机理 (4) (4) (5)2.3.1 输入导纳 (5)2.3.2 辐射电阻和品质因数 (5)2.3.3 带宽 (6)2.3.4 方向性系数、增益和天线效率 (6)2.3.5 方向图 (7)2.4 鼓励方法 (7)2.4.1 微带馈电 (7)2.4.2 同轴线馈电 (8)三、微带缝隙天线 (8)3.1 矩形缝隙天线 (9)3.1.1 输入阻抗 (9)3.1.2 方向图 (11)3.2 环形缝隙天线 (11)3.3 锥形缝隙天线天线 (12)四、三角缝隙宽缝微带天线 (13)4.1 天线设计与性能 (13)4.2 软件仿真 (14)参考文献 (15)一、绪论微带天线〔microstrip antenna〕是在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。

微带天线分2 种:①贴片形状是一细长带条,那么为微带振子天线。

②贴片是一个面积单元时,那么为微带天线。

如果把接地板刻出缝隙,而在介质基片的另一面印制出微带线时,缝隙馈电,那么构成微带缝隙天线。

第5章 缝隙天线与微带天线解析

非辐射缝隙:f
第5章 缝隙天线与微带天线
三、 缝隙天线阵(Slot Arrays)
为了加强缝隙天线的方向性,可以在波导上按一定的规律开 出一系列尺寸相同的缝隙,构成波导缝隙阵。
1. 谐振式缝隙阵
特点:波导上所有缝隙都得到同相激励,最大辐射方向与天线轴 垂直,为边射阵,波导终端采用短路活塞。
缺点:波导波长λg大于自由空间波长,缝隙阵会出现栅瓣,同时
振子辐射场的极化方
f ( ) cos(kl cos ) cos kl
向相互正交,其它特
sin
H面 性完全相同。
第5章 缝隙天线与微带天线
半 波 缝 隙 天H面线 方的 向 图 z
y
x< 0
x> 0
(a)电力线;
(b)磁力线
二、 第缝5章隙天缝线隙天线与微带天线
最基本的缝隙天线是由开在矩形波导壁上的半波谐振缝隙构成的。
成非谐振式缝隙阵。
由传输线理论可知,图a相邻缝隙的相位依次落后
2 g
d
对于图 (b)的缝隙天线阵,相邻缝隙除行波的波程差
2 g
d
之外,
还有附加的180°相移,所以相邻缝隙之间的相位差将沿行波方向
依次落后
。 2 d g
第5章 缝隙天线与微带天线
非谐振缝隙天线阵的特点: 1、最大辐射方向偏离阵法线的角度为:
是曲面形状。
(a)
(b)
(a)圆突—矩形波导缝隙天线;(b)扇面波导缝隙天线 工程上波导缝隙天线阵的方向系数的估算公式:
D 3.2N
第5章 缝隙天线与微带天线
第二节 微带天线
微带天线(Microstrip Antennas):
由导体薄片粘贴在背面有导体接地板的介质基片上形成的天线。 优点: 1、体积小,重量轻,低剖面,能与载体共形; 2、制造成本低,易于批量生产;天线的散射截面较小; 3、能得到单方向的宽瓣方向图,最大辐射方向在平面的法线方向; 4、易于和微带线路集成; 5、易于实现线极化和圆极化,容易实现双频段、双极化等多功能

微带天线实验报告

实验课题:天线参数的分析仿真实验目的:运用HFSS 的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率7.55GHz ,天线结构尺寸如图所示,俯视图:侧视图材料:Ground Plane-PecSubstrate-Rogers RT/Duriod 5880Patch-pecFeedline-pec实验内容:1. 设置激励终端求解方式:HFSS>Solution type>Driven Termin2. 设置模型单位:3D Modeler>Units 选择mm3. 建立微带天线模型(1) 创建Ground plane,尺寸为x:28.1 y:32 z:0.05 修改名称为ground,修改材料属性为pec ,设置理想金属边界:选择ground ,点击HFSS>Boundaries>Assign>Perfect E ,将理想边界命名为:PerfE_ground(2) 建立介质基片:点击Draw>Box , x: -14.05,y: -16,z: 0,dx: 28.1,dy: 32,dz: 0.794,修改名称为sub ,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色(3) 建立天线模型patch ,点击Draw>Box ,x::-6.225,y:-8,z:0.794, dx: 12.45,dy: 16,dz: 0.05,命名为patch_1,点击Draw>Box ,x:-3.1125,y:-8,z:0.794, dx:2.46,dy: -8,dz: 0.05,命名为tatch_2,选中tatch_1和tatch_2,点击3D Modeler>Boolean>Unite ,修改名称为Trace ,修改材料属性为pec4 建立端口 需要首先创建供设置端口用的矩形,该矩形连接馈线与地(1)创建Port :3D Modeler>Grid Plane>XZ , x: -3.1125,y: -16,z: -0.05, dx:2.46,2.460.05dy: 0,dz: 0.894,命名为port(2)选中port,点击HFSS>Excitations>Assign >Lumped Port,在General标签中,将该端口命名为p1,点击Next,在Modes标签的Integration Line中点击None,选择New 里呢,输入x: -1.8825,y: -16,z: -0.05,dx: 0,dy: 0,dz: 0.894,点击Next直到结5 创建Air:Draw>box,输入x: -40,y: -40,z: -20,dx:80,dy: 80,dz: 40,修改名字为Air,设置辐射边界,点击HFSS>Boundaries >Radiation,命名为Rad16 设置边界条件。

