9.4点到直线的距离
高中数学目录(沪教版)

高中数学教材(沪教版)目录高一上第一章集合与命题一集合1.1集合及其表示法1.2集合之间的关系1.3集合的运算二四种命题的形式1.4命题的形式及等价关系三充分条件与必要条件1.5充分条件、必要条件1.6子集与推出关系第二章不等式2.1不等式的基本性质2.2一元二次不等式的解法2.3其他不等式的解法2.4基本不等式及其应用*2.5不等式的证明第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1幂函数的性质与图像二指数函数4.2指数函数的性质与图像*4.3借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4对数的概念及其运算四反函数4.5反函数的概念五对数函数4.6对数函数的性质与图像六指数方程和对数方程4.7简单的指数方程4.8简单的对数方程第五章 三角比 一 任意角的三角比 5.1任意角及其度量 5.2任意角的三角比 二 三角恒等式5.3同角三角比的关系和诱导公式 5.4两角和与差的正弦、余弦和正切 5.5二倍角与半角的正弦、余弦和正切 三 解斜三角形5.6正弦定理、余弦定理和解斜三角形第六章 三角函数 一 三角函数的图像及性质6.1正弦函数和余弦函数的图像与性质 6.2正切函数的图像与性质6.3函数()sin y A x ωφ=+的图像与性质 二 反三角函数与最简三角方程 6.4反三角函数 6.5最简三角方程高二上第七章数列与数学归纳法一 数列 7.1数列 7.2等差数列 7.3等比数列 二 数学归纳法 7.4数学归纳法7.5数学归纳法的应用 7.6归纳—猜想—证明 三 数列的极限 7.7数列的极限7.8无穷等比数列各项的和第八章 平面向量的坐标表示 8.1向量的坐标表示及其运算 8.2向量的数量积8.3平面向量的分解定理 8.4向量的应用第九章 矩阵和行列式初步 一 矩阵9.1矩阵的概念 9.2矩阵的运算 二 行列式 9.3二阶行列式 9.4三阶行列式第十章算法初步10.1算法的概念10.2程序框图*10.3计算机语句和算法程序高二下第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离第十二章圆锥曲线12.1曲线和方程12.2圆的方程12.3椭圆的标准方程12.4椭圆的性质12.5双曲线的标准方程12.6双曲线的性质12.7抛物线的标准方程12.8抛物线的性质第十三章复数13.1复试的概念13.2复数的坐标表示13.3复数的加法和减法13.4复数的乘法和除法13.5复数的平方根和立方根13.6实系数的一元二次方程高三上第十四章空间直线与平面14.1平面及其基本性质14.2空间直线与直线的位置关系14.3空间直线与平面的位置关系14.4空间平面与平面的位置关系第十五章简单集合体一多面体15.1多面体的概念15.2多面体的直观图二旋转体15.3旋转体的概念三几何体的表面积、体积和球面距离15.4几何体的表面积15.5几何体的体积15.6球面距离第十六章排列组合与二项式定理16.1计数原理Ⅰ——乘法原理16.2排列16.3计数原理Ⅱ——加法原理16.4组合16.5二项式定理高三下第十七章概率论初步17.1古典概型17.2频率与概率第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析*18.5概率统计实验。
9.4 双曲线及其性质(讲解部分)

∴△AF1F2的周长为|AF1|+|AF2|+|F1F2|=|AF1|+|AF2|+4a,
又△AF1F2的周长为10a,∴|AF1|+|AF2|=6a,
又∵|AF1|-|AF2|=2a,∴|AF1|=4a,|AF2|=2a.
在△AF1F2中,|F1F2|=4a,∴cos∠F1AF2=
|AF1|2 |AF2|2 -|F1F2|2
栏目索引
高考理数
9.4 双曲线及其性质
栏目索引
考点清单
考点一 双曲线的定义及标准方程
考向基础 1.定义 在平面内到两定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于 零)的点的轨迹叫做双曲线,定点F1,F2叫做双曲线的焦点,两焦点间的距离 叫做焦距. 注意 (1)设双曲线上的点M到两焦点F1,F2的距离之差的绝对值为2a,即|| MF1|-|MF2||=2a,其中0<2a<|F1F2|,这一条件不能忽略. ①若2a=|F1F2|,则点M的轨迹是分别以F1,F2为端点的两条射线; ②若2a>|F1F2|,则点M的轨迹不存在; ③若2a=0,则点M的轨迹是线段F1F2的垂直平分线.
栏目索引
3.焦点三角形问题 (1)P为双曲线上的点,F1,F2为双曲线的两个焦点,且∠F1PF2=θ,则S F1PF2 =
b2
tan
θ 2
=c|yP|.
(2)过焦点F1的直线与双曲线的一支交于A、B两点,则A、B与另一个焦点 F2构成的△ABF2的周长为4a+2|AB|.
