北师大版高一数学必修2直线与圆单元测试题含答案

合集下载

高中数学必修二直线方程与圆的方程练习及答案(2021年整理)

高中数学必修二直线方程与圆的方程练习及答案(2021年整理)

高中数学必修二直线方程与圆的方程练习及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修二直线方程与圆的方程练习及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修二直线方程与圆的方程练习及答案(word版可编辑修改)的全部内容。

直线与圆的方程(1)1、设直线l的方程为(1)20()+++-=∈.a x y a a R(1) 若l在两坐标轴上的截距相等,求l的方程;(2) 若l不经过第二象限,求实数a的取值范围.2、已知三角形ABC的顶点坐标为A(—1,5)、B(-2,—1)、C(4,3),M是BC边上的中点.(1)求AB边所在的直线方程;(2)求中线AM所在的直线方程;(3)求AB边的高所在直线方程.3、求与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为4、已知圆M 经过直线:240l x y ++=与圆22:2410C x y x y ++-+=的交点,且圆M 的圆心到直线2650x y +-=的距离为M 的方程.直线与圆的方程(1)答案1。

【答案】 (1) 20x y ++=.(2) a≤-1.【解析】试题分析:(Ⅰ)根据直线方程求出它在两坐标轴上的截距,根据它在两坐标轴上的截距相等,求出a 的值,即得直线l 方程.(Ⅱ)把直线方程化为斜截式为12y a x a =-+--(),若l 不经过第二象限,则1a =- 或 ()1020a a -+--≥,≤,由此求得实数a 的取值范围.解:(1)当直线过原点时,该直线在x 轴和y 轴上的截距都为零,截距相等,∴2a =,方程即30x y +=.若2a ≠,由于截距存在,∴ 221a a a -=-+, 即11a +=,∴0a =, 方程即20x y ++=.(2)将l 的方程化为(1)2y a x a =-++-,∴欲使l 不经过第二象限,当且仅当()1020a a ⎧-+≥⎪⎨-≤⎪⎩∴a≤-1. 所以a 的取值范围是a≤-1.2.【解析】(1)先根据斜率公式求出AB 的斜率,写出点斜式方程再化成一般式即可.(2)先根据中点坐标公式求出中点M 的坐标,然后求出AM 的斜率,写出点斜式方程再化成一般式方程.(3)根据AB 的斜率可求出AB 边上的高的斜率,再根据它过点C ,从而可求出高线的点斜式方程,再化成一般式即可.解:(1)k AB=,且已知A 、B 点,由直线方程的点斜式得y+1=6(x+2),化简得6x —y+11=0(2)因为M 点是BC 的中点,所以M 点坐标为(1,1)则AM 所在直线方程为化简得2x+y —3=0方程为y —3=(x —4) 化简得:x+6y —22=03。

高一数学必修2平面解析几何初步(直线与圆)单元测试题及答案

高一数学必修2平面解析几何初步(直线与圆)单元测试题及答案

平面解析几何初步(直线与圆)单元测试题一.选择题1.已知直线l 的方程为x-y+1=0,则该直线l 的倾斜角为( ) A.30 B.45 C.60 D.1352.点(1,-2,3)关于xoy 平面的对称点坐标为( )A .(1,-2,-3)B .(-1,2,3)C .(-1, 2,-3)D .(1,-2,3)3.无论m 为何值,直线210mx y m ---=总过一个定点,其中m R ∈,该定点坐标为( ) A.(1,2-) B.(1-,2) C.(2-,1-) D.(2,1-)4.以A (1,3),B (-5,1)为端点的线段的垂直平分线的方程是( ) A.083=+-y x B.043=++y x C.083=++y x D.062=--y x5.圆(x +2)2+y 2=5关于 (-1,1)对称的圆的方程为( )A.(x -2)2+y 2=5B.x 2+(y -2)2=5C. (x +2)2+(y +2)2=5D.x 2+(y +2)2=56.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x7.若直线y x m =+和曲线y x =-92有两个不同的交点,则m 的取值范围是( )A. -<<3232mB.032<<mC. 332<≤mD. 332≤<m二.填空题8.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+的值等于_________.9.圆22(1)1x y -+=与直线y x =的位置关系是______________.10.已知222212:1:349O x y O x y +=+= 与(-)(+),则12O O 与的位置关系为 .11.一条光线经过点P (–2,3)射到x 轴上,反射后经过点Q (1,1),则入射光线所在的直线的方程是 ______ ,反射光线所在的直线的方程是 ______ ,光线从P 点到Q 点的距离为____________.14.圆x 2+y 2-2x-2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为_________.13.40 _____________.P x y O OP +-=点在直线上,是坐标原点,则的最小值是12:512150,:51220_______________.l x y l x y -+=-+=12.两条平行直线之间的距离为三.解答题15.求经过直线l 1:0543=-+y x 与直线l 2:0832=+-y x 的交点M 且满足下列条件的直线方程.(1)与直线052=++y x 平行;(2)与直线052=++y x 垂直.16.求过点)2,5(A ,且在两坐标轴上的截距互为相反数的直线l 的方程.17.已知圆的半径为10,圆心在直线y =2x 上,圆被直线x-y =0截得的弦长为42,求圆的方程.18. 已知圆C :()()x y -+-=122522,直线l :()()21174m x m y m +++--=0(m R ∈)(1)证明:无论m 取什么实数,直线l 与圆C 恒交于两点; (2)求直线l 被圆C 截得的弦-长最小时的方程.19.已知 O :221x y +=和定点A (2,1),由 O 外一点(,)P a b 向 O 引切线PQ ,切点为Q ,且满足PQ PA =.(1) 求实数a 、b 间满足的等量关系; (2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的 P 与 O 有公共点,试求半径取最小值时 P 的方程.20. 已知圆)0(:222>=+r r y x C 经过点)3,1(. (1)求圆C 的方程;(2)是否存在经过点)1,1(-的直线l ,它与圆C 相交于A 、B 两个不同点,且满足关系0=∙OB OA O (为坐标原点),如果存在,求出直线l 的方程;如果不存在,请说明理由.图平面解析几何初步(直线与圆)单元测试题答案1.B2.A3.D4.B5.B6.C7.D8.12 9.相交 10.相离 11.4x+3y-1=0 4x-3y-1=0 512.1 13.15.解由L 1与L 2的方程联立方程组 0543=-+y x x =-1 0832=+-y x 解得: y =2 ∴点M 的坐标为(-1, 2)(1) 所求直线与直线052=++y x 平行,所求直线斜率为-2, 又经过点M (-1, 2)则直线方程为y-2=-2(x+1) 即 2x+y=0(2)所求直线与直线052=++y x 垂直,所求直线斜率为21, 又经过M (-1, 2)则直线方程为y-2 =21(x+1) 即 x -2y+5=0 16.(1)截距不为0时设l 的方程为1=-+aya x l 过()0,3A , ∴ 125=-+aa ∴ 3=a∴l 的方程为:03=--y x(2)截距为0时,l 的方程为:052=-y x综上(1)、(2)可得:直线l 的方程是03=--y x 或052=-y x . 17.(x-2)2+(y-4)2=10或(x+2)2+(y+4)2=1018.(1)直线l 的方程化为:()()x y m x y +-++-=4270。