微带天线工作原理

微带天线工作原理微带天线是一种广泛应用于通信系统中的天线结构,它具有结构简单、制作方便、性能可调和工作频段宽等优点,因此在无线通信系统中得到了广泛的应用。

微带天线的工作原理是基于微带线与辐射负载之间的耦合效应,通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

本文将从微带天线的基本结构、工作原理和特点等方面进行详细介绍。

1. 微带天线的基本结构。

微带天线的基本结构包括微带线、辐射负载和基底板三部分。

微带线是由金属导体和绝缘基底组成的,其长度和宽度决定了天线的工作频率和阻抗匹配特性。

辐射负载是用来辐射电磁波的部分,通常是一个金属片或贴片,其结构和尺寸对天线的辐射特性有重要影响。

基底板是支撑微带线和辐射负载的部分,通常采用介质常数较小的材料,如陶瓷基板或塑料基板。

2. 微带天线的工作原理。

微带天线的工作原理主要是基于微带线与辐射负载之间的耦合效应。

当微带线上有高频电流通过时,会在微带线和基底板之间产生电磁场,这个电磁场会通过辐射负载辐射出去,从而实现天线的辐射功能。

微带线的长度和宽度决定了天线的工作频率,而辐射负载的结构和尺寸则影响了天线的辐射特性。

通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

3. 微带天线的特点。

微带天线具有结构简单、制作方便、性能可调和工作频段宽等特点。

首先,微带天线的制作工艺相对简单,可以采用印制电路板工艺进行批量生产,成本较低。

其次,微带天线的结构参数可以通过调节微带线和辐射负载的尺寸来实现对天线的频率、阻抗和辐射特性的调节,具有较好的可调性。

最后,微带天线的工作频段较宽,可以满足不同频段的通信需求。

总结:微带天线是一种在无线通信系统中广泛应用的天线结构,其工作原理是基于微带线与辐射负载之间的耦合效应。

通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

微带天线具有结构简单、制作方便、性能可调和工作频段宽等特点,因此在无线通信系统中得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十: 微带天线(Microstrip Antenna ) **
一、实验目的:
1.了解天线之基原理与微带天线的设计方法。

2.利用实验模组的实际测量得以了解微带天线的特性。

二、预习内容:
1.熟悉天线的理论知识。

2.熟悉天线设计的理论知识。

三、实验设备:
四、理论分析:
天线基本原理:
天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。

所以天线亦可视为射频发收电路与空气的信号耦合器。

在射频应用上,天线的类型与结构有许多种类。

就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole )、双极型(Dipole )、喇叭型(Horn )、抛物型(Parabolic Disc )、角型(Corrner )、螺旋型(Helix )、介电质平面型(Dielectric Patch )及阵列型(Array )天线,如图9-1所示。

就使用频宽来分别有窄频带型(Narrow-band,10%以下)及宽频带型(Broad-band,10%以上)。

(a)单极型
(b)偶极型 (c)喇叭型
λ/ 2
图9-1 常见天线
(一)天线特性参数
1. 天线增益(Antenna Gain ’G ):
isotropic
P P G =
其中 G ——天线增益
P ——与测量天线距离R 处所接收到的功率密度,Watt / m 2
Pisotropic —— 与全向性天线距离R 处所接收到的功率密度,Watt / m 2
由此可推导出,与增益为G 的天线距离R 处的功率密度应为接收功率密度:
2
4R P G P tx rec ⋅⋅=
π
其中 G ——天线增益
P tx ——发射功率,Watt / m 2 R ——与天线的距离,m
2. 天线输入阻抗(Antenna Input Impedance ’Zin ):
I
V Z in =
其中 Z in ——天线输入阻抗
V ——在馈入点上的射频电压 I ——在馈入点上的射频电流
以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。

3. 辐射阻抗(Radiation Resistance ’Rrad ): 2i
P R av
rad
= 其中Pav ——天线平均辐射功率,W
i ——馈入天线的有效电流,A
(d)抛物面
(e)螺旋型 (f)阵列型
I ——在馈入点上的射频电流
对一半波长天线而言,其辐射阻抗为73Ω。