栏目索引
(3)若P是双曲线右支上一点,F1、F2分别为双曲线的左、右焦点,则|PF1|min=栏目索引考点二 双曲 Nhomakorabea的几何性质
职高数学第九章直线与平面、平面与平面所成的角 直线与直线、直线与平面、平面与平面垂直的判定与性质

【课题】9.3 直线与直线、直线与平面、平面与平面所成的角【教学目标】知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.【教学难点】两条异面直线所成的角的概念、二面角的平面角的确定.【教学设计】两条异面直线所成的角可用来刻画两条异面直线之间的位置关系,它是本节教学的难点.学生一般会有疑问:异面直线不相交怎么能成角?教学时要讲清概念.例1是求异面直线所成的角的巩固性题目,一般来说,这类题目要先画出两条异面直线所成的角,然后再求解.斜线在平面内的射影是本节的重要概念之一,是理解直线与平面所成的角的基础.要讲清这一概念,可采取“一边演示,一边讲解,一边画图”的方法,结合图形讲清斜线、斜足、斜线段、垂足、垂线段、斜线在平面内的射影与斜线段在平面内的射影.要讲清斜线在平面内的射影与斜线段在平面内的射影的区别.两个平面相交时,它们的相对位置可用两个平面所成的角来确定.教材从观察建筑房屋、修筑河堤两个实例,结合实验引入二面角的概念,二面角的概念可以与平面几何中的角的概念对比进行讲解.二面角的平面角的大小只与二面角的两个面的相对位置有关,而与平面角的顶点在棱上的位置无关.因此二面角的大小可以用它的平面角来度量.规定二面角的范围为[0,180].【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题9.3 直线与直线、直线与平面、平面与平面所成的角*创设情境 兴趣导入在图9−30所示的长方体中,直线1BC 和直线AD 是异面直线,度量1CBC ∠和1DAD ∠,发现它们是相等的.如果在直线AB 上任选一点P ,过点P 分别作与直线1BC 和直线AD 平行的直线,那么它们所成的角是否与1CBC ∠相等?图9−30介绍 质疑引导 分析了解 思考启发 学生思考0 5 *动脑思考 探索新知我们知道,两条相交直线的夹角是这两条直线相交所成的最小的正角.经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角.如图9−31(1)所示,m '∥m 、n '∥n ,则m '与n '的夹角θ就是异面直线m 与n 所成的角.为了简便,经常取一条直线与过另一条直线的平面的交点作为点O (如图9−31(2))(1)讲解 说明 引领 分析思考 理解带领 学生 分析nm'm'noθ过 程行为 行为 意图 间*运用知识 强化练习在如图所示的正方体中,求下列各对直线所成的角的度数:(1)1DD 与BC ; (2)1AA 与1BC .提问 指导思考 解答领会知识21 *创设情境 兴趣导入正方体1111ABCD A B C D -中(图9−33),直线1BB 与直线AB 、BC 、CD 、AD 、AC 所成的角各是多少?可以发现,这些角都是直角.图9−33质疑 引导 分析思考启发 学生思考26*动脑思考 探索新知如果直线l 和平面α内的任意一条直线都垂直,那么就称直线l 与平面α垂直,记作α⊥l .直线l 叫做平面α的垂线,垂线l 与平面α的交点叫做垂足.画表示直线l 和平面α垂直的图形时,要把直线l 画成与平行四边形的横边垂直(如图9−34所示),其中交点A 是垂足.图9−34讲解说明引领 分析思考 理解带领 学生 分析309.3.1题图过程行为行为意图间*创设情境兴趣导入将一根木棍P A直立在地面α上,用细绳依次度量点P与地面上的点A、B、C、D的距离(图9−35),发现P A最短.质疑思考带领学生分析32*动脑思考探索新知如图9−35所示,PAα⊥,线段P A叫做垂线段,垂足A 叫做点P在平面α内的射影.直线PB与平面α相交但不垂直,则称直线PB与平面α斜交,直线PB叫做平面α的斜线,斜线和平面的交点叫做斜足.点P与斜足B之间的线段叫做点P到这个平面的斜线段.过垂足与斜足的直线叫做斜线在平面内的射影.如图9−35中,直线AB是斜线PB在平面α内的射影.从上面的实验中可以看到,从平面外一点向这个平面引垂线段和斜线段,垂线段最短.因此,将从平面外一点P到平面α的垂线段的长叫做点P到平面α的距离.讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析40*创设情境兴趣导入如图9−36所示,炮兵在发射炮弹时,为了击中目标,需要调整好炮筒与地面的角度.图9−36质疑思考带领学生分析42图9−35过程行为行为意图间*动脑思考探索新知斜线l与它在平面α内的射影l'的夹角,叫做直线l与平面α所成的角.如图9−37所示,PBA∠就是直线PB与平面α所成的角.规定:当直线与平面垂直时,所成的角是直角;当直线与平面平行或直线在平面内时,所成的角是零角.显然,直线与平面所成角的取值范围是[0,90].【想一想】如果两条直线与一个平面所成的角相等,那么这两条直线一定平行吗?图9−37讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析47*巩固知识典型例题例2如图9−38所示,等腰∆ABC的顶点A在平面α外,底边BC在平面α内,已知底边长BC=16,腰长AB=17,又知点A到平面α的垂线段AD=10.求(1)等腰∆ABC的高AE的长;(2)斜线AE和平面α所成的角的大小(精确到1º).分析三角形AEB是直角三角形,知道斜边和一条直角边,利用勾股定理可以求出AE的长;AED∠是AE和平面α所成的角,三角形ADE是直角三角形,求出AED∠的正弦值即可求出斜线AE和平面α所成的角.解(1) 在等腰∆ABC中,AE BC⊥,故由BC=16可得BE=8.在Rt∆AEB中,∠AEB=90°,因此222217815AE AB BE=-=-=.(2)联结DE.因为AD是平面α的垂线,AE是α的斜线,所以DE是AE在α内的射影.因此AED∠是AE和平面α所成说明强调引领观察思考主动求解通过例题进一步领会图9−38过 程行为 行为 意图 间的角. 