结构方程模型分解

合集下载

结构方程模型分析

结构方程模型分析

结构方程模型分析结构方程模型(Structural Equation Modeling,简称SEM)是一种多变量统计方法,用于分析复杂的因果关系和潜在变量之间的关系。

它能够将观测到的指标与潜变量之间的因果关系进行表述,并通过数据分析验证这种关系的拟合程度。

本文将介绍结构方程模型的基本概念、应用领域、分析步骤以及注意事项。

结构方程模型的基本概念包括观测变量、潜变量、因果关系和测量模型。

观测变量是直接可观察到的变量,用来测量潜变量的表现。

潜变量是无法直接观测到的变量,通常通过多个观测变量进行间接测量。

因果关系描述了变量之间的因果关系。

测量模型描述了观测变量与潜变量之间的关系,可以是反映性测量模型或形成性测量模型。

结构方程模型在很多领域中都有广泛的应用,例如心理学、管理学、社会科学等。

在心理学中,结构方程模型可以用于分析心理测量的有效性和信度,研究心理因素对行为的影响。

在管理学中,结构方程模型可以用于测量企业绩效和其影响因素之间的关系。

在社会科学中,结构方程模型可以用于研究社会结构与社会行为之间的关系。

进行结构方程模型分析的步骤包括模型设定、数据准备、参数估计、模型拟合度检验和结果解释。

模型设定是指根据研究问题和理论构建结构方程模型。

数据准备是指对观测变量和潜变量进行测量,并按一定规则进行数据编码和处理。

参数估计是利用最大似然估计或最小二乘估计等方法,对模型参数进行估计。

模型拟合度检验是用来评价模型与实际数据之间的拟合程度,包括拟合指数、离群值检验、模型比较等。

结果解释是对模型估计结果进行解释和讨论,从而得出结论。

在进行结构方程模型分析时,需要注意以下几点。

首先,要保证样本数据的质量和合理性,包括样本量的确定、数据收集过程的标准化等。

其次,要选择合适的模型拟合指标,如χ²统计量、RMSEA等,以评价模型拟合程度。

另外,还要进行模型鲁棒性检验,即通过多种估计方法和数据处理方式来检验模型的稳定性。

结构方程模型

结构方程模型

结构方程模型:定义:结构方程模型早期称为线性结构防城模型(Linear Structural Relations hips,简称LISREL)或称为工变数结构分析(Coratiance Strucyure A nalysis)。

主要目的在于检验潜在变项之关系与数个潜在变项间的因果关系。

【陈宽裕,《结构方程模型》-1996年11月】结构方程模型(Structural·Equation·Modeling,SEM)是一种非常通用的、主要的线性统计建模技术,广泛应用于经济学、心理学、社会学、管理学等领域的研究,是社会科学研究中的一个非常好的方法。

内容:结构方程模型包括测量方程(LV和MV之间关系的方程,外部关系)和结构方程(LV 之间关系的方程,内部关系),以ACSI模型为例,具体形式如下:测量方程 y=Λyη+εy , x=Λxξ+εx=(1)结构方程η=Bη+Гξ+ζ或(I-Β)η=Гξ+ζ(2)其中,η和ξ分别是内生LV和外生LV,y和x分别是和的MV,Λx和Λy是载荷矩阵,Β和Г是路径系数矩阵,ε和ζ是残差。

对这类模型进行参数估计,常使用偏最小二乘(Partial Least Square,PLS)和线性结构关系(LInear Structural RELationships,LISREL)方法。

测量方程描述潜变量与指标之间的关系;结构方程则反映潜变量之间的关系。

——【杜春雪,《结构方程模型理论的建立与应用》,大众科学·科学研究与实践,2008年第18期】SEM模式中,存在四种变量:潜在自变项、潜在依变项、X变项、Y变项。

用法:SEM 具有理论先验性能同时处理测量与分析问题以共变数的运用为核心,亦可处理平均数估计适用于大样本之分析包含了西多不同的统计技术重视多重统计指标的运用负荷量 潜在变项 观察变项 误差结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济学、社会学、行为科学等领域的研究。

结构方程模型拟合度

结构方程模型拟合度

结构方程模型拟合度一、结构方程模型(Structural Equation Model, SEM)结构方程模型是一种用于揭示变量之间相互作用关系的多变量统计分析方法。

其基本思想为:将观察到的多变量数据分解为显性变量和潜在变量,通过测量其对观测变量的影响关系,建立起一个综合性的统计模型,再利用模型拟合度来评估模型的合理性,以达到理解和预测研究对象的目的。