4. 辐射效率(Radiation Efficiency ’ ηr ):
input radiated
r P P =
η
其中P radiated ——由天线幅射出的功率,W
P input ——由馈入天线的功率,W
5. 辐射场型(Radiation Pattern )
天线的电场强度与辐射功率的分布可利用一极坐标图来表示。

以偶极天线为例。

6.
(a)功率增益的幅射场型
(b )辐射场型的立体图
偶极天线
6.半功率角(Radiation Beam Width ) (1) 由电场辐射场型定义
(2) 由功率辐射场型定义
7. 方向系数(Directivity ’D ):
av
P P D max
=
其中P max ——最大功率密度,W/m 2 P input ——平均幅射功率密度,W/m 2
常见天线的方向系数如下列: 1.偶极天线(Dipole ):D = 1.5 or 1.76 dB 2.单极天线(Monopole over ground plane ):D = 1.5 or 1.76 dB 3.抛物形的碟型天线(Parabolic Dish ):
()2
2
λπd D ≈
4.喇叭型天线(Horn Antenna ): 2
10λA
D ≈
其中 d ——抛物面半径,
m
λ——信号波长,m2
A——喇叭口面面积
微带天线设计步骤(以900MHz圆形微条天线(Circular Patch)为例):步骤一、确定参数
⑴设计频率,fo(GHz)=0.9
⑵最大输入驻波比,SWR=2.0:1
⑶基板参数:高度,h(cm)=0.16
介电常数,Er=4.5(forFR4)
损耗正切(Loss Tangent),TAND=0.015(forFR4)
对铜相对导电系数,RHO(一般设为1.0)=1.0 步骤二、利用设计软件(cpatch.exe)求出(1)圆形天线的半径和输入阻抗约为50ohm时,(2)接头馈入位置及设计频率的(3)输入阻抗。

(1)PATCH RADIUS=4.580cm
(2)FEED LOCATION=1.800cm
步骤三、利用设计软件(patchd.exe)求出(1)天线的总Q值、(2)辐射效率(Radiation Efficency)、(3)总效率(Overall Efficiency)、(4)天线
频带宽度(Patch Bandwidth )。

SUBSTRATE HEIGHT = 0.1600cm
SUBSTRATE RELATIVE DIELECTRIC CONSTANT = 4.50 SUBSTRATE LOSS TANGENT = 0.0150
CONDUCTOR RELATIVE CONDUCTIVITY = 1.000 PATCH RADIUS = 4.580cm PEED LOCATION = 1.800cm FREQUENCY = 0.9000GHz
RESULT INPUT RESISTANCE = 50.90 ohms
(1) PATCH TLTAL Q = 47.639
(2) RADIATION EFFICIENCY = 95.97% (3) OVERALL EFFICIENCY = 21.10% (4) PATCH BANDWIDTH = 1.48% FOR A 2.00:1 SWR
步骤四、利用设计软件(cirpat,exe )求得天线的辐射方向图(Radiation Pattern )
H-plane E-plane 180 O 0 O
90 O 270 O
H-plan E-plan PATTERN
ANGLE(deg)
图10-5为圆形微带天线的结构图
五、硬件测量:
1.对MOD-10A,MOD-10B ,天线的测量以了解天线的特性。

2.准备电脑,测量软件,RF-2000相关模组,若干小器件等。

3.测量步骤:
⑴ 设定频段。

⑵对模组P1端子做S11测量,并将测量结果记录于表(*-*)中。

4.实验记录:实验记录所记的表格*-*为下面此表:
5.硬件测量的结果建议如下为合格:
0.16 cm
RF2KM10-1A MOD-10A(908-920MHZ) S11≤-10dB Typical
RF2KM10-2A MOD-10B(908-920MHZ) S11≤-10dB Typical
6、待测模组方框图:
微带天线1
微带天线2
六、参考资料:
1.Robert ,Sainati,CAD of Microstrip Antenna for Wireless Applications,Artech House,Inc.,1996,Chap 1~3
2.H.F.Lee & Wei Chen , Advanced in Microstrip and Printed Antennas,John Wiley & Sons,Inc.,1997,Chap 1,5
3.Pozar & Schaubert,Microstrip Antennas,IEEE PRESS1995,pp.3-15 4.Edgar Hund , Microwave Communications,McGraw-Hill,Inc.1989,pp.286-300
5.Peter Vizmuller , RF Design Guide , Aretech House,Inc.1995,pp.207-209
NEC-Win Pro User’s Manual,Nittany Scientific , Inc.1997,pp.2-12~2-25。

相关文档
最新文档