在Rt ∆ADE 中,102sin 153AD AED AE ∠===, 所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】为什么这三条连线都画成虚线?讲解 说明思考注意 观察 学生 是否 理解 知识 点55*运用知识 强化练习长方体ABCD −1111A B C D 中,高DD 1=4cm ,底面是边长为3cm 的正方形,求对角线D 1B 与底面ABCD 所成角的大小(精确到1′).练习9.3.2图提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况60 *创设情境 兴趣导入在建筑房屋时,有时为了美观和排除雨水的方便,需要考虑屋顶面与地面形成适当的角度(如图9−39(1));在修筑河堤时,为使它经济且坚固耐用,需要考虑河堤的斜坡与地面形成适当的角度(如图9−39(2)).在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察.质疑引导 分析思考启发 思考63 *动脑思考 探索新知平面内的一条直线把平面分成两部分,每一部分叫做一个半平面.从一条直线出发的两个半平面所组成的图形叫做二面讲解(2)图9−39(1)过 程行为 行为 意图 间角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.以直线l (或CD )为棱,两个半平面分别为αβ、的二面角,记作二面角l αβ--(或CD αβ--)(如图9−40).过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角.如图9−41所示,在二面角α−l −β的棱l 上任意选取一点O ,以点O 为垂足,在面α与面β内分别作OM l ⊥、ON l ⊥,则MON ∠就是这个二面角的平面角. 说明引领 分析 仔细 分析 讲解 关键 词语思考 理解 记忆带领 学生 分析70 *创设情境 兴趣导入用纸折成一个二面角,在棱上选择不同的点作出二面角的平面角,度量它们是否相等,想一想是什么原因. 质疑 思考 启发 思考 72 *动脑思考 探索新知二面角的平面角的大小由αβ、的相对位置所决定,与顶点在棱上的位置无关,当二面角给定后,它的平面角的大小也就随之确定.因此,二面角的大小用它的平面角来度量.当二面角的两个半平面重合时,规定二面角为零角;当二面角的两个半平面合成一个平面时,规定二面角为平角.因此二面角取值范围是[0,180].平面角是直角的二面角叫做直二面角.例如教室的墙壁与地面就组成直二面角,此时称两个平面垂直.平面α与平面β垂直记作αβ⊥ 讲解 说明 引领 分析 思考 理解 记忆 带领 学生 分析76 *巩固知识 典型例题例3 在正方体1111ABCD A B C D -中(如图9−42),求二面角1D AD B --的大小.说明 强调观察通过图9−40CD图9−41loNM βαCD过 程行为 行为 意图 间图9−42解 AD 为二面角的棱, 1AA 与AB 是分别在二面角的两个面内并且与棱AD 垂直的射线,所以1A AB ∠为二面角1D AD B --的平面角.因为在正方体1111ABCD A B C D -中,1A AB ∠是直角.所以二面角1D AD B --为90°. 引领 讲解 说明思考 主动 求解例题进一步领会81*运用知识 强化练习在正方体1111ABCD A B C D -中,求二面角1A DD B --的大小.提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况86 *理论升华 整体建构 思考并回答下面的问题:异面直线所成的角、二面角的平面角的概念? 结论:经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角.过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角. 质疑 归纳强调 回答 及时了解学生知识掌握情况 87 *归纳小结 强化思想引导回忆练习9.3.3题继续探索活动探究(1)读书部分:教材(2)书面作业:教材习题(3)实践调查:用发现的眼睛寻找生活中的异面直线实例【教师教学后记】【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条.例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90即可.在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目,关键是在平面B AC内找到一条直线AC与1平面B1BDD1垂直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质 *创设情境 兴趣导入【知识回顾】如果空间两条直线所成的角是90º,那么称这两条直线互相垂直,直线a 和b 互相垂直,记作a ⊥b .【想一想】演示并画出两条相交直线垂直与两条异面直线垂直的位置关系,并回答问题:经过空间任意一点作与已知直线垂直的直线,能作几条? 介绍质疑引导分析了解 思考启发 学生思考0 5 *巩固知识 典型例题【知识巩固】例1 如图9-43,长方体ABCD -A 1B 1C 1D 1中,判断直线AB 和DD 1是否垂直.解 AB 和DD 1是异面直线,而BB 1∥DD 1,AB ⊥BB 1,根据异面直线所成的角的定义,可知AB 与DD 1成直角.因此1AB DD .图9-43说明 强调 引领讲解 说明观察 思考 主动 求解通过例题进一步领会10 *运用知识 强化练习1.垂直于同一条直线的两条直线是否平行?2.在图9−43所示的正方体中,找出与直线AB 垂直的棱,并指出它们与直线1AA 的位置关系. 提问 指导 思考 解答了解 知识 掌握 情况14 *创设情境 兴趣导入【问题】前面我们学过直线与平面垂直的概念.根据定义判断直线与平面垂直,需要判定直线与平面内的任意一条直线都垂直,这是比较困难的.那么,如何判定直线和平面垂直呢? 【观察】 我们来看看实践中工人师傅是如何做的.