2020年高考数学(理)大题分解专题02 数列

2020年高考数学(理)大题分解专题02  数列
2020年高考数学(理)大题分解专题02  数列

【宁夏银川一中2019届高三第二次模拟】已知数列

}{n a 是公差不为0的等差数列,首项11=a ,且1a ,

2a ,4a 成等比数列.

(1)求数列

}{n a 的通项公式;

(2)设数列}{n b 满足n

a n n a

b 2+=,求数列}{n b 的前n 项和n T

.

【肢解1】在已知条件下求出数列

}{n a 的通项公式;

【肢解2】在“肢解1”的基础上,数列}{n b 满足n

a n n a

b 2+=,求数列}{n b 的前n 项和n T

.

【肢解1】在已知条件下求出数列}{n a 的通项公式;

【解析】设数列

}{n a 的公差为d ,由已知得,412

2a a a =,

d d 31)1(2

+=+,解得0=d 或1=d .又0≠d ,所以1=d ,可得n a n

=.【肢解2】在“肢解1”的基础上,数列}{n b 满足n

a n n a

b 2+=,求数列}{n b 的前n 项和n T .【解析】由“肢解1”得n

n n b 2+=,

所以

)2()23()22()21(321n

n n T ++???++++++=)

2222()321(32n n +???+++++???+++=大题肢解一

分组法求数列的前n

项和

2

212-++=+n n n n .

1.分组求和法:

一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.

2.分组转化法求和的常见类型

(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和;

(2)通项公式为a n n ,n 为奇数,

n ,n 为偶数

的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组

求和法求和.

【拓展1】已知数列

}

{n a 是公差不为0的等差数列,首项11=a ,且1a ,2a ,4a 成等比数列.

(1)求2020a ;(2)设数列

}

{n b 满足

1

4++=n n n a b ,求数列

}

{n b 的前n 项和

n

T .

【解析】(1)设数列

}

{n a 的公差为d ,由已知得,

412

2a a a =,即d d 31)1(2

+=+,解得0=d 或1=d .

又0≠d ,所以1=d ,可得n

a n =.

所以20202020=a .(2)由(1)得)

1(24++=n b n n ,

所以

]

4)1(2[)442()432()422(321n n n T +++???++?++?++?=)4444()1321(232n n +???++++++???+++=4

1)41(422

--+

+=n n n

34

34212

-

++=+n n n .

【拓展2】已知数列}{n a 是公差不为0的等差数列,前n 项和为n

S ,首项11=a ,且1a ,2a ,4a 成等比

数列.

(1)求100S ;

(2)若12+m a 是16a 与10S 的等差中项,求m 的值.

【解析】(1)设数列}{n a 的公差为d ,由已知得,412

2a a a =,即

d d 31)1(2

+=+,解得0=d 或1=d .又0≠d ,所以1=d ,可得n a n

=.所以50502

100

)1001(=+=

n S .

(2)由(1)得

n a n =,所以)1(221+=+m a m ,

1616=a ,5510=S ,

因为12+m a 是16a 与10S 的等差中项,所以5516)1(4?=+m ,解得219=m .

1.(2019年山东高考模拟)已知{}n a 是递增的等比数列,548a =,2344,3,2a a a 成等差数列.

(1)求数列{}n a 的通项公式;

(2)设数列{}n b 满足12b a =,1n n n b b a +=+,求数列{}n b 的前n 项和n S .【解析】(1)设等比数列{}n a 的公比为(0)q q >,因为24a ,33a ,42a 成等差数列,

所以324642a a a =+,即23111642a q a q a q =+,

所以2320q q -+=,解得2q =或1q =(舍去),

变式训练一

又45111648a a q a ===,所以13a =.所以1

32n n a -=?.

(2)由条件及(1)可得12326b a ==?=.

因为1n n n b b a +=+,所以1n n n b b a +-=,所以11(2)n n n b b a n ---=≥,所以()()()112211

n n n n n b b b b b b b b ---=-+-++-+ 123216n n n a a a a a ---=++++++L 1

332612

n --?=+-1323(2)n n -=?+≥.

