矮墩连续梁桥抗震设计方法
连续梁桥墩按新抗震规范设计方法

连续梁桥墩按新抗震规范设计方法的探讨摘要:我国于2008年8月颁布了《公路桥梁抗震设计细则》(jtg/t b02-01-2008),08规范于2008年10月1日起实施,08规范运用了延性抗震设计思想及能力保护设计思想。
在08的抗震设计思想方法下,连续梁桥的固定墩设计与以往的设计方法发生了巨大的变化。
根据对08颁布的《公路桥梁抗震设计细则》的理解,针对连续梁固定墩的抗震设计思想,分别对连续梁桥固定墩桥墩、基础、固定支座等不同部位的抗震设计方法进行了探讨。
关键词:连续梁桥墩设计设计方法抗震设计方法continuous beam bridge piers designed according to the new method of seismic codewang shutaoshanghai municipal engineering design institute group design institute co., ltd. foshan smetanasummary: china in august 2008 issued a “highway bridge seismic design rules”(jtg / t b02-01-2008), 08 standard on october 1, 2008 come into effect, 08 the use of a standardized design and seismic ductility capacity protection design. seismic design in the 08’s way of thinking, the continuous girder bridge pier design and fixed the previous design has undergone tremendous changes. based on 08 issued a “highway bridge seismic design details,” the understanding of thefixed pier for seismic continuous beam design, respectively, continuous bridge fixed pier pier, foundation, fixed bearing different parts of the seismic design methods are discussed.keywords: continuous beam pier design seismic design method design methods2 08抗震规范的两个基本思想2.1延性抗震设计思想在强震作用下,连续梁桥一联的纵向水平地震力大部分由固定墩承受。
桥梁震害及抗震设计方案

桥梁震害及抗震设计方案摘要:我国地域辽阔,自然环境复杂多变,并且部分地区地处地震带,极易因地震受到损害,并且部分地区地震烈度较高,地质灾害频发,给桥梁建设带来较大的技术难题和施工风险。
桥梁是重要的基础设施,在抗震救灾与交通运输方面具有重要作用,桥梁如果不具备良好的抗震性能,将会在地震灾害来临时导致交通中断,增加救援的难度,后续交通运输也面临诸多问题,重新建设也会耗费大量成本。
因此,桥梁设计中必须要注重抗震设计,积极采用抗震设计方式与加固技术措施,延长桥梁结构的使用寿命,保证抗震性能。
关键词:桥梁;震害;抗震设计引言随着“一带一路”发展战略的推进和深入,西部地区作为陆上丝绸之路的必经之地,必须加速基础设施建设,带动地区社会经济,以适应国家发展战略的需求。
斜拉桥作为典型的大跨度桥梁,在跨越深山峡谷方面具有较好的优势,但面对高地震烈度时,其抗震性能仍值得重点关注和深入研究。
1桥梁震害桥梁地震危害主要包含下列几个方面:1)支座。