如图9−44所示,检验一根圆木柱和板面是否垂直.工人质疑 引导思考带领 学生 分析图9−44*巩固知识典型例题【知识巩固】例2长方体ABCD-A1B1C1D1中(如图9−45),直线AA1与平面ABCD垂直吗?为什么?图9−45解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D 都是长方形,所以AA1⊥AB,AA1⊥AD.且AB和AD是平面ABCD 内的两条相交直线.由直线与平面垂直的判定定理知,直线AA1⊥平面ABCD.图9−46[小提示]在实际生活中,我们采用如图9−46所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用.【做一做】如果只给一个卷尺,你能否判断操场中立的旗杆与底面垂直吗?图9−48α,CD⊥α,所以AB∥CD BD,CD⊥BD.设AB与CD确定平面AE∥BD,直线AE与CD交于点ACE中,因为AE=BD=5 cm,过 程行为 行为 意图 间所以 AC =22AE CE + = 22512+ =13(cm ).说明求解 理解 知识 点 37 *运用知识 强化练习1.一根旗杆AB 高8 m ,它的顶端A 挂两条10 m 的绳子,拉紧绳子并把它们的两个下端固定在地面上的C 、D 两点,并使点C 、D 与旗杆脚B 不共线,如果C 、D 与B 的距离都是6 m ,那么是否可以判定旗杆AB 与地面垂直,为什么?2.如图所示,ABC ∆在平面α内,90BAC ∠=︒,且PA α⊥于A ,那么AC 与PB 是否垂直?为什么?提问 巡视 指导 思考 解答及时 了解 学生 知识 掌握 情况42 *创设情境 兴趣导入【知识回顾】两个平面相交,如果所成的二面角是直二面角,那么称这两个平面互相垂直.平面α与平面β垂直,记作βα⊥. 画表示两个互相垂直平面的图形时,一般将两个平行四边形的一组对边画成垂直的位置,可以把直立的平面画成矩形(图9−49(1)),也可以把直立的平面画成平行四边形(图9−49(2)).【做一做】请动手画出图9−50中的两个图形. [实例]建筑工人在砌墙时,把线的一端系一个铅锤,另一端用砖压在墙壁面上(图9−50),观察系有铅锤的线与墙面是否紧贴(在铅锤处应有一空隙),即判断所砌墙面是否经过地面的垂线,以此保证所砌的墙面与地面垂直.质疑 引导 分析观察 思考带领 学生 分析β(2)α图9−49过程行为行为意图间图9−5048 *动脑思考探索新知【新知识】这种做法的依据是平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直.如图9−51所示,如果ABβ⊥,AB在α内,那么αβ⊥.讲解说明引领分析理解带领学生分析52*巩固知识典型例题【知识巩固】例4在正方体ABCD-A1B1C1D1(如图9−52)中,判断平面B1AC与平面B1BDD1是否垂直.图9−52解在正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以BB1⊥AC,在底面正方形ABCD中,BD⊥AC,因此AC⊥平面BB1D1D,因为AC在平面B1AC内,所以平面B1AC与平面B1BDD1垂直.说明强调引领讲解说明观察思考主动求解通过例题进一步领会57*创设情境兴趣导入图9−51图9−54内,连结AD.又由于BD⊥AB过 程行为 行为 意图 间222223425=+=+=AD AB BD ,故 AD =5(cm ).因为αβ⊥,AC 在平面α内,且AC ⊥AB ,AB 为平面α与β的交线,所以AC ⊥β. 因此CA ⊥AD .在直角三角形ACD 中,22222125169=+=+=CD AC AD ,故 CD =13(cm ).讲解 说明主动 求解观察 学生 是否 理解 知识 点69 *运用知识 强化练习1.如图所示,在长方体1111ABCD A B C D -中,与平面1AB 垂直的平面有 个,与平面1AB 垂直的棱有 条.2.如图所示,检查工件相邻的两个面是否垂直时,只要用曲尺的一边卡在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了,为什么? 提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况78 *理论升华 整体建构 思考并回答下面的问题:直线与平面垂直的判定与性质? 平面与平面垂直的判断与性质? 结论:直线与平面垂直的判定方法:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直.直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行.平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直.平面与平面垂直的性质:如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.质疑 归纳强调回答及时了解学生知识掌握情况82A BC D D AB C第1题图第2题图【教师教学后记】。
点到直线的距离公式(9.4)

(4)P(—1,1)到直线2x+y—10= 0的距离是______ 5
4 5
(5)P(2,0)到直线y= 2x的距离是______ 5
例2.求过点A(-1,2)且与原点距离
为1的直线方程
变:求过点A(-1,2)且与原点距离最大 的直线方程
例3.已知实数x,y满足3x+4y-5=0,
求
x y
反馈练习:
1 .点( 3, m )到直线 则 m 等于
A. 3
l: x
3 y 4 0的距离等于
1,
(D
B. 3
C. 3 3 D . 3或 3 3
)
2 .若点 P ( x , y )在直线 则 OP 的最小值是
A . 10
B .2 2
x y 4 0 上, O 是原点,
Q
l
创设情境
已知点P(x0,y0)和直线l Ax+By+C=0, (假设A、B≠ 0) 求点P到直线l 的距离.
y P(x0,y0)
Q O l
返回
x
尝试 合作 交流
思考:最容易想到的方法是什么?