又16b =满足上式,所以

1323(*)

n n b n -=?+∈N 所以1

12

23(122)332233323(1)12

n

n n n n S b b b n n n --?=+++=+++++=+=?+--L L .

2.(2019年湖北宜昌高考模拟)已知数列{}n a 是以3为首项,(0)d d >为公差的等差数列,且2a ,,

4a 成等比数列.

(1)求数列{}n a 的通项公式;

(2)设2n

n n b a =-,求数列{}n b 的前n 项和n S .

【解析】(1)因为2a ,,4a 成等比数列,所以2445a a ?=,即()()11345a d a d ++=.

因为13a =,所以(3)(1)15d d ++=,即24120d d +-=,所以2d =或6-(舍去),所以21n a n =+.(2)由(1)知,(21)2n

n b n =+-,

所以12n n S b b b =+++ (

)

35(21)242

n

n =++++-+++ ()212321212

n n n -++=?-

-()1(2)22n n n +=+?--12222n n n +=-+++.大题肢解二

裂项法求数列的前n 项和

(2019年广东省东莞市末调研)已知等差数列}{n a 的前n 项和为n S ,且82=a ,605=S .

(1)求数列}{n a 的通项公式;

(2)求n S S S S 1111321

+???+++的值.

【肢解1】(1)求数列}{n a 的通项公式;

【肢解2】(2)求n S S S S 1

111321

+???+++的值.

【肢解1】(1)求数列}{n a 的通项公式;

【解析】设等差数列}{n a 的首项为1a ,公差为d ,由已知条件可知??

?=+=+60

1058

11d a d a ,

解得??

?==441d a .所以n a n 4=.

【肢解2】(2)求n S S S S 1

111321

+???+++的值.

【解析】因为n n n n S n 222)

44(2+=+=

所以

1

1

1(2122112+-=+=n n n n S n ,所以n S S S S 1111321

+???+++111(3121()211[(21+-+???+-+-=n n 22111(21+=+-=n n n .

1.裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.

2.利用裂项相消法求和应注意:

(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;

(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }

是等差数列,则

1a n a n +1=1d )

11(1+-n n a a ,1a n a n +2=12d 11

(2

a a n -.【拓展1】已知等差数列}{n a 的前n 项和为n S ,且82=a ,605=S .

(1)求n S ;(2)若1

16+=

n n n a a b ,求数列}{n b 的前n 项和n T .【解析】(1)设等差数列}{n a 的首项为1a ,公差为d ,由已知条件可知??

?=+=+60

1058

11d a d a ,

解得???==441d a .所以n a n 4=,所以n n n n S n 222)44(2

+=+=.

(2)因为

n a n 4=,1

16+=n n n

a a

b ,

所以)1(4416

161+?==

+n n a a b n n n 1

11+-=n n ,

所以n

T 111()3121()211(+-+???+-+-=n n 1111+=+-=n n n .【拓展1】已知等差数列}{n a 的前n 项和为

n S ,且82=a ,605=S .

(1)求n a 2;

(2)若n a b n 22log =,求数列}1

{

1+n n b b 的前n 项和n T ..

【解析】(1)设等差数列}{n a 的首项为1a ,公差为d ,由已知条件可知???=+=+60105811d a d a ,

解得??

?==44

1d a .所以n a n 4=.所以2

2224+=?=n n n a .

(2)因为222+=n n a ,n a b n 22log =,所以2+=n b n ,

所以11+n n b b 3

1

21)3)(2(1+-

+=++=

n n n n ,所以n

T 3121()5141(4131(+-++???+-+-=n n 933131+=+-=n n n .1.(2019年重庆西南大学附中月考)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为

n T .若113a b ==,42a b =,4212S T -=.

(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.【解析】(1)由11a b =,42a b =,

则4212341223()()12S T a a a a b b a a -=+++-+=+=,

设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.