北师大版高中数学必修二直线和圆的方程同步练习

北师大版高中数学必修二直线和圆的方程同步练习

单元检测(七) 直线和圆的方程 (满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.若直线x+ay-a=0与直线ax-(2a-3)y-1=0垂直,则a 的值为( )A.2B.-3或1C.2或0D.1或0 解析:当a=0时,显然两直线垂直;a≠0时,则1321-=-•-a a a ,得a=2.故选C. 答案:C2.集合M={(x,y)|y=21x -,x 、y ∈R },N={(x,y)|x=1,y ∈R },则M∩N 等于( ) A.{(1,0)} B.{y|0≤y≤1} C.{1,0} D.解析:y=21x -表示单位圆的上半圆,x=1与之有且仅有一个公共点(1,0).答案:A3.菱形ABCD 的相对顶点为A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是 …( ) A.3x+y+4=0 B.3x+y-4=0 C.3x-y+1=0 D.3x-y-1=0解析:由菱形的几何性质,知直线BD 为线段AC 的垂直平分线,AC 中点O )25,21(--在BD 上,31=AC k ,故3-=BD k ,代入点斜式即得所求. 答案:A 4.若直线1=+bya x 经过点M(cosα,sinα),则 ……( ) A.a 2+b 2≤1 B.a 2+b 2≥1C.11122≤+b a D.11122≥+b a解析:直线1=+bya x 经过点M(cosα,sinα),我们知道点M 在单位圆上,此问题可转化为直线1=+bya x 和圆x 2+y 2=1有公共点,圆心坐标为(0,0),由点到直线的距离公式,有.111111|1|2222≥+⇒≤+-b a b a答案:D5.当圆x 2+y 2+2x+ky+k 2=0的面积最大时,圆心坐标是( )A.(0,-1)B.(-1,0)C.(1,-1)D.(-1,1)解析:r 2=222431444k k k -=-+, ∴当k=0时,r 2最大,从而圆的面积最大.此时圆心坐标为(-1,0),故选B.答案:B6.过直线y=x 上的一点作圆(x-5)2+(y-1)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y=x 对称时,它们之间的夹角为( ) A.30° B.45° C.60° D.90° 解析:由已知,得圆心为C(5,1),半径为2,设过点P 作的两条切线的切点分别为M,N,当CP 垂直于直线y=x 时,l 1,l 2关于y=x 对称,|CP|为圆心到直线y=x 的距离,即|CP|=2211|15|=+-,|CM|=2,故∠CPM=30°,∠NPM=60°. 答案:C7.在如图所示的坐标平面的可行域(阴影部分且包括边界)内,若是目标函数z=ax+y(a>0)取得最大值的最优解有无数个,则a 的值等于( )A.31B.1C.6D.3 解析:将z=ax+y 化为斜截式y=-ax+z(a>0),则当直线在y 轴上截距最大时,z 最大. ∵最优解有无数个,∴当直线与AC 重合时符合题意.又k AC =-1, ∴-a=-1,a=1. 答案:B8.已知直线l 1:y=x,l 2:ax-y=0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.)3,33(C.(33,1)∪(1,3) D.(1,3)解析:结合图象,如右图,其中α=45°-15°=30°,β=45°+15°=60°. 需a ∈(tan30°,1)∪(1,tan60°), 即a ∈(33,1)∪(1,3). 答案:C9.把直线x-2y+λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆x 2+y 2+2x-4y=0相切,则实数λ的值为( )A.3或13B.-3或13C.3或-13D.-3或-13 解析:直线x-2y+λ=0按a=(-1,-2)平移后的直线为x-2y+λ-3=0,与圆相切,则圆心(-1,2)到直线的距离55|8|=-=λd ,求得λ=13或3. 答案:A10.如果直线y=kx+1与圆x 2+y 2+kx+my-4=0交于M 、N 两点,且M 、N 关于直线x+y=0对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0,0,01y my kx y kx 表示的平面区域的面积是( )A.41B.21C.1D.2 解析:由题中条件知k=1,m=-1,易知区域面积为41.答案:A 11.两圆⎩⎨⎧+=+-=ββsin 24,cos 23y x 与⎩⎨⎧==θθsin 3,cos 3y x 的位置关系是( )A.内切B.外切C.相离D.内含解析:两圆化为标准式为(x+3)2+(y-4)2=4和x 2+y 2=9,圆心C 1(-3,4),C 2(0,0). 两圆圆心距|C 1C 2|=5=2+3.∴两圆外切. 答案:B12.方程29x -=k(x-3)+4有两个不同的解时,实数k 的取值范围是( ) A.)247,0( B.(247,+∞) C.(32,31) D.]32,247(解析:设y=29x -,其图形为半圆;直线y=k(x-3)+4过定点(3,4),由数形结合可知,当直线y=k(x-3)+4与半圆y=29x-有两个交点时,32247≤<k.∴选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.若x,y满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+,3,03,0xyxyx则z=2x-y的最大值为__________.解析:作出可行域如图所示.当直线z=2x-y过顶点B时,z达到最大,代入得z=9.答案:914.在y轴上截距为1,且与直线2x-3y-7=0的夹角为4π的直线方程是_________.解析:由题意知斜率存在,设其为k,则直线方程为y=kx+1.则|321||32|4tankk+-=π.解得k=5或51-.∴直线方程为y=5x+1或y=151+-x,即5x-y+1=0或x+5y-5=0.答案:5x-y+1=0或x+5y-5=015.设A(0,3),B(4,5),点P在x轴上,则|PA|+|PB|的最小值是________,此时P点坐标是_______. 解析:点A关于x轴的对称点为A′(0,-3),则|A′B|=45为所求最小值.直线A′B与x轴的交点即为P点,求得P(23,0).答案:45(23,0)16.已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下面四个命题:①对任意实数k与θ,直线l和圆M相切;②对任意实数k与θ,直线l和圆M有公共点;③对任意实数θ,必存在实数k,使得直线l和圆M相切;④对任意实数k,必存在实数θ,使得直线l和圆M相切.其中真命题的序号是.(写出所有真命题的序号) 解析:圆心M(-cosθ,sinθ)到直线l:kx-y=0的距离1|sin cos |1|sin cos |22++=+--=k k k k d θθθθ1|)sin(1|22+++=k k θϕ=|sin(φ+θ)|(其中tanφ=k) ≤1=r,即d≤r,故②④正确. 答案:②④三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知△ABC 的三个顶点A(4,-6),B(-4,0),C(-1,4),求: (1)AC 边上的高BD 所在直线的方程; (2)BC 的垂直平分线EF 所在直线的方程; (3)AB 边的中线的方程.解:(1)易知k AC =-2,∴直线BD 的斜率k BD =21.又BD 直线过点B(-4,0),代入点斜式易得直线BD 的方程为x-2y+4=0.(2)∵k BC =34, ∴k EF =43-.又线段BC 的中点为(25-,2), ∴EF 所在直线的方程为y-2=)25(43+-x . 整理得所求的直线方程为6x+8y-1=0.(3)∵AB 的中点为M(0,-3), ∴直线CM 的方程为1343-=++xy . 整理得所求的直线方程为7x+y+3=0(-1≤x≤0).18.(本小题满分12分)已知圆C 与y 轴相切,圆心C 在直线l 1:x-3y=0上,且截直线l 2:x-y=0的弦长为22,求圆C 的方程. 解:∵圆心C 在直线l 1:x-3y=0上, ∴可设圆心为C(3t,t). 又∵圆C 与y 轴相切, ∴圆的半径r=|3t|. ∴222||3)2()23(t t t =+-,解得t=±1. ∴圆心为(3,1)或(-3,-1),半径为3.∴所求的圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.19.(本小题满分12分)已知等边△ABC 的边AB 所在的直线方程为3x+y=0,点C 的坐标为(1,3),求边AC 、BC 所在的直线方程和△ABC 的面积.解:由题意,知直线AC 、BC 与直线AB 均成60°角,设它们的斜率为k,则3|313|=---kk,解得k=0或k=3.故边AC 、BC 所在的直线方程为y=3,y=3x,如图所示,故边长为2,高为3.∴S △ABC =33221=⨯⨯. 20.(本小题满分12分)圆C 经过不同的三点P(k,0)、Q(2,0)、R(0,1),已知圆C 在P 点的切线斜率为1,试求圆C 的方程.解:设圆C 的方程为x 2+y 2+Dx+Ey+F=0.将P 、Q 、R 的坐标代入,得⎪⎩⎪⎨⎧=++=-=+.01,2,2F E F k D k∴圆的方程为x 2+y 2-(k+2)x-(2k+1)y+2k=0,圆心为)212,22(++k k . 又∵k CP =-1,∴k=-3.∴圆的方程为x 2+y 2+x+5y-6=0.21.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.解法一:设点M 的坐标为(x,y), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y). ∵l 1⊥l 2,且l 1、l 2过点P(2,4), ∴PA ⊥PB,k PA ·k PB =-1.而kPA =,2204x --k PB =0224--y(x≠1), ∴11212-=-•-y x (x≠1). 整理,得x+2y-5=0(x≠1).∵当x=1时,A 、B 的坐标分别为(2,0)、(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x+2y-5=0. 综上所述,点M 的轨迹方程是x+2y-5=0.解法二:设M 的坐标为(x,y),则A 、B 两点的坐标分别是(2x,0)、(0,2y),连结PM, ∵l 1⊥l 2,∴2|PM|=|AB|.而|PM|=22)4()2(-+-y x , |AB|=,)2()2(22y x + ∴.44)4()2(22222y x y x +=-+-化简,得x+2y-5=0,即为所求的轨迹方程.解法三:设M 的坐标为(x,y),由l 1⊥l 2,BO ⊥OA,知O 、A 、P 、B 四点共圆, ∴|MO|=|MP|,即点M 是线段OP 的垂直平分线上的点.∵k OP =20204=--,线段OP 的中点为(1,2), ∴y-2=21-(x-1),即x+2y-5=0即为所求.22.(本小题满分12分)实系数方程f(x)=x 2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)12--a b 的值域; (2)(a-1)2+(b-2)2的值域; (3)a+b-3的值域.解:由题意⎪⎩⎪⎨⎧>++<++>⎪⎩⎪⎨⎧><>.02,012,0.0)2(,0)1(,0)0(b a b a b f f f 即易求A(-1,0)、B(-2,0).由⎩⎨⎧=++=++,02,012b a b a ∴C(-3,1).(1)记P(1,2),k PC <12--a b <k PA ,即12--a b ∈(41,1). (2)|PC|2=(1+3)2+(2-1)2=17,|PA|2=(1+1)2+(2-0)2=8,|PB|2=(1+2)2+(2-0)2=13.∴(a-1)2+(b-2)2的值域为(8,17). (3)令u=a+b-3,即a+b=u+3. -2<u+3<-1,即-5<u<-4. ∴a+b-3的值域为(-5,-4).。