在桥梁抗震减伤的需求方面,对于支座的设计往往未引起设计师的足够重视,在桥梁结构中连接与支档之间构造措施不足的问题时有发生,并且桥梁建设中时常出现支座材料质量不高或型号不准等问题,这极大地影响桥梁抗震的效果,成为目前桥梁抗震的薄弱环节。
2)落梁。
落梁是经常发生的一种位移震害。
其发生的主要原因较多,包含但不限于桥台的倾斜或倒塌、河岸边际的滑坡、桥墩损坏、相邻桥墩间出现较大的相对位移等。
3)下部结构及其基础。
每次桥梁震害发生过后都必须采取相对应的震后检查修复处理措施,但下部结构以及基础出现巨大的破坏时,往往具有不可逆性,目前还没有较为良好的解决办法。
桥梁墩台发生破坏主要是由河岸滑坡、沙土液化、地基下沉等因素引起的,且通过改善其抗震能力很难彻底消除其产生的危害。
震后桥梁受灾如图1所示。
图1桥梁倒塌2抗震设计标准在桥梁抗震设计的工作中,设计模型能够为工作提供一定便利,实现大体预测和诸多关于抗震设计效果的数据信息。
桥梁工程抗震设计的主要内容和方法

桥梁工程抗震设计的主要内容和方法通过本学期所学的《土木工程地质》,我们初步了解到了桥梁工程。
桥梁是交通生命线工程中的重要组成部分,震区桥梁的破坏不仅直接阻碍了及时救灾行动,使得次生灾害加重,导致生命财产以及间接经济损失巨大,而且给灾后的恢复与重建带来困难。
在近30年的国内外大地震中,桥梁破坏均十分严重,桥梁震害及其带来的次生灾害均给桥梁抗震设计以深刻的启示。
在以往地震中城市高架桥或公路上梁桥的墩柱的屈曲、开裂、混凝土剥落、压溃、剪断、钢筋裸露断裂等震害,桥梁防震越来越受到各国工程师的重视。
所以结合所学现代刚桥等知识及搜集的资料,本文将大致讲述桥梁工程抗震设计的主要内容和方法。
首先我们了解下地震带给桥梁的具体破坏影响,这样才可以采取相应措施来防止。
桥梁上部结构由于受到墩台、支座等的隔离作用,在地震中直接受惯性力作用而破坏的实例较少,由于下部结构破坏而导致上部结构破坏则是桥梁结构破坏的主要形式,下部结构常见的破坏形式有以下几种:1) 支承连接部件失败:固定支座强度不足、活动支座位移量不够、橡胶支座梁底与支座底发生滑动,在地震力作用下支座破坏,致使梁体发生位移导致落梁。
2)墩台支承宽度不满足防震要求,防落梁措施设计不合理,在地震力作用下,梁、墩台间出现较大相对位移,导致落梁现象的发生.3)伸缩缝、挡块强度不足,在地震力作用下伸缩缝碰撞破坏挤压破坏、挡块剪切破坏,都起不到应有作用,导致落梁。
接下来将从两个方面讲述抗震设计。
抗震设计的主要内容目前桥梁工程的设计主要配合静力设计进行,但贯穿整个桥梁设计的全过程。
与静力设计一样,桥梁工程的抗震设计也是一项综合性的工作。
桥梁抗震设计的任务,是选择合理的结构方式,并为结构提供较强的抗震能力。
具体来说,有以下三个部分:1 正确选择能够有效抵抗地震作用的结构形式;2 合理的分配结构的刚度,质量和阻尼等动力参数,以便最大限度的利用构件和材料的承载和变形能力;3 正确估计地震可能对结构造成的破坏,以便通过结构丶构造和其他抗震措施,使损失控制在限定的范围内.一丶抗震设计流程桥梁工程的设计一般都要包括五个部分,抗震设防标准选定,抗震概念设计,地震反应分析,抗震性能验算和抗震构造设计。
桥梁工程中桥梁抗震设计

路桥科技169 桥梁工程中桥梁抗震设计鲍 伟(安徽省公路桥梁工程有限公司,安徽 合肥 230031)摘要:近年来,我国社会经济快速发展,桥梁工程的建设速度也不断加快。
桥梁的抗震设计也成为一个重要的话题,尤其是处于地震带的区域,更要在桥梁工程的设计时考虑好抗震设计,确保桥梁在使用过程中的安全性与可靠性,满足我国社会经济的发展需求。
基于此,本文将对桥梁工程中桥梁抗震设计进行分析。
关键词:桥梁工程;桥梁抗震设计;桥梁设计1 桥梁震害分析 在城市现代化发展进程中,城市人口形成了聚集状态,加快了区域内经济发展进程。
交通网络应用在城市命脉主体中,旨在全面提升城市抗震性能,加强桥梁抗震效果设计。