思路①. 依据定义求距离,其流程为:
求l 的垂线l 1的方程
解方程组,得交点Q的坐标 求P Q
Q y P(x0,y0)
作 y 轴 的 平 行 线 , 交 l与 点 S
A B 0 , 这 时 l 与 x 轴 , y 轴 都 相 交 ,
l
y
R
d
P
Q
O
x0 ,
y2
A x1 B y 0 C 0 , A x 0 B y 2 C 0
x1
B y0 C A
直线与直线、直线与平面、平面与平面垂直的判定与性质

【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质.平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内.过一点可以作一条且只能作一条直线与已知直线垂直;在空间中.过一点作与已知直线垂直的直线.能作无数条.例1是判断异面直线垂直的巩固性题目.根据异面直线垂直的定义.只要判断它们所成的角为90即可.在判定直线与平面垂直时.要特别注意“平面内两条相交的直线”的条件.可举一些实例.以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中.两个平面互相垂直的例子非常多.教学时可以多结合一些实例.以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目.关键是在平面B AC内找到一条直线AC与平面B1BDD1垂1直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图9-43图9−44看曲尺的另一条直角照样再检查一次(应当注意.直角*巩固知识典型例题【知识巩固】例2 长方体ABCD-A1B1C1D1中(如图9−45).直线AA1与平面ABCD垂直吗?为什么?图9−45解因为长方体ABCD-A1B1C1D1中.侧面ABB1A1、AA1D1D都是长方形.所以AA1⊥AB.AA1⊥AD.且AB和AD是平面ABCD内的两条相交直线.由直线与平面垂直的判定定理知.直线AA1⊥平面ABCD.图9−46[小提示]在实际生活中.我们采用如图9−46所示的“合页型折纸”检验直线与平面垂直.就是直线与平面垂直方法的应用.【做一做】如果只给一个卷尺.图9−48.所以AB∥CD.因为BD在平面在平面β内.过点A作AE∥BD.直线因为AE=BD=5 cm.8 + 4 =12(cm).图9−52D1中.B1B⊥平面ABCD.所以BB1D1D.图9−54AD.又由于BD⊥AB.所以在直角三角形2222BD.3425+=+=).第2题图【教师教学后记】。
双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.4 双曲线(知识点讲解)【知识框架】【核心素养】1.考查双曲线的定义,求轨迹方程及焦点三角形,凸显数学运算、直观想象的核心素养.2.考查双曲线几何性质(范围、对称性、顶点、离心率、渐近线),结合几何量的计算,凸显逻辑推理、数学运算的核心素养.3.考查直线与双曲线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形(二)双曲线的几何性质 双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线y =±b axy =±a bx离心率 e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)(三)常用结论 1.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 2.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2·1tan θ2,其中θ为∠F 1PF 2.【常考题型剖析】题型一:双曲线的定义及其应用例1.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B 410C 7D 10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= 故选:D.例2.(2017·上海·高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________ 【答案】11【详解】由双曲线的方程2221(0)9x y b b -=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±,又因为15PF =,所以2||11PF =. 【总结提升】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 题型二:双曲线的标准方程例3.(2021·北京高考真题)双曲线2222:1x y C a b -=过点2,3,且离心率为2,则该双曲线的标准方程为( ) A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得3b a =,再将点2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a -=,则双曲线的方程为222213x y a a-=,将点2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =因此,双曲线的方程为2213y x -=.故选:B例4. (2022·全国·高三专题练习)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为( ) A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【分析】设双曲线的标准方程为()222210,0y x a b a b -=>>,由双曲线的定义知3c =,2a =,即可求出双曲线的标准方程.【详解】设双曲线的标准方程为()222210,0y x a b a b -=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .例5.【多选题】(2020·海南·高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C n C .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【规律方法】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C可以变形为x 2C A +y 2C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B=1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).题型三:双曲线的实际应用例6.(2023·全国·高三专题练习)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A .221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D【分析】由已知得双曲线的焦点在x 轴上,设该双曲线的方程为()222210,0x y a b a b -=>>,代入建立方程组,求解即可得双曲线的标准方程.【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上.设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,3b =,故该双曲线的标准方程是22143x y -=.故选:D.例7.(2021·长丰北城衡安学校高二月考(理))如图为陕西博物馆收藏的国宝——唐⋅金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:x y C a b-=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .2B .3πC .3D .4π【分析】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m , 代入方程,即可解得23,3a a == 3,从而得解. 【详解】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m 代入双曲线方程可得 22222225134331,1m m a b a b -=-= , 即22222213251312,14m m a b a b-=-=,作差可得2273124a =,解得23,3a a ==,所以杯身最细处的周长为23π . 故选:C 【总结提升】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤. 题型四 已知双曲线的方程,研究其几何性质例8.(2018·浙江·高考真题)双曲线221 3x y -=的焦点坐标是( )A .()2,0-,)2,0B .()2,0-,()2,0C .(0,2-,(2D .()0,2-,()0,2【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.例9.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________. 5【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,22543c a b ++,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-=225512==+ 5例10.