2021-2022年高中数学 第二章解析几何初步之直线与圆同步练习 北师大版必修2

2021-2022年高中数学 第二章解析几何初步之直线与圆同步练习 北师大版必修2

2021-2022年高中数学 第二章解析几何初步之直线与圆同步练习 北师大版必修21.(北师大版必修2 第93 页A 组第1题)已知点,求直线的斜率.变式1:已知点,则直线的倾斜角是( )A. B. C. D.解:∵,∴,∵,∴,故选(C ).变式2:(xx 年北京卷)若三点)0)(,0(),0,(),2,2(≠ab b C a B A 共线,则的值等于 .解:∵、、三点共线,∴,∴,∴,∴.变式3:已知点,直线的倾斜角是直线的倾斜角的一半,求直线的斜率.解:设直线的倾斜角为,则直线的倾斜角为,依题意有,∴,∴,∴或.由,得,∴,∴,∴直线的斜率为.2.(人教A 版必修2 第111页A 组第9题)求过点,并且在两轴上的截距相等的直线方程.变式1:直线在轴上的截距为,在轴上的截距为,则( )A. B. C. D.解:令得,∴直线在轴上的截距为;令得,∴直线在轴上的截距为,故选(B ).变式2:过点,且在两坐标轴上的截距互为相反数的直线方程是 .解:依题意,直线的斜率为1或直线经过原点,∴直线的方程为或,即或.变式3:直线经过点,且与两坐标轴围成一个等腰直角三角形,求直线的方程.解:依题意,直线的斜率为±1,∴直线的方程为或,即或.3.(人教A 版必修2 第124页A 组第3题)求直线与坐标轴围成的三角形的面积.变式1:过点(-5,-4)且与两坐标轴围成的三角形面积为5的直线方程是 .解:设所求直线方程为,依题意有,∴(无解)或,解得或.∴直线的方程是或.变式2:(xx 年上海春季卷)已知直线过点,且与轴、轴的正半轴分别交于、两点,为坐标原点,则△OAB 面积的最小值为 .解:设直线的方程为, 则4])1()4(24[21)]1()4(4[2114421)21)(12(21=-⋅-+≥-+-+=--=--=∆kk k k k k k k S OAB ,当且仅当即时取等号,∴当时,有最小值4.变式3:已知射线和点,在射线上求一点,使直线与及轴围成的三角形面积最小.解:设,则直线的方程为0)4)(6()6)(44(00=-----y x x x .令得,∴]211)1[(101]1)1[(101104)15(2100020020000+-+-=-+-=-=⋅-=x x x x x x x x x S 40]211)1(2[1000=+-⋅-≥x x ,当且仅当即时取等号,∴当为(2,8)时,三角形面积最小.4.(北师大版必修2 第117页A 组第10题)求过点,且与直线平行的直线的方程.变式1:(xx 年全国卷)已知过点和的直线与直线平行,则的值为( )A.0B.-8C.2D.10解:依题意有,解得,故选(B ).变式2:与直线平行,且距离等于的直线方程是 .解:设所求直线方程为,则,解得或,∴直线方程为或.变式3:已知三条直线0,0134,0532=-=+-=++y mx y x y x 不能构成三角形,求实数的取值集合.解:依题意,当三条直线中有两条平行或重合,或三条直线交于一点时,三条直线不能构成三角形,故或或,∴实数的取值集合是.5.(北师大版必修2 第117页A 组第7题)若直线和直线0)1()1(2=-+++a y a a x 垂直,求的值.变式1:(1987年上海卷)若直线与直线0)1()1(:22=-+-+a y a x l 平行但不重合,则等于( )A.-1或2B.-1C.2D.解:∵,∴且,∴且,解得,故选(B ).变式2:(xx 年北京春季卷)“”是“直线与直线03)2()2(=-++-y m x m 相互垂直”的( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解:由20)2(3)2)(2(0212121-=⇔=++-+⇔=+⇔⊥m m m m m B B A A l l 或,知由可推出,但由推不出,故是的充分不必要条件,故选(B ).变式3:设直线与圆相交于点、两点,为坐标原点,且,求的值.解:∵圆经过原点,且,∴是圆的直径,∴圆心(1,-2)在直线上,∴.6.(人教A 版必修2 第110页A 组第3题)已知,,求线段的垂直平分线的方程.变式1:已知关于直线的对称点为,则直线的方程是( )A. B. C. D.解:依题意得,直线是线段的垂直平分线.∵,∴,∵的中点为(1,1),∴直线的方程是即,故选(B ). 变式2:已知圆与圆关于直线对称 ,则直线的方程是 .解:依题意得,两圆的圆心与关于直线对称,故直线是线段的垂直平分线,由变式1可得直线的方程为. 变式3:求点关于直线的对称点的坐标.解:设.由,且的中点在直线上,得⎪⎪⎩⎪⎪⎨⎧=--⋅-+⋅-=⋅-+0124527615674y x x y ,解得,∴.7.(北师大版必修2 第118页B 组第2题)光线自点射到点后被轴反射,求反射光线所在直线的方程.变式1:一条光线从点射出,经轴反射,与圆相切,则反射光线所在直线的方程是 .解:依题意得,点关于轴的对称点在反射光线所在的直线上,故可设反射光线所在直线的方程为,即.由反射光线与圆相切得,解得或,∴反射光线所在直线的方程是或,即或.变式2:(xx 年全国卷)已知长方形的四个顶点、、和,一质点从的中点沿与夹角为的方向射到上的点后,依次反射到、和上的点、和(入射角等于反射角).设的坐标为.若,则的取值范围是( )A. B. C. D.解:用特例法,取,则、、、分别为、、、的中点,此时.依题意,包含的选项(A )(B )(D )应排除,故选(C ). 变式3:已知点,在直线上求一点P ,使最小.解:由题意知,点A 、B 在直线的同一侧.由平面几何性质可知,先作出点关于直线的对称点,然后连结,则直线与的交点P 为所求.事实上,设点是上异于P 的点,则PB PA B A B P A P B P A P +=>+=+''''''. 设,则⎪⎪⎩⎪⎪⎨⎧=++⋅--⋅-=⋅+-0425423314335y x x y ,解得,∴,∴直线的方程为.由,解得⎪⎩⎪⎨⎧==338y x ,∴.8.(人教A 版必修2第144页A 组 3)求以为圆心,并且与直线相切的圆的方程.变式1:(xx 年重庆卷)过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为( ) A.或 B.或C.或D.或解:设直线方程为,即.∵圆方程可化为,∴圆心为(2,-1),半径为.依题意有,解得或,∴直线方程为或,故选(A ).变式2:(xx 年湖北卷)已知直线与圆相切,则的值为 .解:∵圆的圆心为(1,0),半径为1,∴,解得或.变式3:求经过点,且与直线和都相切的圆的方程.解:设所求圆的方程为,则⎪⎩⎪⎨⎧=+=-=-+r b a b a r b a 5252)5(222,解得⎪⎩⎪⎨⎧===531r b a 或⎪⎩⎪⎨⎧===55155r b a ,∴圆的方程为或.9.(人教A 版必修2 第144页 A 组 第5题)求直线被圆截得的弦的长.变式1:(xx 年全国卷)直线截圆得的劣弧所对的圆心角为( )A. B. C. D.解:依题意得,弦心距,故弦长,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为,故选(C ). 变式2:(xx 年天津卷)设直线与圆相交于、两点,且弦的长为,则 .解:由弦心距、半弦长、半径构成直角三角形,得,解得.变式3:已知圆6)2()1(:22=-++y x C ,直线.(1)求证:不论取什么实数,直线与圆恒交于两点;(2)求直线被圆截得的弦长最小时的方程.解:(1)∵直线恒过定点,且,∴点在圆内,∴直线与圆恒交于两点.(2)由平面几何性质可知,当过圆内的定点的直线垂直于时,直线被圆截得的弦长最小,此时,∴所求直线的方程为即.10.(北师大版必修2第117页A 组 第14题)已知直线和圆,判断此直线与已知圆的位置关系.变式1:(xx 年安徽卷)直线与圆)0(0222>=-+a ay y x 没有公共点,则的取值范围是( )A. B. C. D.解:依题意有,解得.∵,∴,故选(A ).变式2:(xx 年湖北卷)若直线与圆有两个不同的交点,则的取值范围是 .解:依题意有,解得,∴的取值范围是.变式3:若直线与曲线有且只有一个公共点,求实数的取值范围.解:∵曲线表示半圆,∴利用数形结合法,可得实数的取值范围是或.11.(北师大版必修2第101页例8)判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,并画出图形.变式1:(1995年全国卷)圆和圆的位置关系是( )A.相离B.外切C.相交D.内切解:∵圆的圆心为,半径,圆的圆心为,半径,∴1,3,5122121=-=+=r r r r O O .∵,∴两圆相交,故选(C ). 变式2:若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数的取值集合是 .解:∵圆的圆心为,半径,圆的圆心为,半径,且两圆相切,∴或,∴或,解得或,或或,∴实数的取值集合是. 变式3:求与圆外切于点,且半径为的圆的方程.解:设所求圆的圆心为,则所求圆的方程为.∵两圆外切于点,∴,∴,∴,∴所求圆的方程为.12.(人教A 版必修2 第145页B 组第2题)已知点)2,4(),6,2(),2,2(----C B A ,点在圆上运动,求的最大值和最小值.变式1:(xx 年湖南卷)圆0104422=---+y x y x 上的点到直线的最大距离与最小距离的差是( )A.36B.18C.D.解:∵圆的圆心为(2,2),半径,∴圆心到直线的距离,∴直线与圆相离,∴圆上的点到直线的最大距离与最小距离的差是262)()(==--+r r d r d ,故选(C ).变式2:已知,,点在圆上运动,则的最小值是 .解:设,则828)(2)2()2(222222222+=++=+-+++=+OP y x y x y x PB PA .设圆心为,则,∴的最小值为.变式3:已知点在圆上运动.(1)求的最大值与最小值;(2)求的最大值与最小值.解:(1)设,则表示点与点(2,1)连线的斜率.当该直线与圆相切时,取得最大值与最小值.由,解得,∴的最大值为,最小值为.(2)设,则表示直线在轴上的截距. 当该直线与圆相切时,取得最大值与最小值.由,解得,∴的最大值为,最小值为.13.(人教A 版必修2第135页B 组第3题)已知点与两个定点,的距离的比为,求点的轨迹方程.变式1:(xx 年四川卷)已知两定点,,如果动点满足,则点的轨迹所包围的面积等于( )A. B. C. D.解:设点的坐标是.由,得2222)1(2)2(y x y x +-=++,化简得,∴点的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为,故选(B ).变式2:(xx 年全国卷)由动点向圆引两条切线、,切点分别为、,=600,则动点的轨迹方程是 .解:设.∵=600,∴=300.∵,∴,∴,化简得,∴动点的轨迹方程是.变式3:(xx 年北京春季卷)设为两定点,动点到点的距离与到点的距离的比为定值,求点的轨迹.解:设动点的坐标为.由,得,化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a . 当时,化简得01)1(222222=+-+++c x a a c y x ,整理得222222)12()11(-=+-+-a ac y c a a x ; 当时,化简得.所以当时,点的轨迹是以为圆心,为半径的圆;当时,点的轨迹是轴.14.(人教A 版必修2第133页例5)已知线段的端点的坐标是(4,3),端点在圆上运动,求线段的中点的轨迹方程.变式1:已知定点,点在圆上运动,是线段上的一点,且,则点的轨迹方程是( )A. B.C. D.解:设.∵,∴),3(31),(11y x y y x x --=--, ∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413411.∵点在圆上运动,∴,∴,即,∴点的轨迹方程是,故选(C ). 变式2:已知定点,点在圆上运动,的平分线交于点,则点的轨迹方程是 .解:设.∵是的平分线,∴, ∴.由变式1可得点的轨迹方程是.变式3:已知直线与圆相交于、两点,以、为邻边作平行四边形,求点的轨迹方程.解:设,的中点为.∵是平行四边形,∴是的中点,∴点的坐标为,且.∵直线经过定点,∴,∴0)12(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得.∴点的轨迹方程是.15.(人教A 版必修2第144页练习第3题)某圆拱桥的水面跨度20,拱高4.现有一船宽10,水面以上高3,这条船能否从桥下通过?变式1:某圆拱桥的水面跨度是20,拱高为4.现有一船宽9,在水面以上部分高3,故通行无阻.近日水位暴涨了1.5,为此,必须加重船载,降低船身.当船身至少应降低时,船才能通过桥洞.(结果精确到0.01)解:建立直角坐标系,设圆拱所在圆的方程为.∵圆经过点(10,0),(0,4),∴,解得.∴圆的方程是)40(5.14)5.10(222≤≤=++y y x . 令,得.故当水位暴涨1.5后,船身至少应降低,船才能通过桥洞.变式2:据气象台预报:在城正东方300的海面处有一台风中心,正以每小时40的速度向西北方向移动,在距台风中心250以内的地区将受其影响.从现在起经过约,台风将影响城,持续时间约为 .(结果精确到0.1)解:以为原点,正东方向所在直线为轴,建立直角坐标系,则台风中心的移动轨迹是,受台风影响的区域边界的曲线方程是222250)()(=++-a y a x . 依题意有,解得14251501425150+-≤≤--a . ∴6.64014502402,0.240142515024021211≈⨯=-=∆≈+-==a a t a t . ∴从现在起经过约2.0,台风将影响城,持续时间约为6.6.变式3:有一种商品,、两地均有出售,且两地价格相同.某地区的居民从两地购买此种商品后往回贩运时,单位距离的运费地是地的3倍.已知、两地的距离是10,顾客购买这种商品选择地或地的标准是:包括运费在内的总费用比较便宜.求、两地的售货区域的分界线的曲线形状,并指出在曲线上、曲线内、曲线外的居民如何选择购货地点.解:以的中点为原点,所在直线为轴,建立直角坐标系,则,.设是售货区域分界线上的任意一点,单位距离的运费为元,则,∴2222)5()5(3y x a y x a +-=++,化简得.∴、两地售货区域的分界线是以为圆心,为半径的圆.因此在曲线内的居民选择去地购货,在曲线外的居民选择去地购货,在曲线上的居民去、两地购货均可.31253 7A15 稕35440 8A70 詰Y23300 5B04 嬄22323 5733 圳0.J[<31422 7ABE 窾34016 84E0 蓠40714 9F0A 鼊22938 599A 妚35718 8B86 讆。

北师大版高中数学必修二第二章《解析几何初步》测试(包含答案解析)

北师大版高中数学必修二第二章《解析几何初步》测试(包含答案解析)