依据最近几十年实际发生的地震灾害事件,桥梁工程在地震灾害中极易遭受破坏,作为抗震防灾的关键环节。
桥梁工程在发生破坏时,将会阻断受灾区的交通线路,提升灾区救援困难,使地震引起的关联灾害持续深化,增加了救灾、灾后建设等工作的难度。
与此同时,桥梁在社会组织作为交通性基础设施,在建设时投入大量资金,极具公共性,灾后运维管理存在多重阻碍。
为此,加强桥梁抗震设计,尽可能地减少桥梁在地震中产生的损失问题,保障公共区域的基本安全。
结合往期地震中桥梁震害的具体情况,大致分为四种破坏类型:第一种桥梁工程震害为上部结构破坏,第二种为支座破坏,第三种为下部结构破坏,第四种基础结构破坏。
具体表现为:(1)会对地基产生破坏。
当地震发生后,地基是最先遭受冲击的部分,如果桥梁工程的地基土质松软,对地基的破坏力会更大。
(2)会对桥墩产生破坏。
在发生地震后,桥墩会在地震波的影响下出现偏移,这时就会剪断支座锚栓,极有可能造成桥段断裂或者桥梁坍塌。
(3)会对桥梁支座产生破坏。
当地震发生时,地震的破坏力会得到支座的阻挡与消除,虽然支座能对桥梁主体进行保护,但支座被破坏后,也会发生落梁的问题。
所以,需要做好抗震设计,降低地震产生的破坏。
2 桥梁工程中桥梁抗震设计 地震灾害所导致的桥梁垮塌、墩柱破坏、支座位移过大等震害将直接影响路网畅通甚至造成严重生命和财产损失,这引发了建设行业对抗震设计理念和设计方法的重视。
地震作用下桥梁结构的抗震设计

地震作用下桥梁结构的抗震设计地震,作为一种破坏力极强的自然灾害,常常给人类社会带来巨大的损失。
桥梁作为交通网络的重要组成部分,其在地震中的安全性至关重要。
因此,对桥梁结构进行科学合理的抗震设计,是保障人民生命财产安全、确保交通生命线畅通的关键。
一、地震对桥梁结构的破坏形式地震作用下,桥梁结构可能会遭受多种形式的破坏。
首先是桥梁上部结构的位移和落梁。
强烈的地震波会导致桥梁上部结构产生过大的水平位移,如果相邻梁体之间的连接不够牢固,就可能发生落梁现象,使桥梁彻底失去通行能力。
其次,桥墩的损坏也是常见的破坏形式。
桥墩可能会因为承受不住地震力而出现弯曲、剪切破坏,甚至发生倒塌。
另外,基础的破坏也不容忽视。
地震可能导致地基土的液化,使基础失去承载能力,从而引起桥梁的整体下沉或倾斜。
二、桥梁抗震设计的基本原则在进行桥梁抗震设计时,需要遵循以下几个基本原则。
一是“小震不坏”。
即在较小强度的地震作用下,桥梁结构应保持完好,不出现任何损坏,能够正常使用。
二是“中震可修”。
当遭遇中等强度的地震时,桥梁结构可能会出现一定程度的损坏,但经过修复后仍能继续使用。
三是“大震不倒”。
在强烈地震作用下,虽然桥梁结构可能遭受严重破坏,但应保证不发生整体倒塌,以避免造成更大的灾难。
三、桥梁抗震设计的方法1、静力法静力法是最早用于桥梁抗震设计的方法之一。
它将地震作用简化为一个等效的静力荷载,通过计算结构在这个静力荷载作用下的内力和变形来进行设计。
这种方法简单直观,但由于没有考虑地震的动力特性,其设计结果往往偏于保守。
2、反应谱法反应谱法是目前桥梁抗震设计中应用较为广泛的一种方法。
它基于大量地震动记录的统计分析,得到不同周期结构的地震反应谱。
通过将桥梁结构的自振周期代入反应谱,计算出结构的地震响应。
反应谱法能够较好地考虑地震的频谱特性,但对于长周期结构和非线性结构的分析存在一定的局限性。
3、时程分析法时程分析法是一种直接动力分析方法,通过输入实际的地震动加速度时程,对桥梁结构进行动力分析,得到结构在整个地震过程中的响应。
桥梁工程中的抗震设计

桥梁工程中的抗震设计抗震是桥梁工程设计的重要环节之一,它直接关系到桥梁的耐久性和安全性。
在地震频发的地区,桥梁的抗震设计更加重要。
本文将探讨桥梁工程中的抗震设计原理和方法。
一、地震力的分析和计算抗震设计首先需要对地震力进行分析和计算。
地震力的大小和方向是影响桥梁抗震性能的重要因素。
地震力的计算需要考虑到地震烈度、震源距离、土壤条件等多个因素,并结合地震学和土木工程学的理论进行分析。