二、结构方程模型的拟合度结构方程模型需要利用模型拟合度来评估模型的合理性,以此来判断模型是否达到预期研究目的。

1、拟合指标结构方程模型的拟合度可用许多指标来评价,其中包括拟合优度(Goodness-of-Fit, GOF)、修正拟合指数(Adjusted Goodness-of-Fit Index, AGFI)、规范拟合指数(Normed Fit Index, NFI)、增量拟合指数(Incremental Fit Index, IFI)和比较拟合指数(Comparative Fit Index, CFI)等。

常见的拟合指标包括以下几种:(1)拟合优度(Goodness-of-Fit, GOF)GOF是一种模型整体拟合度指标,反映模型拟合数据的程度。

拟合优度的取值范围为0-1,值越大,表明模型与数据之间的拟合越好。

(2)修正拟合指数(Adjusted Goodness-of-Fit Index, AGFI)AGFI是一种对拟合优度进行修正的指标,以减少样本大小和自由度的影响。

AGFI的取值范围也为0-1,越接近1表明模型与数据之间的拟合越好。

(3)规范拟合指数(Normed Fit Index, NFI)NFI是一种基于信息理论的指标,其取值范围为0-1,值越接近1表明模型拟合越好。

(4)增量拟合指数(Incremental Fit Index, IFI)IFI是一种相对于null model的改进度量,表示将模型与null model进行比较后,模型的解释能力。

结构方程模型cfa

结构方程模型cfa

结构方程模型cfa
结构方程模型(StructuralEquationModeling,简称SEM)是一种常用的多变量统计分析方法,常常被应用于实证研究中。

其中,确认性因素分析(Confirmatory Factor Analysis,简称CFA)是SEM 的一种常见方法,用于检验研究者提出的假设模型与实际观测数据是否吻合。

CFA的主要目的是测量潜在变量,即不能被直接观测到的概念,例如信念、态度和价值观等。

CFA的基本思路是将潜在变量分解成可观测的多个指标(观测变量),通过测量这些指标来估计潜在变量的值。

CFA将指标分为多个因素,通过检验因素结构来评估模型的拟合度。

在进行CFA分析时,需要先确定模型中的潜在变量及其指标,然后运用SEM软件(例如AMOS、Mplus等)进行模型估计和统计检验。

具体分析过程包括模型拟合度指标(如卡方检验、RMSEA、CFI等)、参数估计、因素载荷和误差方差的解释等。

总之,CFA是SEM的一种常见方法,用于估计潜在变量的值,并检验假设模型与实际观测数据的拟合度。

通过CFA的分析,研究者可以更深入地理解研究对象的内部结构和关系。

- 1 -。

结构方程模型

结构方程模型
精品课件
2. 应用结构方程模型的注意事 项
• (1)通径图中 ,内源变量与外源变量间的 关系都是线性的。实际工作中的非线性偏 离被认为是可以忽略的 ,若有强的非线性 关系则应当设法对变量作变换 ,以便可以 用线性作近似;
• (2)结构方程不支持小样本。一般要求样 本容量在 200 以上 ,或是要估计的参数数 目的 5~20 倍;
精品课件
• (6)当模型与数据拟合时 ,说明数据并不排斥模 式 ,不能说数据可以确认模式 ,也不能证明某一 理论基础;
• (7) 用同一样本数据 ,以相同数目的待估参数 和不同的组合形式可以产生许多不同模型 ,这些 等同模型哪一个更适合于研究问题 ,应按照模式 表达的意义从专业角度来鉴别;
• (8)) SEM 不能验证变量间的因果关系。同其他 统计方法一样 ,当模型与样本拟合时 ,只能说该 模型是可供考虑的模型 ,是目前为止尚未被否定 的模型。只有经严格的实验设计控制其他变量的 影响 ,才能探讨主要变量的因果效应。绝不能因 为使用了 SEM 便说证明模型正确。严格地说 ,尽 管 SEM 不能证明因果关系 ,但它的生命力在于能 寻找变量间最可能的因果关系。
approximation ,近似误差均方根) 、SRMR ( standardized
root mean square residual , 标准化残差均方根) 、
GFI (goodness of fit index ,拟合优度指数) 、A GFI
(adjusted goodness of fit index ,调整拟合优度指数) ,
传统的统计方法不能有效处理这些潜变量,而结构方程模型则能同时处理 潜变量及其指标。传统的线性回归分析容许因变量存在测量误差,但是要假设自变量 是没有误差的。如:

结构方程模型

结构方程模型

§1 模型的设定
§1 模型的设定
§1 模型的设定
§1 模型的设定
AMOS软件中可以很方便的按照表1.1的图例 绘制出结构方程模型,并且可以快速的设定隐 变量之间的影响关系以及隐变量与显变量之间 的对应关系,这些模型的绘制和设定影响关系 我们只需要点击软件左边的工具栏对应的图标, 然后在右边的空白处直接绘图即可.
§1 模型的设定
内生变量:受系统的影响且具有测量误差的变 量,既包括隐变量也包括显变量,如在经济发 展过程中,人们收入的变动往往受到经济增长 和收入分配政策的影响,则收入变动即为内生 变量;
外生变量:影响系统且不具有测量误差的变量, 既包括隐变量也包括显变量,如上述的经济发 展三变量模型中,收入分配政策变量可记为外 生变量。
三、 模型估计
AMOS 中可供使用的LISREL 方法主要有五种,即:最 大似然法(ML, Maximum Likelihood),广义最小二 乘法(GLS,General Least Squares),非加权最小二 乘法(ULS,Unweighted Least Squares),自由度量 最小二乘法(SLS, Scale-free Least Squares)和渐进 任意分布法(AD,Asymptotically Distribution-free)。 LISREL 方法通过拟合模型估计协方差与样本协方差S 来 估计模型参数,也称为协方差建模方法。具体来说,就 是构造模型估计协方差与样本协方差的拟合函数,然后 通过迭代,得到使拟合函数值最优的参数估计。
§1 模型的设定
§1 模型的设定
§1 模型的设定
在图1.1中,文科和理科用椭圆表示,为隐变 量;文科和理科成绩之间的相关关系用双向箭 头表示;从隐变量指向显变量的单向箭头表示 隐变量与显变量的反映(Reflective)关系, 如文科隐变量可以用语文、英语、历史三门课 程的成绩来测量;从误差指向变量的单向箭头 表示该变量的误差或残差。因为误差或残差本 身也是无法进行观测的特殊隐变量,所以也用 圆来表示。

结构方程模型

结构方程模型

• (3)参数估计方法选项,METHOD= 规定 参数的估计方法,估计方法有多种,如ML、 GLS、ULS、WLS等,默认的是ML。
• (4)最优化选项,OMETHOD= 最优化方 法包括LM、CG、NR、QN,缺省时为LM。
• (5)输出选项,主要是控制输出结果包括 的内容。 CALIS提供几种方法说明构建的 理论模型。在多数情况下,LINEQS语句和 RAM语句用起来比较方便,LINEQS语句直 接描述结构方程组,路径图可以用RAM语 句描述。至于具体选择哪个语句主要取决 于个人习惯。
• ⑥能分解相关系数 ,来考察一个变量对另一变量的 直接作用和间接作用。
2.缺点
• ①在 SEM 的应用早期由于其自身的相对复杂性 和不完善性 ,使研究者们未能准确把握其内涵 ,因 而出现了误用并把统计结果作为确定因果关系方 向的证据 ,这显然是本末倒置。又由于 SEM 对模 型的接受没有统一标准 ,所以在有等价模型的情况 下研究者很难拒绝某些模型 ,这也给模型选择带来 了困难;
1
2
X1
X2
11 21
3
4
X3
X4
31 41
1
11
21
1
2
3
4
y1
y2
y3
y4
11 21
31 41
ζ1
1
21
ζ2
2
52
62
y5
y6
5
6
72 82
y7
y8
7
8
4、结构方程模型的优点 Bollen和Long(1993)指出SEM有以下优点 :
(1)可同时考虑及处理多个依变项(endogenous / dependent variable); (2)容许自变及依变(exogenous / endogenous)项含测量误差; (3)与因素分析类同,SEM容许潜伏变项(如:社经地位)由多个观察指标变项 (如:父母职业、收入)构成,并可同时估计指标变项的信度及效度(reliability and validity); (4)SEM可采用比传统方法更有弹性的测量模型(measurement model),如某一 指标变项/题目从属于两潜伏因子;在传统方法,项目多依附单一因子; (5)研究者可构划出潜伏变项间的关系,并估计整个模式是否与数据拟合。

结构方程模型

结构方程模型

结构方程模型结构方程模型(Structural Equation Model,简称SEM)作为一种多元统计技术,产生后迅速得到了普遍的应用。

20世纪70年代初一些学者(Joreskog,1973;Wiley,1973)将因子分析、路径分析等统计方法整合,提出结构方程模型的初步概念。

随后Joreskog与其合作者进一步发展了矩阵模型的分析技术来处理共变结构的分析问题,提出测量模型与结构模型的概念,促成SEM的发展。

结构方程模型为实际上即一种验证一个或多个自变量于一个或多个因变量之间一组相互关系的多元分析程式,其中自变量和因变量既可是连续的,也可是离散的。

另外,在学术活动方面,根据 Hershberger(2003)研究 1994 至 2001 年间的相关文献发现,到了 2003 年,不论在刊登结构方程模型相关论文的期刊数、期刊论文的数量、结构方程模型所延伸出来的多变量分析技术等各方面,均有大幅度的成长,显示结构方程模型已经是一门发展成熟且高度受到重视的学问与技术。