一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且33OA OB AB +≥,则k 的取值范围是( )A .)+∞B .C .)2,⎡+∞⎣D .3.已知点(3,2)P ,点M 是圆221:(1)1C x y -+=上的动点,点N 是222:(2)1C x y +-=上的动点,则||||PN PM -的最大值是( )A .5-B .5+C .2D .3-4.已知圆1C :221x y +=与圆2C :()()22124x y -++=交于A 、B 两点,则线段AB 的垂直平分线方程为( )A .210x y --=B .20x y -=C .20x y +=D .210x y -+=5.已知直线l :20x y -+=,圆C :()2234x y -+=,若点P 是圆C 上所有到直线l 的距离中最短的点,则点P 的坐标是( )A .(3B .(3C .(3-D .(3+6.已知线段AB 是圆22:4C x y +=的一条动弦,且AB =,若点P 为直线40x y +-=上的任意一点,则PA PB +的最小值为( )A .1B .1C .2D .27.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //8.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m9.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π10.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,P 是上底面A 1B 1C 1D 1内一点,若AP ∥平面BDEF ,则线段AP 长度的取值范围是( ) A .[3225B .522C .326D .6,2211.一个几何体的三视图如图所示,则该几何体的体积为( )A .4B .8C .12D .1412.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②D E BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④二、填空题13.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.14.已知圆()2221x y +-=上一动点A ,定点()6,1B ,x 轴上一点W ,则AW BW+的最小值等于______.15.在平面直角坐标系xOy 中,过点P 向圆22:4O x y +=和圆22:(2)(2)4C x y ++-=各引一条切线,切点分别为,A B .若2PB PA =,且平面上存在一定点M ,使得P 到M 的距离为定值,则点M 的坐标为_______.16.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.17.若直线()220,0ax by a b +-=>始终平分圆22420x y x y +--=的周长,则12a b+的最小值为______.18.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.19.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___20.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PD ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若2PD =,3APD BAD π∠=∠=,则三棱锥P AOD -的外接球表面积为_________.21.如图,已知ABC 的顶点C ∈平面α,点,A B 在平面α的同一侧,且||23,||2AC BC ==.若,AC BC 与平面α所成的角分别为5,124ππ,则ABC 面积的取值范围是_____22.一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计一个各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形(如图所示),高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为_________元.23.已知正三棱柱木块111ABC A B C -,其中2AB =,13AA =,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.24.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD三、解答题25.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.26.如图,四棱锥P ABCD -中,2PC PD DC AD ===,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,O 、E 分别是棱CD 、PA 的中点.(1)求证://OE 平面PBC ; (2)求二面角PAB C 的大小.27.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积. 28.如图,直四棱柱1111ABCD A BC D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点.(Ⅰ)求证:平面DBE ⊥平面1ADD ;(Ⅱ)求点1C 到平面BDE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.B解析:B 【详解】设AB 中点为D ,则⊥OD AB ,∵33OA OB AB +≥,∴323OD AB ≥,∴23AB OD ≤,∵221||44OD AB +=,∴2||1OD ≥,∵直线0x y k +-=(0k >)与圆224x y +=交于不同的两点A 、B ,∴224,4||1OD OD <∴≥>,∴24(12k ->≥,∵0k >,∴ 222k ≤<,故选B.3.A解析:A 【分析】由圆外的点和圆上的点的连线长度的最值关系,转化为求max minPN PM -.【详解】由条件可知||||PN PM -的最大值是max minPN PM-,2max 114PN PC =+==,1min111PMPC =-==,所以||||PN PM -的最大值是()415-=- 故选:A 【点睛】结论点睛:本题第二问考查与圆的几何性质有关的最值,具体结论如下: (1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r +;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -.4.C解析:C 【分析】先写出两圆的圆心的坐标,再求出两圆的连心线所在直线的方程即得解. 【详解】圆1C :221x y +=的圆心坐标为(0,0),圆2C :()()22124x y -++=的圆心为(1,2)-,由题得线段AB 的垂直平分线就是两圆的连心线, 所以02201AB k +==--, 所以线段AB 的垂直平分线为02(0),20y x x y -=--∴+=. 所以线段AB 的垂直平分线为20x y +=. 故选:C 【点睛】方法点睛:求直线的方程常用的方法是:待定系数法,先定式,后定量.要根据已知条件灵活选择方法求解.5.B解析:B 【分析】若点P 是圆C 上所有到直线l 的距离中最短的点,那么此点必过与直线l 垂直的直线上,求此直线与圆的交点,然后即可得到点P 的坐标.【详解】圆C :()2234x y -+=的圆心坐标为(3,0),半径为2, 过圆心与直线l 垂直的直线方程为30x y +-=,与圆的方程联立得()223034x y x y +-=⎧⎪⎨-+=⎪⎩, 解得11322x y ⎧=+⎪⎨=-⎪⎩,22322x y ⎧=-⎪⎨=⎪⎩,所以它与圆的交点坐标为()32,2+-和()32,2-, 由题,点P 是圆C 上所有到直线l 的距离中最短的点, 所以点P 的坐标为()32,2-. 故选:B .【点睛】本题考查直线与圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.6.C解析:C 【分析】取AB 中点为M ,连接PM ,OM ,根据题意,求出1OM =,再由2PA PB PM +=,PM OM OP +≥,得到PA PB +取最小值,即是PM 取最小值,所以只需OP 取最小,根据点到直线距离公式,求出OP 的最小值,即可得出结果. 【详解】取AB 中点为M ,连接PM ,OM ,因为AB 是圆22:4C x y +=的一条动弦,且23AB =,所以22212AB OM ⎛⎫=-= ⎪⎝⎭,又2PA PB PM +=,PM OM OP +≥,即1PM OP ≥- 因此,PA PB +取最小值,即是PM 取最小值,所以只需OP 取最小, 又点P 为直线40x y +-=上的任意一点, 所以点O 到直线40x y +-=的距离,即是min OP , 即min 2242211OP -==+,因此minmin 1221PMOP =-=-,即minmin2422PA PB PM+==-.故选:C.【点睛】本题主要考查求向量模的最值问题,将其转化为直线上任意一点与圆心距离的最值问题,是解决本题的关键,属于常考题型.7.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误;对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴, 1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳. 8.C解析:C【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算.【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V +四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.9.D解析:D【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm , 则2x OI =,62x IE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案.【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍,所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-=所以()(2222322R R =+,解得3R =, 所以外接球的表面积为2100433S ππ==(2cm ). 故选:D .【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.10.A解析:A分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,可证平面AMN ∥平面BDEF ,得P 点在线段MN 上.由此可判断当P 在MN 的中点时,AP 最小;当P 与M 或N 重合时,AP 最大.然后求解直角三角形得答案.【详解】如图所示,分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,连接B 1D 1,∵M 、N 、E 、F 为所在棱的中点,∴MN ∥B 1D 1,EF ∥B 1D 1,∴MN ∥EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴MN ∥平面BDEF ;连接NF ,由NF ∥A 1B 1,NF =A 1B 1,A 1B 1∥AB ,A 1B 1=AB ,可得NF ∥AB ,NF =AB ,则四边形ANFB 为平行四边形,则AN ∥FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则AN ∥平面BDEF .又AN ∩NM =N ,∴平面AMN ∥平面BDEF .又P 是上底面A 1B 1C 1D 1内一点,且AP ∥平面BDEF ,∴P 点在线段MN 上.在Rt △AA 1M 中,AM 222211215AA A M =+=+=,同理,在Rt △AA 1N 中,求得AN 5=,则△AMN 为等腰三角形.当P 在MN 的中点时,AP 最小为222322()2+=, 当P 与M 或N 重合时,AP 最大为5. ∴线段AP 长度的取值范围是32,5⎡⎤⎢⎥⎣. 故选:A .【点睛】本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点P 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题. 11.C解析:C【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可.解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C【点睛】识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置. 12.A解析:A【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示;对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF ,∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以D E BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确;对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又ACMC C ,所以BD ⊥平面ACM ,所以BD ⊥AM , 同理得ED ⊥AM ,EDBD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.二、填空题13.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的 解析:cos 2ρθ=.【解析】 试题分析:点22,4π⎛⎫ ⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点22,4π⎛⎫ ⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=. 考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程14.