通过合理的计算方法,能够准确预测桥梁在地震作用下的响应。
二、桥梁结构的抗震设计1. 抗震设计的目标桥梁结构的抗震设计目标是在地震波作用下,保证桥梁的整体稳定性和结构安全性。
一般来说,桥梁的主要抗震性能指标包括位移限值、加速度限值和应力限值等。
在设计过程中,需要根据桥梁的特点和使用环境确定相应的指标,以确保桥梁在地震中具有足够的抗震能力。
2. 结构抗震设计的方法结构抗震设计的方法有很多,其中常用的包括弹性设计、弹塑性设计和减震设计等。
弹性设计是指在地震荷载下,结构仍然处于弹性状态,通过控制应力、位移等参数,确保结构的安全性。
弹塑性设计考虑了结构的塑性变形能力,在超出弹性阶段后,通过合理的塑性形变控制,提高结构的耗能能力。
减震设计是通过设置减震装置,将地震力转化为其他形式消耗,从而减小结构的震动反应。
三、桥梁基础的抗震设计桥梁基础是支撑整个桥梁结构的关键组成部分,其抗震设计至关重要。
抗震基础设计需要考虑到地震力传递、土壤的动力特性等因素。
一般来说,桥梁基础的抗震设计可以采用加固和加深基础、选用合适的基础形式等方法,以提高基础的抗震性能。
四、监测与维护桥梁工程的抗震设计不仅仅局限于初始设计阶段,还需要在桥梁运行的全生命周期内进行监测和维护。
通过实时监测桥梁的工作状态和结构响应,能够及时发现和处理可能存在的问题,保证桥梁的安全稳定运行。
综上所述,桥梁工程中的抗震设计是确保桥梁安全的重要环节。
通过合理的地震力分析和计算、结构和基础的抗震设计,以及监测和维护工作,可以提高桥梁的抗震能力,保障桥梁的安全性和耐久性。
矮墩预应力混凝土连续梁桥减隔震体系分析

矮墩预应力混凝土连续梁桥减隔震体系分析摘要:以盈港路油墩港大桥为实际工程背景,研究不同减隔震体系对矮墩变截面预应力混凝土连续箱梁地震响应的影响. 利用动力非线性时程分析方法,对采用拉索减震支座和金属阻尼器的减隔震体系分别进行分析比较. 研究结果表明:拉索减震支座和金属阻尼器均可以提高结构的抗震性能,在多遇地震下,采用拉索减震体系的结构中产生的内力效应低于金属阻尼器减隔震体系,在罕遇地震下,由于拉索的限位作用,采用拉索减震体系的结构中产生的内力效应会高于金属阻尼器减隔震体系.关键词:桥梁工程;预应力混凝土连续梁桥;减隔震体系;减震拉索支座;金属阻尼器;非线性动力时程分析;Analysis on Seismic Isolation System for Prestressed Concrete Continuous Girder Bridge with Short PierZHANG Chen-nan(Tongji Architectural Design (Group) Co., Ltd. Shanghai 200092)Abstract:The present study examines the seismic behavior of aprestressed concrete continuous bridge with various isolation and dissipation deveice through non-linear dynamic time-history analysis. Cable-sliding friction aseismic bearings and steel hysteretic dampers are compared in the analysis. The analysis result indicates that both of the two devices can improve the seismic performance of the bridge. The internal forceeffectofcable-sliding friction aseismic bearing systemis lower than that of the steel hysteretic