设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n

n b =;

(2)(21)3n

n n a b n +=++,

所以{}n n a b +的前n 项和为1212()()

n n a a a b b b +++++++ 2

(3521)(333)n

n =++++++++ (321)3(13)

213n n n ++-=+

-3(31)(2)2

n

n n -=++.2.(2019年广东高考模拟)等差数列{}n a 前n 项和为n S ,且432S =,13221S =.

(1)求{}n a 的通项公式n a ;

变式训练二

(2)数列{}n b 满足(

)

*

1n n n b b a n +-=∈N

且13b =,求1n b ??

?

???

的前n 项和n T .【解析】(1)等差数列{}n a 的公差设为d ,前n 项和为n S ,且432S =,13221S =.可得14632a d +=,11378221a d +=,解得15a =,2d =,可得()21253n n n a +-=+=;(2)由123n n n b b a n +-==+,

可得()()()121321n n n b b b b b b b b -=+-+-+?+-1

35721(24)(2)2

n n n n n =+++?++=+=+,所以

111122n b n n ??=- ?+??

,则前n 项和11111111111232435112n T n n n n ??=

-+-+-++-+- ?-++?? 13112212n n ??=-- ?++??

1.(2019年湖南高考模拟)已知数列{}n a 是以3为首项,(0)d d >为公差的等差数列,且2a ,,4a 成等比数列.

(1)求数列{}n a 的通项公式;

(2)设2n n n b a =-,求数列{}n b 的前n 项和n S .

【解析】(1)因为2a ,,4a 成等比数列,所以2445a a ?=,即()()11345a d a d ++=.

因为13a =,所以(3)(1)15d d ++=,即24120d d +-=,所以2d =或6-(舍去),所以21n a n =+.(2)由(1)知,(21)2n n b n =+-,

所以12n n S b b b =+++ ()

35(21)242n

n =++++-+++

()212321

212

n n n -++=?--()1(2)22n n n +=+?--12222n n n +=-+++.

2.(2019年重庆一中5月月考)已知数列{}n a 满足:1n a ≠,()11

2n n

a n a *+=-

∈N ,数列}{n b 中,1

1

n n b a =

-,且1b ,2b ,4b 成等比数列.(1)求证:数列}{n b 是等差数列;

(2)若n S 是数列}{n b 的前n 项和,求数列1n S ??

?

???

的前n 项和n T .【解析】(1)由已知得111

111

111121n n n n n n

b b a a a a ++-=

-

=-

-----1111

n n n a a a =-=--所以数列}{n b 是公差为1的等差数列;

(2)由题意可得2

214b b b =,即()()2

11113b b b +=+,所以11b =,所以1n b =,

所以(1)2n n n S +=

,所以12112(1)1n S n n n n ??==- ?++??

,所以11111212231n T n n ?

?=?-

+-+?+- ?+?

?122111n n n ?

?=?-=

?++?

?.3.(2020福建省龙岩市上杭县第一中学月考)已知等差数列{}n a 的公差0>d ,其前n 项和为n S ,若

123=S ,且3211,,2a a a +成等比数列.

(1)求数列{}n a 的通项公式;(2)记1

1

+=

n n n a a b ,且数列}{n b 的前n 项和为n T ,证明:3141<≤n T .

【解析】(1)依题意,得???=++=+12

)1(23212

231a a a a a a ,即???=+=++48)12(111d a d a a ,得0122

=-+d d .

因为0>d ,所以3=d ,所以11=a ,所以数列{}n a 的通项公式23)1(31-=-+=n n a n

(2)因为23-=n a n ,1

1

+=

n n n a a b ,

111111

((32)(31)33231n n n b a a n n n n +=

==--+-+,

所以)1

31

231(31)13)(23(1+--=+-=

n n n n b n ,

所以n n b b b b T +???+++=321)]131231()7141(411[(31+--+???+-+-=

n n 1

31311(21+=+-=n n n ,因为*

∈N n ,所以

0131>+n ,故3

1

1

故3

141<≤n T .4.(2019·山东高考模拟)已知{}n a 是递增的等比数列,548a =,2344,3,2a a a 成等差数列.