【分析】根据题意画出示意图进而数形结合求解;【详解】根据题意画出圆以及点B (61)的图象如图作B 关于x 轴的对称点连接圆心与则与圆的交点A 即为的最小值为点(02)到点(6-1)的距离减圆的半径即故答案 解析:351【分析】根据题意画出示意图,进而数形结合求解;【详解】根据题意画出圆()2221x y +-=,以及点B (6,1)的图象如图,作B 关于x 轴的对称点B ',连接圆心与B ',则与圆的交点A ,AB 即为AW BW +的最小值,AB 为点(0,2)到点B '(6,-1)的距离减圆的半径, 即22(60)(12)1351AB =-+--=, 故答案为:351.【点睛】考查“将军饮马”知识,数形结合的思想,画出图形,做出B 点的对称点是解决本题的突破点;15.【分析】设根据切线性质将转化为与半径关系求出点轨迹即可得出结论【详解】设整理得点的轨迹为以为圆心半径为的圆所以为所求故答案为:【点睛】本题考查求轨迹直线与圆的位置关系利用圆的切线性质是解题的关键属于 解析:22(,)33- 【分析】设(,)P x y ,根据切线性质,将||,||PA PB 转化为||,||PO PC 与半径关系,求出P 点轨迹,即可得出结论.【详解】设22|2||,|||(4)||,,PB PA P x y PB PA ==,222222||44(||4),(2)(2)44)4(y y PC PO x x ∴--+-+=--+=, 整理得2222442022680,()()333339x y x y x y +-+-=-++=, 点P 的轨迹为以22(,)33-为圆心半径为683的圆, 所以22(,)33M -为所求.故答案为:22(,)33-.【点睛】 本题考查求轨迹、直线与圆的位置关系,利用圆的切线性质是解题的关键,属于中档题. 16.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以解析:12- 【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果.【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部,设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为1||(1),12,2AF a a a a -+===.故答案为:12-. 【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题. 17.【分析】若直线始终平分圆的周长即直线过圆心再利用均值定理求解即可【详解】由题整理圆的方程为标准方程可得因为直线始终平分圆的周长所以圆心在直线上则即所以当且仅当即时等号成立所以的最小值为故答案为:【点解析:3+【分析】若直线()220,0ax by a b +-=>始终平分圆的周长,即直线过圆心,再利用均值定理求解即可【详解】由题,整理圆的方程为标准方程,可得()()22215x y -+-=,因为直线()220,0ax by a b +-=>始终平分圆的周长, 所以圆心()2,1在直线上,则2220a b +-=,即1a b +=,所以()121221233b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当2b a a b =,即1,2a b ==,等号成立,所以12a b+的最小值为3+故答案为:322+ 【点睛】 本题考查圆的对称性的应用,考查利用“1”的代换处理最值问题18.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程.【详解】设点1,12A ⎛⎫- ⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离,在直角三角形AOB 中,OA 为斜边,所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大,而1212OA k -==-,所以12l k =, 所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.19.【分析】将三棱锥补成长方体计算出三棱锥的外接球半径计算出球心到过点的截面的距离的最大值可求得截面圆半径的最小值利用圆的面积可求得结果【详解】平面将三棱锥补成长方体则三棱锥的外接球直径为所以设球心为点 解析:π【分析】将三棱锥P ABC -补成长方体ABCD PEFN -,计算出三棱锥P ABC -的外接球半径R ,计算出球心到过点M 的截面的距离d 的最大值,可求得截面圆半径的最小值,利用圆的面积可求得结果.【详解】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==+++=,所以,3R =设球心为点O ,则O 为PC 的中点,连接OM , O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+= 设过点M 的平面为α,设球心O 到平面α的距离为d .①当OM α⊥时,2d OM ==②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-,因此,所求截面圆的面积的最小值为2r ππ=.故答案为:π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 20.【分析】根据棱锥的性质证明的中点就是三棱锥的外接球球心得出半径后可求表面积【详解】取中点中点连接则因为底面所以平面是菱形则所以是的外心又底面平面所以所以到四点距离相等即为三棱锥的外接球球心又所以所以 解析:16π.【分析】根据棱锥的性质,证明PA 的中点就是三棱锥P AOD -的外接球球心,得出半径后可求表面积.【详解】取PA 中点M ,DA 中点E ,连接,ME EO ,则//ME PD ,因为PD ⊥底面ABCD ,所以ME ⊥平面ABCD ,ABCD 是菱形,则AO OD ⊥,所以E 是AOD △的外心,又PD ⊥底面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,所以M 到,,,P A D O 四点距离相等,即为三棱锥P AOD -的外接球球心.又2PD =,3APDπ∠=,所以24cos 3PA π==,所以2MA MP ==,所以三棱锥P AOD -的外接球表面积为24216S ππ=⨯=.故答案为:16π.【点睛】结论点睛:本题考查求三棱锥外接球表面积,解题关键是求出外接球球心.三棱锥的外接球球心一定在过各面外心且与此面垂直的直线上.21.【分析】由题意可得AB 的轨迹得到当ACBC 与轴l 共面时∠ACB 取到最大值和最小值求得sin ∠ACB 的范围代入三角形面积公式得答案【详解】∵ACBC 与平面α所成的角分别为且|AC|=2|BC|=2则A解析:[3,3] 【分析】由题意可得A ,B 的轨迹,得到当AC 、BC 与轴l 共面时,∠ACB 取到最大值和最小值,求得sin ∠ACB 的范围,代入三角形面积公式得答案.【详解】∵AC ,BC 与平面α所成的角分别为512π,4π,且|AC |=23,|BC |=2, 则A ,B 分别在如图所示的两个不同的圆周上运动,当直线AC ,BC 与轴l 在同一平面内时,∠ACB 取到最大值和最小值, 于是,有63ACB ππ≤∠≤, ∴sin 6π≤sin ∠ACB ≤sin 3π,即12≤sin ∠ACB ≤32而ABC 的面积S =12|AC |⋅|BC |⋅sin ∠ACB =23∠ACB . ∴33S ≤.故答案为:[3,3]【点睛】关键点睛:根据题意得到A ,B 的轨迹,利用几何直观和空间想象进行分析是解题的关键. 22.4000【分析】根据题意先求出正四棱柱的底面边长和高由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积进而求出所需的费用【详解】由题意可知文物底部是直径为09m 的圆形文物底部与玻璃罩底边至 解析:4000【分析】根据题意,先求出正四棱柱的底面边长和高,由体积公式求出正四棱柱的体积减去文物的体积可得罩内空气的体积,进而求出所需的费用.【详解】由题意可知,文物底部是直径为0.9 m 的圆形,文物底部与玻璃罩底边至少间隔0.3 m ,所以由正方形与圆的位置关系可知:底面正方形的边长为0.9+2×0.3=1.5m ,由文物高1.8m ,文物顶部与玻璃置上底面至少间隔0.2m ,所以正四棱柱的高为1.8+0.2=2m .,则正四棱柱的体积为V =1.52×2=4.5m 3因为文物体积为0.5m 3,所以置内空气的体积为4.5-0.5 = 4 m 3,气体每立方米1000元,所以共需费用为4×1000=4000(元)【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型.23.【分析】将正三棱柱的侧面沿棱展开成平面连接与的交点即为满足最小时的点可知点为棱的中点即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比【详解】将正三棱柱沿棱展开成平面连接与的交点即为满足最小时 解析:1:1【分析】将正三棱柱111ABC A B C -的侧面沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M ,可知点M 为棱1BB 的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱111ABC A B C -沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M .由于2AB =,13AA =,再结合棱柱的性质,可得,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径, M ∴为1BB 的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:1111:1:1C AMB A A CBMC V V --=.故答案为:1:1.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.24.①②【分析】采用逐一验证法根据线面平行线面垂直的判定定理以及线面距离判断可得结果【详解】由共面所以因为平面平面所以平面;故①正确;平面平面所以又因为平面平面所以故②正确;若则平面或EF 在平面ACD 内 解析:①②【分析】采用逐一验证法,根据线面平行,线面垂直的判定定理,以及线面距离,判断可得结果.【详解】由AB AD ⊥,,,EF AD AD EF AB ⊥,共面 ,所以//EF AB ,因为EF ⊄平面ABC ,AB 平面ABC ,所以//EF 平面ABC ;故①正确; BC ⊥平面ABD ,AD ⊂平面ABD ,所以BC AD ⊥,又因为AB AD ⊥,AB BC B ⋂=,AD ⊥平面ABC ,AC ⊂平面ABC ,所以AD AC ⊥,故②正确;若//EF CD ,则//EF 平面ACD ,或EF 在平面ACD 内,如图EF 与平面ACD 相交于点E ,显然不成立,故③不正确,故答案为:①②【点睛】本题主要考查了线线、线面之间的位置关系,考查了线面平行的判断以及由线面垂直证明线线垂直,属于中档题.三、解答题25.(1)证明见详解;(2 【分析】(1)取AD 的中点O ,连接EO ,BO.,可证EO ⊥平面ABCD 再根据面面垂直判定定理可证;(2)因为EF //AC 得点F 到平面ABCD 的距离等于点E 到平面ABCD 的距离,由体积公式可求出结果.【详解】解:(1)如图,取AD 的中点O ,连接EO ,BO.∵EA =ED ,∴EO ⊥AD.由题意知△ABD 为等边三角形,∴AB =BD =AD =2,∴BO 3在△EAD 中,EA =ED 3AD =2,∴EO 22-2AE AO =又BE 5∴ 222EO BO BE +=,∴EO BO ⊥,∵AD OB O ⋂=,AD ⊂平面ABCD ,BO ⊂平面ABCD ,∴EO ⊥平面ABCD.又EO ⊂平面EAD ,∴平面EAD ⊥平面ABCD.(2)由题意得1123322BCD ABD S S AD OB ==⋅=⨯= ∵EF ∥AC ,∴点F 到平面ABCD 的距离等于点E 到平面ABCD 的距离,为EO , ∴1163233F BCD BCD V S EO -=⋅==. 【点晴】关键点点晴:证明面面垂直的关键在于找到线面垂直.26.(1)证明见解析;(2)3π. 【分析】(1)取PB 中点F ,连接,EF FC ,证明EFCO 是平行四边形,得线线平行后可证得线面平行;(2)取AB 中点G ,连接,,OG PG OP ,可证PGO ∠(或其补角)是二面角P AB C 的平面角.然后在PGO △中求解.【详解】(1)取PB 中点F ,连接,EF FC ,因为E 是PA 中点,∴//EF AB ,且12EF AB =, 又ABCD 是矩形,//,AB CD AB CD =,O 是CD 中点,∴//,EF OC EF OC =,∴EFCO 是平行四边形,∴//OE CF ,而OE ⊄平面PBC ,CF ⊂平面PBC ,∴//OE 平面PBC .(2)取AB 中点G ,连接,,OG PG OP ,ABCD 是矩形,O 是CD 中点,则OG AB ⊥,又PA PC CD ==,∴PO CD ⊥,而平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,PO ⊂平面PCD , ∴PO ⊥平面ABCD ,∵,OG AB ⊂平面ABCD ,∴PO AB ⊥,PO OG ⊥. PO OG O =,,PO OG ⊂平面POG ,∴AB ⊥平面POG ,而PG ⊂平面POG , ∴AB PG ⊥,∴PGO ∠(或其补角)是二面角PAB C 的平面角. 设1AD =,则1OG =,2CD =,3PO =, ∴3tan 31PO PGO OG ∠===,[0,]PGO π∠∈,∴3PGO π∠=. ∴二面角P AB C 的大小为3π.【点睛】方法点睛:本题考查证明线面平行,考查求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角,然后通过解三角形得解;(2)空间向量法:建立空间直角坐标系,求出二面角的两个面的法向量,由法向量夹角得二面角.27.(1)证明见解析;(2)112. 【分析】(1)取PD 的中点M ,连接EM 、CM ,证明四边形CMEF 为平行四边形,可得出//EF CM ,利用线面平行的判定定理可证得结论成立;(2)连接AF ,取AD 的中点N ,连接EN ,由题意可知点P 、A 到平面BEF 的距离相等,并推导出EN ⊥平面ABCD ,可得出P BEF A BEF E ABF V V V ---==,利用锥体的体积公式可求得三棱锥P BEF -的体积.【详解】(1)如下图所示,取PD 的中点M ,连接EM 、CM ,因为四边形ABCD 为矩形,则//AD BC 且AD BC =,E 、M 分别为PA 、PD 的中点,则//EM AD 且12EM AD =, F 为BC 的中点,所以,//EM CF 且EM CF =,所以,四边形CMEF 为平行四边形,。