dampersystem under frequent earthquake, while it will be higher thanthat of steel hysteretic damper system under rare earthquake due to the restraint of the cable.keyword:bridge engineering; prestressed concrete continuous girder bridge; seismic isolation system; cable-sliding friction aseismic bearing; steel hysteretic damper; non-linear dynamic time-history analysis;0引言预应力混凝土变截面连续梁桥是在70~100m跨径桥梁中应用最为广泛的桥梁形式,这种结构的桥梁由于墩顶支点梁高较高,一般为主跨跨径的1/16左右,主墩的高度一般来说相对较矮. 由于桥墩墩顶质量相对较大,在地震作用下,虽然结构的纵、横向水平振动周期较长,在墩顶固定支座处仍会产生较大的惯性力,造成桥墩的剪切破坏或支座的剪断. 如果按照强度设计理论一味增大结构的尺寸和配筋则会造成材料的浪费,而且由于结构的地震响应与结构质量刚度密切相关的特点,在很多情况下往往会适得其反. 如何提高这类桥梁结构的抗震性能一直是工程人员研究的重点. 近年来,通过引入减震、隔震装置来提高桥梁结构的抗震性能正成为应用的热点[1].减隔震体系通过设置减隔震装置提高结构的抗震性能,常用的减隔震装置主要有整体型减隔震装置与分离型减隔震装置[2, 3]. 本文以为盈港路油墩港大桥为工程背景,对整体型拉索减震支座与分离型橡胶支座+金属阻尼器在矮墩预应力混凝土连续箱梁的减隔震体系中的应用进行比较分析,以期为类似工程应用提供参考.1工程背景盈港路规划为贯穿上海市青浦区的东西向客运走廊,连接新城-北部工业园区-赵巷镇-徐泾镇,油墩港大桥为汇金路~山周公路段跨越Ⅳ级航道油墩港的一座大桥. 主桥采用跨径布置为60m+94m+60m=214m的变截面现浇连续箱梁,按上下行双幅布置,每幅箱梁顶板宽20.5m. 由于景观造型需要,本桥则将边跨边墩处梁高增加,边跨梁底亦设计成完整弧线,与中跨外形统一,整个三孔梁底都为完整的弧线,更富韵律感. 其中跨中梁高2.2m,中支点梁高5.5m,端支点梁高 3.6m. 主桥主墩和边墩均采用圆端形与矩形组合墙式墩,截面尺寸为12.5m×3.2m,墩高4.9m~5.2m,主墩基础采用40根D120cm钻孔灌注桩基础,边墩采用28根D120cm钻孔灌注桩。
桥梁工程中的抗震与防震设计

桥梁工程中的抗震与防震设计桥梁工程在现代社会中扮演着重要的角色,连接着交通运输网络,促进着经济的发展。
然而,地震是一个可能给桥梁带来严重破坏的自然灾害。
因此,在桥梁的设计与建设中,抗震与防震设计显得尤为重要。
本文将探讨桥梁工程中的抗震与防震设计的一些关键点。
首先,了解地震特性是进行抗震设计的基础。
地震是地球内部的板块运动引起的地壳震动,具有短时间、高能量的特点。
地震的产生与地震带、板块运动等因素密切相关。
因此,在进行桥梁工程的抗震设计时,需要对该地区的地震特性进行详细的研究和分析,包括地震频率、地震波形等参数。
只有了解了地震的特性,才能设计出具有良好抗震性能的桥梁结构。
其次,采用适当的结构措施来增强桥梁的抗震性能。
桥梁结构的抗震性能是由桥梁的整体刚度和阻尼特性决定的。
为了增强桥梁的刚度,可以采用增加横向刚度的措施,如加大横向梁的剖面积分、增加横向联络梁等。
此外,还可以采用增加纵向刚度的措施,如设置纵向墩柱、加深桥墩基础等。
通过增加桥梁的刚度,可以使其在地震荷载作用下保持相对稳定的形态,从而减小破坏的可能性。
另外,在桥墩的设计中,也需要考虑到地震的影响。
桥墩是桥梁结构中的承重单元,地震作用下易受到破坏。