(1)求数列{}n a 的通项公式;

(2)设数列{}n b 满足12b a =,1n n n b b a +=+,求数列{}n b 的前n 项和n S .【解析】(1)设等比数列{}n a 的公比为(0)q q >,因为24a ,33a ,42a 成等差数列,

所以324642a a a =+,即23111642a q a q a q =+,所以2

320q q -+=,解得2q =或1q =(舍去),

又4

5111648a a q a ===,所以13a =.所以132n n a -=?.(2)由条件及(1)可得12326b a ==?=.

因为1n n n b b a +=+,所以1n n n b b a +-=,所以11(2)n n n b b a n ---=≥,

所以()()()112211n n n n n b b b b b b b b ---=-+-++-+ 123216

n n n a a a a a ---=++++++L 1332612

n --?=+-1323(2)n n -=?+≥.

又16b =满足上式,所以1323(*)

n n b n -=?+∈N 所以1

12

23(122)33223

3323(1)12

n

n n n n S b b b n n n --?=+++=+++++=+=?+--L L

5.(2020福建省厦门外国语学校高三上学期12月月考)已知数列的前n 项和为n S ,满足:11a =,

11n n n S S a +-=+,数列{}n b 为等比数列,满足13b 4b =,211

4

b b =

<,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)若数列11n n a a +???

???

的前n 项和为n W ,数列{}n b 的前n 项和为n T ,试比较n

W 与1

n T 的大小.【解析】(1)11a =,1S 1n n n S a +-=+,可得11n n a a +=+,即数列{}n a 为首项和公差均为1的等差数列,所以n a n =;数列{}n b 为等比数列,满足134b b =,211

4

b b =<,*n ∈N .设公比为q ,可得2

114b b q =,可得1

2

q =±

,即有12q =时,11124b =,可得11124b =>;12q =-不成立,舍去,所以12n

n b ??

= ???

(2)

()11111

11

n n a a n n n n +==-

++,1111112231n W n n =-

+-++-+ 11111

n n n =-=<++;()11112210,11212

n n n T ??- ???

==-∈-,则11n T >,

即有1n n

W T <

.6.(201湖南高考模拟)已知数列{}n a 是以3为首项,(0)d d >为公差的等差数列,且2a

,,4a 成等比数列.

(1)求数列{}n a 的通项公式;

(2)设2n n n b a =-,求数列{}n b 的前n 项和n S .【解析】(1)因为2a

,,4a 成等比数列,所以2445a a ?=,即()()11345a d a d ++=

.

因为13a =,所以(3)(1)15d d ++=,即24120d d +-=,所以2d =或6-(舍去),所以21n a n =+.(2)由(1)知,(21)2n n b n =+-,

所以12n n S b b b =+++ ()

35(21)242n

n =++++-+++ ()212321212n n n -++=?-

-()1(2)22n n n +=+?--12222n n n +=-+++.

7.(2020河北省邢台市高三上学期第二次月考)设等比数列{}n a 的前n 项和为n S ,且

()

*231n n S a n =-∈N .

(1)求{}n a 的通项公式;

(2)若()()

1311n n n n b a a +=++,求{}n b 的前n 项和n T .

【解析】(1)等比数列{}n a 的前n 项和为n S ,且()

*231.n n S a n =-∈N ①当1n =时,解得11a =.当2n ≥时11231n n S a --=-②

-①②得1323n n n a a a --=,所以

1

3(n

n a a -=常数),故1

113

3n n n a --=?=.

(2)由于1

3

n n a -=,所以()()1133111123131n n n n n n b a a -+??

==- ?++++??

所以011311113112313131312231n n n n T -????

=

-+?+-=- ? ?+-+++????

8.(2020甘肃省武威第六中学高三上学期第五次过关考试)已知等差数列{}n a 中,公差0d ≠,735S =,且2a ,5a ,11a 成等比数列.

(1)求数列{}n a

的通项公式;

(2)若n T 为数列11n n a a +?