最新北师大版高中数学必修二第二章《解析几何初步》测试题(包含答案解析)(2)

最新北师大版高中数学必修二第二章《解析几何初步》测试题(包含答案解析)(2)

一、选择题1.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为23则直线l 的方程是( ) A .423y x =+ B .123y x =-+ C .2y =D .y=423x +或y=2 2.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A .2 B .3C .22D .323.已知圆C 与直线30x y ++=相切,直线10mx y ++=始终平分圆C 的面积,则圆C方程为( ) A .2222x y y +-= B .2222x y y ++= C .2221x y y +-=D .2221x y y ++=4.若等比数列{}n a 的公比为q (0)q ≠,则关于,x y 的二元一次方程组132432a x a y a x a y +=⎧⎨+=-⎩的解的情况的下列说法中正确的是( )A .对任意q ∈R (0)q ≠,方程组有唯一解B .对任意q ∈R (0)q ≠,方程组无解C .当且仅当23q =-时,方程组有无穷多解 D .当且仅当23q =-时,方程组无解 5.已知圆()()()222:0C x a y a a a -++=>和直线:20l x y ++=,则2a =是圆C 和直线l 相交的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.在平面直角坐标系xOy 中,过x 轴上的点P 分别向圆221(1)(4)7:C x y -++=和圆222:(2)(5)9C x y -+-=引切线,记切线长分别为12,d d .则12d d +的最小值为( )A .22B .32C .42D .527.如下图所示,在正方体1111ABCD A BC D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 8.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 29.已知正方体1111ABCD A BC D -,点,EF 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( ) A 5B .35C .45D 2510.蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈,2 1.41≈,3 1.73≈,6 2.45≈. A .101gB .182gC .519gD .731g11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.如图,长、宽、高分别为2、1、1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A 10B 5C .22D .3二、填空题13.已知点()2,2A --,()4,2,点P 在圆224x y +=上运动,则22PA PB +的最小值是______.14.已知圆22 : 4O x y +=,直线l 与圆O 交于P Q ,两点,()2,2A ,若2240AP AQ +=,则弦PQ 的长度的最大值为___________.15.圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是________.16.某中学为了了解学生年龄与身高的关系,采用分层抽样的方法分别从高一400名,高二300名,高三250名学生中共抽取19名学生进行调查,从高一、高二、高三抽取的学生人数分别为,,a b c ,若圆222:()()A x a y b c -+-=与圆223:()254B x m y m ⎛⎫-+-= ⎪⎝⎭外切,则实数m 的值为______________.17.数学家默拉在1765年提出定理,三角形的外心,重心,垂心(外心是三角形三条边的垂直平分线的交点重心是三角形三条中线的交点,垂心是三角形三条高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知△ABC 的顶点(1,0),(0,3),B C AB AC -=,则△ABC 的欧拉线方程为____________________18.已知m R ∈,动直线1:20l x my +-=过定点A ,动直线2230l mx y m --+=:过定点B ,若1l 与2l 交于点P (异于点A B ,),则PA PB +的最大值为_________.19.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中AC B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.20.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.21.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,23PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.22.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.23.已知正三棱柱木块111ABC A B C -,其中2AB =,13AA =,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.24.正四棱台的上、下两底面边长分别是方程x 2-9x +18=0的两根,其侧面积等于两底面面积之和,则其侧面梯形的高为________.三、解答题25.如图,ABC 是边长为2的正三角形,ABD △是以AB 为斜边的等腰直角三角形,且2CD =.(1)求证:平面ABC ⊥平面ABD ; (2)求二面角A-BC-D 的余弦值.26.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值; (3)求三棱锥P BCE -的体积.27.如图,已知长方体1111ABCD A BC D -,2AB =,11AA =,直线BD 与平面1AAB B 所成的角为30°,AE 垂直BD 于E .(1)若F 为棱11A B 上的动点,试确定F 的位置使得//AE 平面1BC F ,并说明理由; (2)若F 为棱11A B 上的中点;求点A 到平面BDF 的距离;(3)若F 为棱11A B 上的动点(端点1A ,1B 除外),求二面角F BD A --的大小的取值范围.28.如图,在五面体ABCDEF 中,四边形ABCD 是平行四边形.(1)求证://AB EF ;(2)若CF AE ⊥,AB AE ⊥,求证:平面ABFE ⊥平面CDEF .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据垂径定理得圆心到直线距离,再设直线方程点斜式,利用点到直线距离公式求斜率,即得结果. 【详解】因为直线l 被圆C :224690x y x y +--+=,22(2)(3)4-+-=x y 截得的弦长为2324(3)1-=,设直线l 的方程为2y kx =+,(斜率不2232101k k k -+=∴=+或43k =,即直线l 的方程是423y x =+或2y =,选D.【点睛】本题考查垂径定理,考查基本转化求解能力,属基础题.2.C解析:C 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =所以公共弦长为:22222l r d =-=. 故选:C【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.3.D解析:D 【分析】计算出直线10mx y ++=所过定点的坐标,由题意得出定点是圆C 的圆心,然后利用点到直线的距离公式计算出圆C 的半径长,即可得出圆C 的方程. 【详解】在直线10mx y ++=的方程中,令0x =,则1y =-,则直线10mx y ++=过定点()0,1-.由于直线10mx y ++=始终平分圆C 的面积,则点()0,1-是圆C 的圆心, 又圆C 与直线30x y ++=相切,则圆C的半径r ==.因此,圆C 的方程为()2212x y ++=,即2221x y y ++=.故选D. 【点睛】本题考查圆的方程的求解,同时也考查了直线过定点问题,求出圆的圆心坐标为解题的关键,考查运算求解能力,属于中等题.4.C解析:C 【分析】消去y ,得到()14234332a a a a x a a -=+,利用等比数列的性质可知14230a a a a -=, 讨论4332a a +,得到选项. 【详解】解方程组,132432a x a y a x a y +=⎧⎨+=-⎩,消去y ,得到()14234332a a a a x a a -=+数列{}n a 的公比为q (0)q ≠的等比数列,14230a a a a ∴-=,当43320a a +=,即4323a q a ==-时,方程组由无穷多解, 当43320a a +≠,即23q ≠-时,方程组无解. 故选:C 【点睛】本题考查等比数列的性质和方程组解的情况,意在考查讨论的思想和变形能力,属于基础题型.5.A解析:A 【分析】由圆C 和直线l 相交,解出a 的范围,结合选项判断即可. 【详解】圆C 和直线l 相交,即圆心(),a a -到:20l x y ++=的距离小于半径,()0a a <>,解得a >则2a =是圆C 和直线l 相交的充分不必要条件故选:A 【点睛】本题考查充分必要条件的判断,考查直线与圆的位置关系,属于中档题.6.D解析:D 【分析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解. 【详解】221(1)(4)7:C x y -++=,圆心()1,4-,半径1r =222:(2)(5)9C x y -+-=,圆心()2,5,半径33r =设点P ()0,0x ,则12d d +===即()0,0x 到()1,3-与()2,4两点距离之和的最小值, 当()0,0x 、()1,3-、()2,4三点共线时,12d d +的和最小,即12d d +==故选:D 【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.7.D解析:D 【分析】设正方体1111ABCD A BC D -的棱长为2,利用正方体性质可求得2MN =,3EF =,知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案.【详解】设正方体1111ABCD A BC D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,222GF AG AF =+=,则2222123EF EG GF =+=+=,所以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D =又M N 、分别是11B C 、1CC 的中点,所以1//MN B C 又11//A D B C ,所以//MN ED , 又EF ED E ⋂=,所以MN 与EF 异面 故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.8.B解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===133xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522xAO OE -===, O 是底面中心,则133xOE CE ==,则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.9.B解析:B 【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可. 【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角, 设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯, 异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 10.B解析:B【分析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果.【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体,所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a 2223632a a a ⎛⎫-⨯= ⎪ ⎪⎝⎭设正四面体外接球半径为R ,则222623()()332a R R a =-+⨯,解得R =6a所以3D 打印的体积为:323346113662343223812V a a a a a ππ⎛⎫=-⋅⋅⋅=- ⎪ ⎪⎝⎭, 又336216a ==,所以276182207.71125.38182.331182V π=-≈-=≈,故选:B【点睛】关键点点睛:本题考查正四面体与正四面体的外接球,考查几何体的体积公式,解决本题的关键点是求出正四面体外接球体积与正四面体体积,考查学生空间想象能力和计算能力,属于中档题. 11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2;且侧棱AD ⊥底面BCD ,1AD =,所以112=221=323V ⨯⨯⨯⨯, 故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C解析:C【分析】小虫有两种爬法,一种是从点A 沿着侧面ACGF 和上底面BHFG 爬行,另一种是从点A 沿着侧面ACGF 和侧面BDCG 爬行,将两种情况下的两个面延展为一个面,计算出平面图形的对角线长,比较大小后可得结果.【详解】由于长方体ACDE FGBH -的长、宽、高分别为2、1、1,则小虫从点A 沿着侧面AEHF 和上底面FHBG 爬行,以及小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,这两条线路的最短路程相等.①若小虫从点A 沿着侧面ACGF 和上底面BHFG 爬行,将侧面ACGF 和上底面BHFG 延展为一个平面,如下图所示:则2AC BC ==,最短路程为2222AB AC BC =+=; ②若小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,将面ACGF 和侧面BDCG 延展为一个平面,如下图所示:则3AD AC CD =+=,1BD =,最短路程为2210AB AD BD =+因为2210,因此,小虫爬行的最短路程为22故选:C.【点睛】方法点睛:(1)计算多面体或旋转体的表面上折线段的最值问题时,一般采用转化的方法进行,即将侧面展开化为平面图形,即“化折为直”或“化曲为直”来解决,要熟练掌握多面体与旋转体的侧面展开图的形状;(2)对于几何体内部折线段长的最值,可采用转化法,转化为两点间的距离,结合勾股定理求解.二、填空题13.28【分析】设则由表示圆上的点与点间的距离的平方可得答案【详解】设则表示圆上的点与点间的距离的平方所以所以所以故的最小值是28故答案为:28【点睛】关键点睛:本题考查圆中的相关距离的最值问题解答本题 解析:28【分析】设(),P x y ,则22PA PB +()222113x y ⎡⎤=-++⎣⎦,由()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方,可得答案. 【详解】设(),P x y ,则()()()()2222222242x y x y PA PB =++++--++ 2222428x y x =+-+()222214x y x =+-+()222113x y ⎡⎤=-++⎣⎦()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方. 所以211PB R OB ≥-=-=,所以()2211x y -+≥所以()()22211321+1328x y ⎡⎤-++≥⨯=⎣⎦ 故22PA PB +的最小值是28故答案为:28【点睛】 关键点睛:本题考查圆中的相关距离的最值问题,解答本题的关键是22PA PB +()222113x y ⎡⎤=-++⎣⎦,又()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方,根据211PB R OB ≥-=-=,可求解,属于中档题. 14.【分析】取的中点为M 由可得可得M 在上当最小时弦的长才最大【详解】设为的中点即即设则得所以故答案为:【点睛】本题考查直线与圆的位置关系的综合应用考查学生的逻辑推理数形结合的思想是一道有一定难度的题解析:【分析】取PQ 的中点为M ,由2240AP AQ +=可得2216AM OM -=,可得M 在20x y ++=上,当OM 最小时,弦PQ 的长才最大.【详解】设M 为PQ 的中点,()22222(2)AP AQ AM PQ +=+,即222222AP AQ AM MQ +=+,即()2224022AM OQ OM =+-,22204AM OM =+-,2216AM OM -=.设(),M x y ,则()2222(2)(2)16x y x y -+--+=,得20x y ++=. 所以min 22OM ==,max 22PQ =.故答案为:22【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.15.-4【分析】将圆的方程化为标准方程求出圆心坐标与半径利用点到直线的距离公式算出圆心到直线的距离再根据截得弦的长度为得到关于的方程解出即可【详解】由圆可得圆心为半径直线方程为圆心到直线的距离截得弦的长 解析:-4【分析】将圆的方程化为标准方程,求出圆心坐标与半径r ,利用点到直线的距离公式,算出圆心到直线l 的距离,再根据截得弦的长度为4,得到关于a 的方程,解出即可【详解】由圆22220x y x y a ++-+=可得()()22112x y a ++-=- ∴圆心为()11-,,半径)2?2r a a =-<直线方程为20x y ++=∴圆心到直线的距离22112211d -++==+截得弦的长度为4 22222a ∴+=-,解得4a =-故答案为4-【点睛】结合弦长的长度求出圆的标准方程,只需将圆化为标准方程,然后运用弦长公式的求法求出参量即可16.0或16【分析】根据分层抽样的性质得出的值从而得出圆的方程根据圆与圆的位置关系即可得出实数的值【详解】由分层抽样方法知所以分别为所以圆的圆心为(86)半径为5圆的圆心为半径为5由两圆外切知:解得或故 解析:0或16【分析】根据分层抽样的性质得出,,a b c 的值,从而得出圆A 的方程,根据圆与圆的位置关系,即可得出实数m 的值.【详解】由分层抽样方法知,400:300:2508:6:5=,所以,,a b c 分别为8,6,5所以圆A 的圆心为(8,6),半径为5,圆B 的圆心为3(,)4m m ,半径为555=+,解得0m =或16m =. 故答案为:0或16【点睛】本题主要考查了分层抽样的应用以及由圆与圆的位置关系求参数,属于中档题. 17.【分析】因为所以外心重心垂心都位于线段的垂直平分线上由两直线垂直斜率的关系以及两点的斜率公式得出线段的垂直平分线的斜率由中点坐标公式得出的中点坐标最后由点斜式写出方程【详解】因为所以外心重心垂心都位 解析:340x y +-=【分析】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上,由两直线垂直斜率的关系以及两点的斜率公式得出线段BC 的垂直平分线的斜率,由中点坐标公式得出BC 的中点坐标,最后由点斜式写出方程.【详解】因为AB AC =,所以ABC ∆外心,重心,垂心都位于线段BC 的垂直平分线上 设线段BC 的垂直平分线的斜率为k ,则1BC k k ⨯=- 3030(1)BC k -==--,13k ∴=- 又因为BC 的中点坐标为13,22⎛⎫-⎪⎝⎭ 所以△ABC 的欧拉线方程为311()232y x -=-+,即340x y +-= 故答案为:340x y +-=【点睛】 本题主要考查了两直线垂直斜率间的关系,中点坐标公式,点斜式写出直线方程,属于中档题.18.【分析】根据观察两条直线的位置关系结合不等式可得结果【详解】由题可知:动直线过定点动直线过定点且可知所以且所以即当且仅当时取=所以的最大值为故答案为:【点睛】本题考查直线过定点问题还考查了基本不等式解析:【分析】根据观察两条直线的位置关系,结合不等式,可得结果.【详解】由题可知:动直线1:20l x my +-=过定点()2,0A动直线2230l mx y m --+=:过定点()2,3B 且()110m m ⨯+⨯-=,可知12l l ⊥,所以PA PB ⊥,且2229PA PB AB +==所以2229222PA PB PA PB ⎛+⎫≤+= ⎪⎝⎭即PA PB +≤ 当且仅当PA PB =时取“=”所以PA PB +的最大值为故答案为:【点睛】本题考查直线过定点问题,还考查了基本不等式应用,属中档题.19.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根解析:【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可.【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,2AO A O ''==所以114428222ABC S BC AO =⋅=⨯⨯= 故答案为:82【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.20.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解.【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD ,由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形,同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,122PE AC ==,2ABCD S a =正方形,2311183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得a = 23PE ==,由直角三角形的性质可得1122PE AC BD ==, 即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=.故答案为:36π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 21.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积.【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心,可知四边形MNEO 是矩形,右图,PA PB ==,120APB ∠=,2cos306AB PB ∴==,点E 是PAB △外接圆的圆心,sin303PN PB ∴==,PBE △是等边三角形,PE =NE ∴==MO ∴=12MC AC ==4R OC ∴===,∴球O 的表面积2464S R ππ==故答案为:64π【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.22.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:33【分析】连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论.【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AE DE E =,∴BC ⊥平面AED ,M E ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==112ME BC ==, 又1133233EO DE === 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos 3EO MEO ME ∠==.故答案为:3.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤. 23.【分析】将正三棱柱的侧面沿棱展开成平面连接与的交点即为满足最小时的点可知点为棱的中点即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比【详解】将正三棱柱沿棱展开成平面连接与的交点即为满足最小时 解析:1:1【分析】将正三棱柱111ABC A B C -的侧面沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M ,可知点M 为棱1BB 的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱111ABC A B C -沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M .由于2AB =,13AA =,再结合棱柱的性质,可得,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径, M ∴为1BB 的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:1111:1:1C AMB A A CBMC V V --=.故答案为:1:1.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.24.【分析】】解方程得出棱台的上下底面边长根据面积关系和比例关系求出棱台的高和小棱锥的高【详解】解方程x2-9x +18=0得x=3或x=6∴棱台的上下底面边长分别为36设棱台的斜高为h 则∴h=即答案为【 解析:52【分析】】解方程得出棱台的上下底面边长,根据面积关系和比例关系求出棱台的高和小棱锥的高.【详解】解方程x 2-9x +18=0得x=3或x=6,∴棱台的上下底面边长分别为3,6.设棱台的斜高为h ,, 则22143636452h ⨯⨯+=+=() , ∴h=52. 即答案为52. 【点睛】本题考查了棱台的结构特征,画出草图帮助观察各线段的关系比较重要.三、解答题25.(1)证明见解析;(2)217. 【分析】 (1)取AB 中点O ,连OC 、OD ,即可得到COD ∠是二面角C AB D --的平面角,再由勾股定理逆定理得到222OC OD CD +=,即可得到二面角是直二面角,即可得证; (2)过O 作OM ⊥BC 交BC 于M ,连DM ,即可证明BC ⊥平面DOM ,从而得到ODM ∠为二面角A-BC-D 的平面角,再利用锐角三角函数计算可得;【详解】(1)证明:取AB 中点O ,连OC 、OD ,因为ABC 是边长为2的正三角形,ABD △是以AB 为斜边的等腰直角三角形,所以OC AB ⊥,⊥OD AB ,所以COD ∠是二面角C AB D --的平面角.在OCD 中,因为3OC =,1OD =,2CD =,所以222OC OD CD +=所以90COD ∠=︒.所以平面ABC ⊥平面ABD .(2)过O 作OM ⊥BC 交BC 于M ,连DM ,由(1)可知DO ⊥面ABC ,又BC ⊂面ABC ,所以BC DO ⊥,由OM DO O =,,OM DO ⊂面DOM所以BC ⊥平面DOM因为DM ⊂面DOM ,所以BC ⊥DM ,则ODM ∠为二面角A-BC-D 的平面角.在Rt OMD 中,1OD =,3OM =,由勾股定理:7DM =, ∴二面角A-BC-D 的余弦值为21cos 7OM OMD DM ∠==.。