(2020·北京·高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 ()3,0 3【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,6a =,3b =,则223c a b =+=,则双曲线C 的右焦点坐标为()3,0, 双曲线C 的渐近线方程为22y x =±,即20x y ±=, 所以,双曲线C 的焦点到其渐近线的距离为23312=+. 故答案为:()3,0;3.例11.(2021·全国·高考真题(理))已知双曲线22:1(0)x C y m m -=>30x my +=,则C 的焦距为_________. 【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】由渐近线方程30x my +=化简得3y x m=-,即3b a m =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.例12.(2021·全国·高考真题)若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】3y x =±【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a ==,即2c a =, 又22224a b c a +==,即223b a =,则3ba=, 故此双曲线的渐近线方程为3y x =±. 故答案为:3y x =±. 【总结提升】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为2222221b b c a e a a a-===-可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.题型五 由双曲线的性质求双曲线的方程例11. (2022·天津·高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a ,可得2ba=, 所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.例12.(2021·北京·高考真题)若双曲线2222:1x y C a b -=离心率为2,过点2,3,则该双曲线的方程为( )A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B【分析】分析可得3b a =,再将点()2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a =-=,则双曲线的方程为222213x y a a-=,将点()2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =,因此,双曲线的方程为2213y x -=.故选:B例13.(2018·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项. 【规律总结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).题型六 求双曲线的离心率(或范围)例13.(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A 2B 3C .2 D 5【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .例14.(2021·湖北恩施土家族苗族自治州·高三开学考试)双曲线2222:1x y C a b -=(0a >,0b >)的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足2AF BF >,则双曲线离心率e 的取值范围是( ) A .12e << B .312e <<C .322e << D .331e +<<【答案】B 【分析】设双曲线半焦距c ,再根据给定条件求出|BF |长,列出不等式即可得解. 【详解】设双曲线半焦距为c ,因BF AF ⊥,则由22221x c x ya b =⎧⎪⎨-=⎪⎩得2||||b y B a F ==,而AF a c =+, 于是得22b a c a +>⋅,即222c a a c a-+>⋅,整理得23a c >,从而有32c e a =<,又1e >,所以双曲线离心率e 的取值范围是312e <<. 故选:B例15.(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【答案】364【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=. 故答案为:364.例16.(2020·全国·高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y 2,则C 的离心率为_________. 【答案】3【分析】根据已知可得2ba=,结合双曲线中,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c be a a==+=.故答案为:3 1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =c a是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用21c b e a a ⎛⎫==+ ⎪⎝⎭题型七:与双曲线有关的综合问题例17.(2022·江西·丰城九中高三开学考试(文))已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,E 为双曲线C 的右顶点.过2F 的直线与双曲线C 的右支交于,A B 两点(其中点A 在第一象限),设,M N 分别为1212,AF F BF F 的内心,则ME NE -的取值范围是( )A .4343,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭ B .4343⎛ ⎝⎭C .3333⎛ ⎝⎭D .55⎛ ⎝⎭【答案】B【分析】由内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,将ME NE -表示为θ的三角函数,结合正切函数的性质可求得范围.【详解】设1212,,AF AF F F 上的切点分别为H 、I 、J , 则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a , ∴122-=HF IF a ,即122-=JF JF a .设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=, 得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合. 同理可得12BF F △的内心在直线JM 上, 设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ, 当2πθ=时,||||0ME NE -=; 当2πθ≠时,由题知,2,4,3===ba c a, 因为A ,B 两点在双曲线的右支上, ∴233ππθ<<,且2πθ≠,所以tan 3θ<-或tan 3θ>, ∴3133tan 3θ-<<且10tan θ≠, ∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ. 故选:B.例18.(2018·全国·高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=( ) A .32B .3C .3D .4【答案】B【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-, 分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -,所以2233(3)(3)322MN =-++=,故选B.例19.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______. 【答案】21+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解. 【详解】由题意知: ,2,2pc p c -=-∴= ∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b ∴-=2224224,60c a c a c a b =-∴-+=2322e ∴=±,又()1,e ∈+∞,2 1.e ∴=+故答案为:21+例20.(2020·全国·高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a =-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223bc a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.例21. (2022·全国·高考真题(理))若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________. 【答案】33【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =-(舍去). 故答案为:33.例22. (2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>43F 且斜率为0k >的直线交C 的两支于,A B 两点.若||3||FA FB =,则k =________________. 