为了增强桥墩的抗震性能,可以采用加固措施,如设置抗震支撑、加固基础等。
此外,在选择桥墩的材料时,也需要考虑其抗震性能。
一些具有良好抗震性能的材料,如纤维增强复合材料,可以在一定程度上增强桥墩的承载能力。
在桥梁的设计与施工中,还需要充分考虑到震后维修与重建的可能性。
即使采用了先进的抗震设计措施,桥梁在地震作用下仍然有可能受损。
因此,在进行桥梁工程的规划与设计时,需要考虑到震后维修与重建的可能性。
在设计过程中,可以采用模块化设计的方式,使得桥梁的部分结构可以快速更换与维修。
此外,在施工过程中,可以采用可拆卸连接的方式,使得桥梁的部分结构更容易拆卸与更换。
这样一来,即使发生地震破坏,桥梁的维修与重建也可以更加迅速有效地进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矮墩连续梁桥抗震设计方法
矮墩连续梁桥抗震设计方法
1. 矮墩连续梁桥,结构整体刚度较大,桥墩未进入塑性;
2. 各计算方法特点:
1) 多振型叠加反应谱分析(即反应谱分析):建立在线性叠加基础之上,模型中所有的构件和连接单元均为线弹性单元;
2) 线性时程分析:只能考虑构件和连接单元的线弹性属性,用于校核时程波和反应谱计算的结构响应的匹配性,以及设定的瑞利阻尼是否合适,根据规范6.5.3条规定:“在E1地震作用下,线性时程法的计算结果不应小于反应谱计算结果的80%。
”
3) 非线性时程分析:可以考虑构件的非线性属性(例如塑性铰的属性)、连接单元的非线性属性(例如:活动支座和减隔震支座的恢复力模型),对结构进行精确分析。
3. 各计算方法的选择问题:
反应谱分析方法由于不能考虑活动支座的摩擦耗能作用,一般计算出来的结构响应均偏大,偏于安全。
对于使用反应谱结构响应进行验算不能通过的桥梁,可以考虑使用非线性时程分析方法进行计算,对非线性时程的结构响应进行验算。
4. 关键构件抗震设计的要求:对于桩基础,无论是E1还是E2均要求其处于弹性阶段,不能发生损伤;对于支座,在E1下不能
破坏,E2下可以破坏,但要合理设置挡块(剪力键);对于矮墩,要防止其剪切破坏,要对其抗剪能力进行验算及采取必要的构造措施,对于可能发生弯曲破坏的桥墩,还要对塑性铰的转动能力进行充分验算,非塑性铰区域要验算抗剪能力。
5. 减隔震结构体系的设计:
1) 采用盆式橡胶支座时,E1地震作用下,各关键构件均要
求满足规范要求;如不满足,可考虑采用减隔震支座;
2) 采用盆式橡胶支座时,E2地震作用下,如桥墩和桩基不
能完全满足规范要求,则E2要选用减隔震体系,设置减隔震支座,
以减小下部结构的地震响应,起到隔震保护关键构件安全的作用;
3) 常用的整体型减隔震装置:铅芯橡胶支座、普通隔震支座、高阻尼橡胶支座、双曲面减隔震支座、悬臂棒防落梁支座等等。
橡胶类的承载力小一些,位移小一些,后两种承载力大一些。
模拟基本上都是双线性的恢复力模型,除了普通隔震支座。
4) 分离型减隔震装置:使用(盆式支座+板式橡胶支座)的
组合装置,其中板式橡胶支座竖向不受力,水平方向承受剪切力。
活动盆式支座提供摩擦耗能作用,板式橡胶支座,可以提供一定的刚度,通过自身的变形来耗散地震能量;在强震作用下,允许(固定盆式支座+板式橡胶支座)组合中的固定支座剪坏,纵桥向变成所有桥墩一
起分担地震力,防止固定墩及其桩基发生损伤。
6. 挡块的设计原则:可以采用深梁或者牛腿的设计方法。
7. 固定支座的设计建议:对于横桥向设多排支座的连续梁桥,
可以考虑再固定墩位置设置多个固定支座,而不是单个固定支座,用以分担地震力。
8. 摩擦桩单桩轴向抗震容许承载力验算原则:对于地震这种偶然荷载,容许单桩出现拉力,验算时按照规范第4.2.3条的调整系数,进行验算。
9. 扩大桩基础的验算原则:将永久作用+地震作用组合后的结构响应作为设计荷载,按照静力验算的手段,验算扩大基础的抗滑移、抗倾覆能力。
老规范JTJ 004-89第4.3.5条中有墩、台抗震稳定性验算的规定,也可参考使用。