数学北师大版高中必修2高一数学直线与圆测试题

数学北师大版高中必修2高一数学直线与圆测试题

高一数学直线与圆测试题命题人:余立新一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填在答题卡的指定位置上)1. 若直线0=-+m my x 与01)32(=---y m mx 互相垂直,则m 的值为 .2.已知点)23()32(---,,,B A ,直线l 过点)1,1(且与线段AB 相交,则直线l 的斜率的范围是( )A.443≤≤k B.434≤≤-k C. 443-≤≥k k 或 D.以上都不对3.直线x -y +1=0与圆(x +1)2+y 2=1的位置关系是 ( ) A .相切 B .直线过圆心 C .直线不过圆心但与圆相交 D .相离4.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 052=--y x B. 032=-+y x C. 01=-+y x D. 03=--y x5.已知圆心为(2,-3),一条直径的两个端点恰好在两个坐标轴上,则圆的方程是( ). A .(x -2)2+(y +3)2=5 B .(x -2)2+(y +3)2=21 C .(x -2)2+(y +3)2=13 D .(x -2)2+(y +3)2=526.过圆x 2+y 2=4上的一点(1,3)的圆的切线方程是( ).A .x +3y -4=0 B.3x -y =0 C .x +3y =0 D .x -3y -4=07.已知圆0422=-++mx y x C :上存在两点关于直线03=+-y x 对称,则实数m 的值是( )A.8B.-4C.6D.无法确定8.若x 、y 满足x 2+y 2-2x +4y -20=0,则x 2+y 2的最小值是( ). A.5-5 B .5- 5 C .30-10 5 D .无法确定 9.圆122=+y x 上的点到点(3,4)M 的距离的最小值是( ) A .1 B .4 C .5 D .610.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准方程是( )A .1)37()3(22=-+-y xB .1)1()2(22=-+-y xC .1)3()1(22=-+-y xD .1)1()23(22=-+-y x二.填空题(本大题共5小题,每小题5分,共25分,将答案填写在正确的位置) 11.方程022=++-+m y x y x 表示一个圆,则m 的取值范围是______.12.直线l y x =:与圆22260x y x y +--=相交于,A B 两点,则AB =__________.13.如果三角形三个顶点分别是),0,8(),15,0(),0,0-B A O (则它的内切圆方程为____________ 14.圆034222=-+++y y x x 上到直线01=++y x 的距离为2的点共有______个 15.已知集合{(,)A x y y ==,{(,)}B x y y x m ==+,且A B φ⋂≠,则实数m 的取值范围是_______________.三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(12分)求下列圆的标准方程:(1)过点),1,1(),42(-B A ,且被直线02=-y x 平分的圆的标准方程 (2)圆心在y 轴上,半径为1,且过点(1,2)的圆的标准方程17.(12分)已知圆0322=++++Ey Dx y x C :关于直线01=-+y x 对称,圆心C 在第二象限,半径为2。

高中北师大版数学必修2(课时作业与单元测试卷):第2章2.4 直线与圆、圆与圆的位置关系(二) 含解析

高中北师大版数学必修2(课时作业与单元测试卷):第2章2.4 直线与圆、圆与圆的位置关系(二) 含解析

2.4 直线与圆、圆与圆的位置关系(二)时间:45分钟 满分:80分班级________ 姓名________ 分数________一、选择题(每小题5分,共5×6=30分)1.两圆(x +3)2+(y -2)2=1和(x -3)2+(y +6)2=144的位置关系是( )A .相切B .内含C .相交D .相离答案:B解析:因为两圆的圆心距d =(3+3)2+(-6-2)2=10<12-1=11,所以两圆内含.2.圆x 2+y 2-2x =0和圆x 2+y 2+4y =0的位置关系是( )A .相离B .外切C .相交D .内切答案:C解析:圆x 2+y 2-2x =0的标准方程为(x -1)2+y 2=1,圆心为(1,0),半径为1,圆x 2+y 2+4y =0的标准方程为x 2+(y +2)2=4,圆心为(0,-2),半径为 2.∴圆心距d =(1-0)2+(0+2)2=5<1+2=3,且5>2-1=1,∴两圆相交.3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则直线AB 的方程是( )A .x +y +3=0B .3x -y -9=0C .x +3y =0D .4x -3y +7=0答案:C解析:两圆方程相减,得公共弦所在直线的方程为x +3y =0.4.圆x 2+y 2-4x +2y +1=0与圆x 2+y 2+4x -4y +4=0的公切线有( )A .1条B .2条C .3条D .4条答案:D解析:由题意,得两圆的标准方程分别为(x -2)2+(y +1)2=4和(x +2)2+(y -2)2=4,∴圆心距d =(2+2)2+(-1-2)2=5.∵5>2+2,∴两圆相离,∴公切线有4条.5.过直线2x +y +4=0和圆x 2+y 2+2x -4y +1=0的交点,且取得最小面积的圆的方程是( )A .x 2+y 2+32x -174y =0 B .x 2+y 2-32x +174y =0 C .x 2+y 2+265x -125y +375=0 D .x 2+y 2+265x +125y +375=0 答案:C解析:利用圆系方程来求.6.若M ={(x ,y )|x 2+y 2≤4},N ={(x ,y )|(x -1)2+(y -1)2≤r 2,r >0},且M ∩N =N ,则r 的取值范围是( )A .(0,2-1]B .(0,1]C .(0,2- 2 ]D .[0,2]答案:C解析:∵M ∩N =N ,∴(x -1)2+(y -1)2=r 2在x 2+y 2=4的内部.∴d ≤2-r ,即2≤2-r ,∴0<r ≤2- 2.二、填空题(每小题5分,共5×3=15分)7.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦的长为________.答案: 2解析:题中两圆方程相减,得两圆的公共弦所在的直线方程为x -y -3=0,∴圆x 2+y 2=5的圆心(0,0)到该直线的距离d =|-3|1+(-1)2=32.设公共弦的长为l ,则l =25-⎝⎛⎭⎫322= 2.8.已知两圆x 2+y 2=1和(x +2)2+(y -a )2=25没有公共点,则实数a 的取值范围为________.答案:(-∞,-42)∪(-23,23)∪(42,+∞)解析:由已知,得两圆的圆心分别为(0,0),(-2,a ),半径分别为1,5,∴圆心距d =(0+2)2+(0-a )2=a 2+4.∵两圆没有公共点,∴a 2+4<5-1或a 2+4>5+1,解得-23<a <23或a <-42或a >4 2.9.两圆相交于两点(1,3),(m ,-1),两圆圆心都在直线x -y +C =0上,则m +C 的值为________.答案:3解析:由两圆的公共弦的垂直平分线为两圆心的连线,可得-1-3m -1=-1,所以m =5.又两公共点(1,3)和(5,-1)的中点(3,1)在直线x -y +C =0上,所以C =-2.所以m +C =3.三、解答题(共35分,11+12+12)10.已知圆P :x 2+y 2-2mx +m 2=4与圆Q :x 2+y 2+2x -4my =8-4m 2,当m 为何值时,两圆:(1)相离;(2)相交;(3)相切.解:∵圆P 的方程可化为(x -m )2+y 2=4,∴圆P 的圆心为P (m,0),半径为r 1=2 又圆Q 的方程可化为(x +1)2+(y -2m )2=9, ∴圆Q 的圆心为Q (-1,2m ),半径为r 2=3.(1)∵两圆相离,∴(m +1)2+(2m )2>2+3,解得m >2或m <-125. (2)∵两圆相交,∴3-2<(m +1)2+(2m )2<2+3,解得0<m <2或-125<m <-25. (3)∵两圆相切,∴(m +1)2+(2m )2=2+3或(m +1)2+(2m )2=3-2,解得m =2、-125或0、-25. 11.求过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,且圆心在直线x -y -4=0上的圆的方程.解:由题意,设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0,即(1+λ)x 2+(1+λ)y 2+6x +6λy -4-28λ=0,圆心为⎝⎛⎭⎫-31+λ,-3λ1+λ. 由题意,得-31+λ+3λ1+λ-4=0, ∴λ=-7.∴所求圆的方程是x 2+y 2-x +7y -32=0.12.已知圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 1与圆O 2外切,求圆O 2的方程;(2)若圆O 1与圆O 2交于A ,B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 1、圆O 2的半径分别为r 1,r 2,∵两圆相切,∴|O 1O 2|=r 1+r 2,∴r 2=|O 1O 2|-r 1=(0-2)2+(-1-1)2-2=2(2-1),∴圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)由题意,设圆O 2的方程为(x -2)2+(y -1)2=r 23,圆O 1,O 2的方程相减,即得两圆公共弦AB 所在直线的方程,为4x +4y +r 23-8=0. ∴圆心O 1(0,-1)到直线AB 的距离为|0-4+r 23-8|42+42=4-⎝⎛⎭⎫2222=2, 解得r 23=4或20.∴圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.给高中生的建议初中学生学数学,靠的是一个字:练!高中学生学数学靠的也是一个字:悟!学好数学的核心就是悟,悟就是理解,为了理解就要看做想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和圆的方程 单元检测题时量:120分钟 总分:150分一、选择题(每题有四个选项,只有一个是正确的,请把答案的序号填写在答题卷上,共12个小题,每小题5分,共60分。