【答案】33【分析】由题意设双曲线的方程为22223113x y a a -=,直线为1x y c k =-,即1433x y a k =-,联立方程,设()()1122,,,A x y B x y ,由||3||FA FB =,得123y y =,由根与系数的关系求解即可 【详解】因为22224316,33c a c a b a ==+=, 所以22313b a =,双曲线的方程为22223113x y a a -=,设过左焦点F 且斜率为0k >的直线为1x y c k =-,即1433x y a k =-, 与双曲线222231131433x y a a x y ak ⎧-=⎪⎪⎨⎪=-⎪⎩联立得2221310431693033y ay a k k ⎛⎫--+= ⎪⎝⎭, 设()()1122,,,A x y B x y ,则()()221212221043169,31333133ak a k y y y y k k +=⋅=--,因为||3||FA FB =, 所以123y y =,所以()()222222210431694,331333133ak a k y y k k ==--,消去2y 得()222221696433169163133a k a k k ⨯⨯⨯=-, 化简得2121133k =-,即213k =, 因为0k >, 所以33k =, 故答案为:33例23.(2022·广东·广州市真光中学高三开学考试)设1F ,2F 分别是双曲线2222:1(0,0)x ya b a bΓ-=>>的左、右两焦点,过点2F 的直线:0l x my t --=(,R m t ∈)与Γ的右支交于M ,N 两点,Γ过点(2,3)-,且它的7(1)求双曲线Γ的方程;(2)当121MF F F =时,求实数m 的值;(3)设点M 关于坐标原点O 的对称点为P ,当2212MF F N =时,求PMN 面积S 的值. 【答案】(1)2213y x -=; (2)1515m =±; (3)9354. 【分析】(1)根据点在双曲线上及两点距离列方程组求双曲线参数,即可得方程;(2)由点在直线上求得2t =,根据1F 到直线:20l x my --=与等腰三角形12F MF 底边2MF 上的高相等,列方程求参数m ;(3)设11(,)M x y ,22(,)N x y ,联立双曲线与直线方程,应用韦达定理得1221213m y y m +=-,122913y y m =--,由向量的数量关系可得2135m =,根据对称点、三角形面积公式1222OMN S S y y ==-求PMN 面积. (1)由Γ过点(2,3)-,且它的虚轴的端点与焦点的距离为7,所以()222224917a b b a b ⎧-=⎪⎨⎪++=⎩,即2213a b ⎧=⎨=⎩, 则所求的双曲线Γ的方程为2213y x -=. (2)因为直线:0l x my t --=过点2(2,0)F ,所以2t =,由121MF F F =得:等腰三角形12F MF 底边2MF 上的高的大小为22112()152MF MF --=, 又1F 到直线:20l x my --=的距离等于等腰三角形12F MF 底边上的高,则2202151m ---=+, 即2115m =,则1515m =±. (3)设11(,)M x y ,22(,)N x y ,由221320y x x my ⎧-=⎪⎨⎪--=⎩得:22(31)1290m y my -++=, 则1221213m y y m +=-,122913y y m=--,又2212MF F N =,即212y y =-, 则121213m y m -=-,2129213y m =-,即22122()13m m =-2913m-,则2135m =, 又M 关于坐标原点O 的对称点为P ,则2121212222()4OMN S S y y y y y y ==-=+-222221*********()4()1313134m m m m m +=--==---. 则所求的PMN 面积为9354. 【总结提升】 双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。
最新上海高中各年级数学教材目录

高中各年级教材目录高一上第一章集合和命题一集合1.1集合及其表示法1.2集合之间的关系1.3集合的运算二四种命题的形式1.4命题的形式及等价关系三充分条件与必要条件1.5充分条件、必要条件1.6子集与推出关系第二章不等式2.1不等式的基本性质2.2一元二次不等式的解法2.3其他不等式的解法2.4基本不等式及其应用*2.5不等式的证明第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1幂函数的性质与图像二指数函数4.2指数函数的图像与性质*4.3借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4对数概念及其运算四反函数4.5反函数的概念五对数函数4.6对数函数的图像与性质六指数方程和对数方程4.7简单的指数方程4.8简单的对数方程第五章三角比一任意角的三角比5.1任意角及其度量5.2任意角的是那叫比三三角恒等式5.3同角三角比的关系和诱导公式5.4两角和与差的余弦、正弦和正切5.5二倍角与半角的正弦、余弦和正切三解斜三角形5.6正弦定理、余弦定理和解斜三角形第六章三角函数一三角函数的图像与性质6.1正弦函数的和余弦函数的图像与性质6.2正切函数的图像与性质6.3函数y=Asin(ωx+φ)的图像与性质二反三角函数与最简三角方程6.4反三角函数6.5最简三角方程高二上第七章数列与数学归纳法一数列7.1数列7.2等差数列7.3等比数列二数学归纳法7.4数学归纳法7.5数学归纳法的应用7.6归纳——猜想——证明三数列的极限7.7数列的极限7.8无穷等比数列各项的和第八章平面向量的坐标表示8.1向量的坐标表示及其运算8.2向量的数量积8.3平面向量的分解定理8.4向量的应用第九章矩阵和行列式初步一矩阵9.1矩阵的概念9.2矩阵的运算二行列式9.3二阶行列式9.4三阶行列式第十章算法初步10.1算法的概念10.2程序框图*10.3计算机语句和算法程序高二下第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离第十二章圆锥曲线12.1曲线和方程12.2圆的方程12.3椭圆的标准方程12.4椭圆的性质12.5双曲线的标准方程12.6双曲线的性质12.7抛物线的标准方程12.8抛物线的性质第十三章复数13.1复数的概念13.2复数的坐标表示13.3复数的加法与减法13.4复数的乘法与除法13.5复数的平方根与立方根13.6实习数的一元二次方程高三第一学期第十四章空间直线与平面14.1平面及其基本性质14.2空间直线与直线的位置关系14.3空间直线与平面的位置关系14.4空间平面与平面的位置关系第十五章简单几何体一多面体15.1多面体的概念15.2多面体的直观图二旋转体15.3旋转体的概念三几何体的表面积、体积和球面距离15.4几何体的表面积15.5几何体的体积15.6球面距离第十六章排列组合与二项式定理16.1计数原理I——乘法原理16.2排列16.3计数原理II——加法原理16.4组合16.5二项式定理第二学期第十七章概率论初步17.1古典模型17.2频率与概率第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析*18.5概率统计实验。
第九章 9.4 直线与圆、圆与圆的位置关系

变式训练 2 已知点 A(1,a),圆 x2+y2=4. (1)若过点 A 的圆的切线只有一条,求 a 的值及切线方程; (2)若过点 A 且在两坐标轴上截距相等的直线与圆相切,求 a 的 值及切线方程.
解 (1)由于过点 A 的圆的切线只有一条,则点 A 在圆上,故 12+a2=4,∴a=± 3.
(2)解 设直线与圆交于 A(x1,y1)、B(x2,y2)两点, 则直线 l 被圆 C 截得的弦长
AB= 1+k2|x1-x2|
=2 8-14+k+k211k2=2
11-41k++k32 ,
令 t=41k++k32,则 tk2-4k+(t-3)=0,
当 t=0 时,k=-34,当 t≠0 时,因为 k∈R,
∴d=
22r,即|m5|=
2 2·
5,
解得 m=±522.
故当 m=±522时,直线与圆在两交点处的两条半径互相垂直.
探究提高
(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用 直线的方程与圆的方程联立后得到的一元二次方程的判别式来 判断直线与圆的位置关系; (2)勾股定理是解决有关弦问题的常用方法; (3)两半径互相垂直也可利用两直线垂直时斜率 k1·k2=-1.
要点梳理
忆一忆知识要点
2.计算直线被圆截得的弦长的常用方法 (1)几何方法 运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成 直角三角形计算. (2)代数方法 运用韦达定理及弦长公式 AB= 1+k2|xA-xB|= (1+k2)[(xA+xB)2-4xAxB]. 说明:圆的弦长、弦心距的计算常用几何方法.
变式训练 1 已知直线 l:y=kx+1,圆 C:(x-1)2+(y+1)2=12. (1)试证明:不论 k 为何实数,直线 l 和圆 C 总有两个交点; (2)求直线 l 被圆 C 截得的最短弦长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:9.4 点到直线的距离
教学目的:
1. 理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;
2. 会用点到直线距离公式求解两平行线距离
3. 认识事物之间在一定条件下的转化,用联系的观点看问题
教学重点:点到直线的距离公式
教学难点:点到直线距离公式的理解与应用.