?

????的前n 项和,且存在*n ∈N ,使得10n n T a λ+-≥成立,求实数λ的取值

范围.

【解析】(1)由题意可得()()()121

1176735,2410,a d a d a d a d ??

+=???+=++?即12

135,2.

a d d a d +=??=?又因为0d ≠,所以12,

1.a d =??

=?

所以1n a n =+.(2)因为

()()11111

1212

n n a a n n n n +==-

++++,所以111111

233412n T n n =

-+-++-=

++ ()

112222n n n -=++.因为存在*N n ∈,使得10n n T a λ--≥成立,所以存在*N n ∈,使得

()

()2022n

n n λ-+≥+成立,即存

在*

N n ∈,使得()

2

22n n λ≤

+成立.

()

2

111

4416222424n n n n n n =

?≤????+++++ ? ?

????

(当且仅当2n =时取等号).

所以116λ≤

,即实数λ的取值范围是1,16?

?-∞ ??

?

.

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考理科数学专题复习题型数列

第8讲数列 [考情分析]数列为每年高考必考内容之一,考查热点主要有三个方面:(1)对等差、等比数列基本量和性质的考查,常以客观题的形式出现,考查利用通项公式、前n项和公式建立方程(组)求解,利用性质解决有关计算问题,属于中、低档题;(2)对数列通项公式的考查;(3)对数列求和及其简单应用的考查,主、客观题均会出现,常以等差、等比数列为载体,考查数列的通项、求和,难度中等. 热点题型分析 热点1等差、等比数列的基本运算及性质 1.等差(比)数列基本运算的解题策略 (1)设基本量a1和公差d(公比q); (2)列、解方程(组):把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,以减少运算量. 2.等差(比)数列性质问题的求解策略 (1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解; (2)牢固掌握等差(比)数列的性质,可分为三类:①通项公式的变形;②等差(比)中项的变形;③前n项和公式的变形.比如:等差数列中,“若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*)”;等比数列中,“若m+n=p+q,则a m·a n=a p·a q(m,n,p,q∈N*)”.

1.已知在公比不为1的等比数列{a n }中,a 2a 4=9,且2a 3为3a 2和a 4的等差中项,设数列{a n }的前n 项积为T n ,则T 8=( ) A.12×37-16 B .310 C.318 D .320 答案 D 解析 由题意得a 2a 4=a 23=9.设等比数列{a n }的公比为q ,由2a 3为3a 2和a 4 的等差中项可得4a 3=3a 2+a 4,即4a 3=3a 3 q +a 3q ,整理得q 2-4q +3=0,由公比 不为1,解得q =3.所以T 8=a 1·a 2·…·a 8=a 81q 28=(a 81q 16 )·q 12=(a 1q 2)8·q 12=a 83· q 12=94×312=320.故选D. 2.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5 +a 8=0,S 9=27,则S 8的值是________. 答案 16 解析 解法一:由S 9=27?9(a 1+a 9) 2=27?a 1+a 9=6?2a 5=6?2a 1+8d =6 且a 5=3.又a 2a 5+a 8=0?2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1) 2d =16. 解法二:同解法一得a 5=3. 又a 2a 5+a 8=0?3a 2+a 8=0?2a 2+2a 5=0?a 2=-3. ∴d =a 5-a 2 3=2,a 1=a 2-d =-5. 故S 8=8a 1+8×(8-1) 2 d =16.