)1、若点A (3,3),B (2,4),C (a ,10)三点共线,则a 的值为 ( )(A)4- (B)3- (C)2- (D)42、下列说法正确的是 ( )(A)直线的倾斜角的范围是[0,]π (B)直线的倾斜角为α,则其斜率为tan α (C)方程222460xy x y ++-+=表示一个圆(D)点A(3,2)与坐标原点在直线350x y +-=的异侧3、过两条直线2310x y --=和3220x y --=的交点,且与直线30x y +=平行的直线方程是 ( ) (A)155130x y --= (B) 155130x y +-= (C) 155130x y ++= (D) 155130x y -+=4、若直线(3)(21)70m x m y -+-+=与直线(12)(5)60m x m y -++-=互相垂直,则m 的值为 ( ) (A)-1 (B) 1或 12-(C) -1或12(D)15、过点P (1,2)引一条直线,使它与点A (2,3)和点B (4,-5)的距离相等,那么这条直线的方程是( ) (A) 460x y +-= (B) 3270x y +-= 或460x y +-= (C)460x y +-= (D) 2370x y +-= 或460x y +-=6、方程2xxy x +=所表示的曲线是 ( )(A)一个点 (B)一条直线 (C) 一个点和一条直线 (D) 两条直线7、过点A (3,4)的圆2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)的切线方程是 ( )(A)430x y += (B) 430x y -=(C) 430x y -=或3x = (D) 430x y +=或3x =8、一动点在圆221x y +=上移动时,它与定点)0,3(B 连线的中点轨迹是( )(A )4)3(22=++y x (B )1)3(22=+-y x(C )1)23(22=++y x (D )14)32(22=+-y x 9、设点A (-2,3),B(3,2),若直线20ax y ++=与线段AB 有交点,则a 的取值范围是( ) (A )54(,][+)23--∞,∞ (B )45[,]32- (C )54[,]23- (D )45(,][+)32--∞,∞10、将直线1x y +=绕点(1,0)顺时针旋转90°后,再向上平移1个单位与圆22(1)x y r+-=相切,则r 的值是 ( )(A (B )2 (C )12(D )1 11、已知点(1,1)A -和圆2(7)4C x y +-=2:(-5),一束光线从点A 经x 轴反射到圆周C 的最短路程是 ( ) (A)226- (B) 8 (C) 64 (D) 1012、设点),(y x P 是圆22(2)(1)1x y ++-=上任一点,若不等式0x y c -+≤恒成立,则c 的取值范围是 ( )(A)[3-+∞) (B)1,)+∞(C)(,3--∞ (D)3-[一、选择题(每题有四个选项,只有一个是正确的,请把答案的序号填写在答题卷上,共12个小题,每小题5分,共60分。

)二、填空题(本大题共4个小题,每小题4分,共16分) 13、点(-2,3)关于直线1y x =+对称的点的坐标是 。

14、两圆22430x y x y +--=与22350x y x y +---=的公共弦所在的直线方程是_________________ 。

15、曲线y =与直线(1)2y k x =-+有两个交点时,实数k的取值范围是 。

16、已知x 、y 满足2501230x y x x y +-≤⎧⎪≥⎨⎪+-≥⎩,则y x 的最大值是 。

三、解答题(本大题共6个小题,满分74分,)17、(本小题12分)直线l 与直线3470x y +-=平行,且和两坐标轴围成的三角形面积为24。

求直线l 的方程。

18、(本小题12分)证明:对于任意实数k ,方程222(2)20x y kx k y k +++--=所表示的曲线恒过两定点,并求出两定点的坐标。

19、(本小题12分)直线032=--y x 与圆C :9)3()2(22=++-y x 交于E 、F 两点,O为原点,求EOF ∆的面积。

x20、(本小题12分)建一栋新房,门窗需要两种不同尺寸的玻璃,其中大号玻璃40块,小号玻璃100块。

已知商店出售甲、乙两种型号的玻璃,每种不同型号的玻璃可同时割得的大、小号尺寸的玻璃如下表:已知甲型玻璃每张40元,乙型玻璃每张16元,问每种玻璃各买几张可使购买玻璃所用的资金最小?画出可行域,并求出这个资金数。

21、(本小题12分)已知点A (3,1),B (532),C (532)。

求:①△ABC 中∠BAC 的大小(5分),②△ABC 的外接圆的标准方程(7分)22.(本题14分)过点P(2,1)的直线l 交x 轴,y 轴的正半轴于A,B 两点,求: (1)使△AOB 面积最小时直线l 的方程; (2)使PB PA ⋅最小时直线l 的方程.直线和圆的方程 单元检测题参考答案一、选择题(每小题5分,共60分。

)二、填空题(本大题共4个小题,每小题4分,共16分)13、 (2,1)- 14、 250x y +-= 15、314k ≤< 16、 2 三、解答题:17、解:由题意可设直线l 的方程为: 340x y m ++= ………… 2分 则可求直线l 在x 轴上的截距为3m -,在y 轴上的截距为4m -, ………… 6分继而由题意有:1||||24234m m⨯-⨯-=⇒24m =±, ………… 10分 所以直线l 的方程为: 34240x y ++=或34240x y +-=. ………… 12分 18、解:方程可化为: 22(22)(2)0k x y x y y --++-= ………… 2分当2222020x y x y y --=⎧⎨+-=⎩时,无论k 取何值,上式都成立。

………… 6分解上面的方程组得:02x y =⎧⎨=⎩或4525x y ⎧=⎪⎪⎨⎪=⎪⎩, ………… 10分 即方程恒过两定点(0,2),42(,)55。

………… 12分 19、解:过C 作CA 垂直于EF 交EF 于A ,则点A 为线段EF 的中点。

……2分又点(2,3)C -,由点到直线的距离公式可求:x -|CA|………… 4分连接CF,则||3CF =,在Rt CAF△中,由勾股定理可求:||2AF =,故有||4EF = ………… 7分又可求原点O 到直线032=--y x的距离d =…………9分故11=||422EOFSEF d ⨯⨯=⨯= …………12分 20、解:设买甲型玻璃x 张,乙型玻璃y 张,所用资金为z 元,………2分则约束条件是: 24062100,x y x y x N y N +≥⎧⎪+≥⎨⎪∈∈⎩………5分目标函数是:4016z x y =+。

…………6分由题意,要求目标函数在约束条件下的最小值。

(图略:图2分) …………9分 当1020x y =⎧⎨=⎩时,min720z=元。

…………11分即甲型玻璃买10张,乙型玻璃买20张,所用资金最少,最少资金为720元。

…………12分 21、略解:①方法一:由两点间的距离公式可证△ABC 为等边三角形,故∠BAC =60︒。

方法二:可由到角公式求得∠BAC =60︒。

②方法一:因为△ABC 为等边三角形,所以外心与重心重合,故由重心坐标公式可求△ABC 的外接圆的圆心为(3,2)P ,继而可求半径||1r PA ==,所以△ABC的外接圆的标准方程为:22(3)(2)1x y -+-=。

方法二:在△ABC 中,∠BAC =60︒,又可求||BC =2R =(R 即为△ABC 外接圆的半径)⇒1R =,再设圆的标准形式,将其中两点的坐标代入求解。

方法三:设圆的一般形式,将三个点的坐标代入,求得:6412D E F =-⎧⎪=-⎨⎪=⎩,然后将一般方程化为标准方程。

22、解:①直线1l 的方程为2130x y +-=②(即可用代数方法,以可用几何方法。

)5b -5<<。

③(设而不求)25(5)3b =-∈-,故存在满足条件的常数b 。

直线与圆的方程测试1.在直角坐标系中,直线33=-+yx的倾斜角是()A.6πB.3πC.65πD.32π2.如下图,在同一直角坐标系中表示直线y=ax与y=x+a,正确的是( )3.若直线210ax y++=与直线20x y+-=互相垂直,那么a的值等于()A.1 B.13-C.23-D.2-4.若直线2322=--=++yxyax与直线平行,那么系数a等于( )A.3-B.6-C.23-D.325. 圆x2+y2-4x=0在点P(1,3)处的切线方程为()A、x+3y-2=0 B、x+3y-4=0 C、x-3y+4=0 D、x-3y+2=06若圆C与圆1)1()2(22=-++yx关于原点对称,则圆C的方程是()A.1)1()2(22=++-yxB.1)1()2(22=-+-yxC.1)2()1(22=++-yxD.1)2()1(22=-++yx7.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切8.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( )A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=09.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 B.13 C.10 D.1010.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( )A. 3B. 2C.3或- 3D.2和- 211.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是( ) A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=112.设圆222(3)(5)(0)x y r r-++=>上有且仅有两个点到直线4320x y--=的距离等于1,则圆半径r的取值范围()A.35r<< B.46r<<C.4r>D.5r>13.点A(4,0)关于直线5x+4y+21=0的对称点是( ) A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)14.经过点)1,2(的直线l到A)1,1(、B)5,3(两点的距离相等,则直线l的方程为()A.32=--yxB.2=xC.32=--yx或2=x D.以上都不对15以点)1,5()3,1(-和为端点的线段的中垂线的方程是。

相关文档
最新文档