内容分析:
前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P到直线l的距离.
在引入本节的研究问题:点到直线的距离公式之后,引导学生分析点到直线距离的求解思路,一起分析探讨解决问题的各种途径,通过比较选择其中一种较好的方案来具体实施,以培养学生研究问题的习惯,分析问题进而解决问题的
能力.
在解决两平行线的距离问题时,注意启发学生与点到直线的距离产生联系,从而应用点到直线的距离公式求解
教学过程: 一、复习引入:
1.特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时:
(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;
(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直
2.斜率存在时两直线的平行与垂直:
两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即
21//l l ⇔1k =2k 且21b b ≠
已知直线1l 、2l 的方程为1l :0111=++C y B x A ,
2l :0222=++C y B x A )0,0(222111≠≠C B A C B A
1l ∥2l 的充要条件是
2
1
2121C C B B A A ≠= ⑵两条直线垂直的情形:如果两条直线的斜率分别是1
k
和2k ,则这两条直线垂直的充要条件是121-=k k .
已知直线1l 和2l 的一般式方程为1l :0111=++C y B x A ,
2l :0222=++C y B x A ,则1l ⊥2l ⇔02121=+B B A A .
3.两条直线是否相交的判断
两条直线是否有交点,就要看这两条直线方程所组成的方程组:
⎩⎨
⎧=++=++00
2
22111C y B x A C y B x A 是否有惟一解 二、讲解新课:
1.点到直线距离公式:
点),(00y x P 到直线0:=++C By Ax l 的距离为:
2
200B
A C
By Ax d +++=
(1)提出问题
在平面直角坐标系中,如果已知某点P 的坐标为),(00y x ,直线l 的方程是0:=++C By Ax l ,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?
(2)解决方案
方案一:根据定义,点P 到直线l 的距离d 是点P 到直线l 的垂线段的长.
设点P 到直线l 的垂线段为PQ ,垂足为Q ,由PQ ⊥l 可知,直线PQ 的斜率为
A
B
(A ≠0),根据点斜式写出直线PQ 的方程,并由l 与PQ 的方程求出点Q 的坐标;
由此根据两点距离公式求出|PQ |,得到点P 到直线l 的距离为d
此方法虽思路自然,但运算较繁.下面我们探讨别一种方法
方案二:设A ≠0,B ≠0,这时l 与x 轴、y 轴都相交,过点P 作x 轴的平行线,交l 于点),(01y x R ;作y 轴的平行线,交l 于点),(20y x S ,
由⎩⎨
⎧=++=++0
020011C By Ax C By x A 得B C
Ax y A C By x --=--=0201,. 所以,|P R|=|10x x -|=A
C
By Ax ++00
|PS |=|20y y -|=
B
C
By Ax ++00
|RS |=AB
B A PS PR 2
22
2
+=
+×|C By Ax ++00|由三角形面积公式可知:d ·|RS |=|P R|·|PS |
所以2
2
00B
A C
By Ax d +++=
可证明,当A =0或B =0时,以上公式仍适用
2.两平行线间的距离公式
已知两条平行线直线1l 和2l 的一般式方程为1l :
01=++C By Ax ,
2l :02=++C By Ax ,则1l 与2l 的距离为2
22
1B
A C C d +-=
证明:设),(000y x P 是直线02=++C By Ax 上任一点,则点
P 0到直线01=++C By Ax 的距离为2
21
00B
A C By Ax d +++=
又 0200=++C By Ax 即200C By Ax -=+,∴d =2
2
21B
A C C +-
三、讲解范例:
例1 求点)2,1(0-P 到下列直线的距离. (1)0102=-+y x ;(2)23=x
解:(1)根据点到直线的距离公式得
521
210
2)1(22
2
=+-+-⨯=
d
(2)因为直线23=x 平行于y 轴,所以3
5|)1(3
2|=--=d
评述:此例题(1)直接应用了点到直线的距离公式,要求学生熟练掌握;
(2)体现了求点到直线距离的灵活性,并没局限于公式. 例2 求两平行线1l :0832=-+y x ,2l :01032=-+y x 的距离.
解法一:在直线1l 上取一点P (4,0),因为1l ∥2l ,所以点P 到2l 的距离等于1l 与2l 的距离.于是
1313
2
1323210
03422
2==++⨯-⨯=
d 解法二:1l ∥2l 又10,821-=-=C C . 由两平行线间的距离公式得13
3
232)10(82
2=
+---=d 四、课堂练习:
1.求原点到下列直线的距离: (1)3x +2y -26=0;(2) x =y
解:(1)1322
3262
2
=+-=d .(2)∵原点在直线y =x 上,
∴d =0
2.求下列点到直线的距离:
(1)A (-2,3),3x +4y +3=0;(2)B (1,0),3x +y -3=0;
(3)C (1,-2),4x +3y =0.
解:(1);59
433
34)2(32
2=++⨯+-⨯=d (2);01
)3(332=+-=d
(3)5
23
4)
2(3142
2
=+-⨯+⨯=
d 3.求下列两条平行线的距离:
(1)2x +3y -8=0,2x +3y +18=0, (2)3x +4y =10,3x +4y =0.
解:(1)在直线2x +3y -8=0上取一点P (4,0),则点P 到直线2x +3y +18的距离就是两平行线的距离,∴d =
1323218422
2=++⨯
(2)在直线3x +4y =0上取一点O (0,0),则点O 到直线3x +4y =10的距离就是两平行线的距离,∴
2
2
4
310+=
d =2
五、小结 :点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式
六、课后作业:
263P 练习9.4.1 1 (1) 2 (2)
练习9.4.2 1 (1)。