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高考理科数学《数列》题型归纳与训练

高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2014年高考数学真题分类汇编理科-数列(理科)

1.(2014 北京理 5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.(2014 大纲理 10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于( ). A .6 B .5 C .4 D .3 3.(2014 福建理 3)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ). A.8 B.10 C.12 D.14 4.(2014 辽宁理 8)设等差数列{}n a 的公差为d ,若数列{}12 n a a 为递减数列,则( ). A .0d < B .0d > C .10a d < D .10a d > 5.(2014 重庆理 2)对任意等比数列{}n a ,下列说法一定正确的是( ). A. 139,,a a a 成等比数列 B. 236,,a a a 成等比数列 C. 248,,a a a 成等比数列 D. 369,,a a a 成等比数列 二、 填空题 1.(2014 安徽理 12)数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 2.(2014 北京理 12)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 3.(2014 广东理 13)若等比数列{}n a 的各项均为正数,且5 10119122e a a a a +=, 则1220ln ln ln a a a +++= . 4.(2014 江苏理 7)在各项均为正数的等比数列{}n a 中,21a =,8642a a a =+,则6a 的值是 . 5.(2014 天津理 11)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若 124,,S S S 成等比数列,则1a 的值为__________.

2019年高考理科数学分类汇编:数列(解析版)

题08 数列 1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .2 28n S n n =- D .2 122 n S n n = - 【答案】A 【解析】由题知,415 144302 45d S a a a d ? =+??=???=+=?,解得132a d =-??=?,∴25n a n =-,2 4n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则23111142 111 15 34a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2 +b ,n *∈N ,则 A . 当101 ,102 b a = > B . 当101 ,104 b a = > C . 当102,10b a =-> D . 当104,10b a =-> 【答案】A 【解析】①当b =0时,取a =0,则0,n a n * =∈N .

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

2020高考数学理科数列训练题

08高考数学理科数列训练题 1.某数列{}n a 的前四项为 ①1(1)2n n a ??=+-?? ② n a = ③0 n a =?? )(n n 为奇数为偶数)( 其中可作为{}n a 的通项公式的是() A .① B .①② C .②③ D .①②③ 2.设函数()f x 满足()()212 f n n f n ++= ()n N *∈,且()12f =,则()20f =() A .95 B .97 C .105 D .192 3.已知数列中{}n a ,11a =,()111n n n n a a a --=+- ()2,n n N *≥∈,则35a a 的值是() A .1516 B .158 C .34 D .38 4.已知数列{}n a 的首项11a =,且121n n a a -=+ (2)n ≥,则5a 为() A .7 B .15 C .30 D .31 5.已知数列{}n a 是等差数列,且31150a a +=,又413a =,则2a 等于( ) A .1 B .4 C .5 D .6 6.若lg a 、lg b 、lg c 成等差数列,则( ) A .2a c b += B .()1lg lg 2 b a b =+ C .a 、 b 、 c 成等差数列 D .a 、 b 、 c 成等比数列 7.38,524-,748,980- … 一个通项公式是____ 8.已知{}n a 是递增数列,且对任意n N *∈都有2n a n n λ=+恒成立,则实数λ的取值范 围是____ 9.设等差数列{}n a 的公差为2-,且1479750a a a a +++???+=,则36999a a a a +++???+=______. 10.等比数列中{}n a ,公比1q ≠±,200100S =,则 4020 1S q =+______.

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

【三年高考】(2016-2018)数学(理科)真题分类解析:专题14-与数列相关的综合问题(含答案)

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且.若, 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当 时,,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则 但 ,即

,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数 列.已知,,,. (I)求和的通项公式;

(II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力. 4.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s

高中数学-数列经典例题(裂项相消法)(1)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{ 1+n n a a 的前100项和为() A .100101 B .99101 C .99100 D .1011002.数列,) 1(1+= n n a n 其前n 项之和为,109则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距为()A .-10B .-9C .10D .9 3.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{ n b 的前n 项和.4.正项数列}{n a 满足02)12(2=---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ;(Ⅱ)令,)1(1n n a n b +=求数列}{n b 的前n 项和n T .5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 11*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T .6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令),(1 1*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .7.在数列}{n a 中n n a n a a 211)11(2,1,+ ==+.(Ⅰ)求}{n a 的通项公式;(Ⅱ)令,2 11n n n a a b -=+求数列}{n b 的前n 项和n S ;

数列大题部分-高考数学解题方法归纳总结专题训练

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得 112n n a ?? = ??? ,所以,

由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。 (1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列{}n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b =

相关文档
最新文档