结构方程模型除了拥有专属期刊《结构方程模型》(Structural Equation Modeling),专门刊登与结构方程模型有关的论文与实证研究在心理学界也很重要。

结构方程建模涵盖了多种原有的多变量数据分析方法,适用于定序、定类以及定距和定比尺度,在管理学、经济学等社会科学以及自然科学的统计实证研究中逐渐得到大量的应用。

结构方程模型整合了路径分析、验证性因素分析与一般统计检验方法,可分析变量之间的相互因果关系,包括了因子分析与路径分析的优点。

同时,它又弥补了因子分析的缺点,考虑到了误差因素,不需要受到路径分析的假设条件限制。

结构方程模型可同时分析一组具有相互关系的方程式,尤其是具有因果关系的方程式。

这种可同时处理多组变量之间的关系的能力,有助于研究者开展探索性分析和验证性分析。

当理论基础薄弱、多个变量之间的关系不明确而无法确认因素之间关系的时候,可以利用探索性分析,分析变量之间的关系;当研究有理论支持的时候,可应用验证性分析来验证变量之间的关系是否存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 应用结构方程模型的注意事项
• (1)通径图中 ,内源变量与外源变量间的 关系都是线性的。实际工作中的非线性偏 离被认为是可以忽略的 ,若有强的非线性关 系则应当设法对变量作变换 ,以便可以用线 性作近似; • (2)结构方程不支持小样本。一般要求样 本容量在 200 以上 ,或是要估计的参数数目 的 5~20 倍;
结构方程模型常用于:验证性因子分析、高阶因子分析、
路径及因果分析、多时段(multiwave)设计、单形模型(Simple Model)、及多组比较等 。 常用的分析软件有:LISREL、Amos、EQS、MPlus
2、为什么使用结构方程模型
很多心理、教育、社会等概念,均难以直接准确测量,这种变量称为潜变量 (latent variable),如智力、学习动机、家庭社会经济地位等等。我们只能求其次,
路径系数
自变量:仅有单向箭头指出的变量。 因变量:只要有单向箭头指入的变量。
思考:显变量和指标是什么关系? 变量与指标有什么区别? 内生变量与因变量有什么区别? 外源变量与自变量有什么区别?
二、结构方程模型建模及分析步骤
1、模型构建
2、模型拟合
3、模型评价
4、模型修正
模型构建
• 利用结构方程模型分析变量的关系 ,根据 专业知识和研究目的 ,构建出理论模型 , 然后用测得的数据去验证这个理论模型的 合理性。建构模型包括指定: (1)观测变量 与潜变量的关系; (2) 各潜变量间的相互 关系; (3) 在复杂的模型中 ,可以限制因 子负荷或因子相关系数等参数的数值或关 系。
(2)结构模型:潜变量之间的关系

η——内生(依变)(endogenous,dependent)潜伏变项(如:学业成就) ξ——外源(自变)(exogenous,independent)潜伏变项(如:社经地位)
β——内生潜伏变项间的关系(如:学业成绩与其他内生潜伏变项的关系)
• 对于证实性因子分析,采用LINEQS语句设定等式 的方法是:观测变量名=因子载荷名×潜变量名+ 误差项名。一个LINEQS语句可以列出多个等式, 每个等式中间用逗号“,”分开,最后一个等式 用分号“;”结束。观测变量名应与相关矩阵或 原始数据集中的变量名保持一致,潜变量须用f开 头,误差项以e开头,因子载荷的名字可以任意给 定,但乘积项因子载荷与潜变量之间必须有空格, 不必写出乘号。 • STD语句给出模型中需要估计的方差。 • COV语句给出模型中需要估计的协方差。cov f1 f2=cov;表示要估计f1和f2之间的协方差,协方差 为cov。
• (6)当模型与数据拟合时 ,说明数据并不排斥模 式 ,不能说数据可以确认模式 ,也不能证明某一理 论基础; • (7) 用同一样本数据 ,以相同数目的待估参数和 不同的组合形式可以产生许多不同模型 ,这些等同 模型哪一个更适合于研究问题 ,应按照模式表达的 意义从专业角度来鉴别; • (8)) SEM 不能验证变量间的因果关系。同其他 统计方法一样 ,当模型与样本拟合时 ,只能说该模 型是可供考虑的模型 ,是目前为止尚未被否定的模 型。只有经严格的实验设计控制其他变量的影响 , 才能探讨主要变量的因果效应。绝不能因为使用 了 SEM 便说证明模型正确。严格地说 ,尽管 SEM 不能证明因果关系 ,但它的生命力在于能寻找变量 间最可能的因果关系。
• ③SEM 对样本容量的要求较高 ,也要求模 型必须满足识别条件并且它不能处理真正 的分类变量。
五、应用实例
应用场合
CALIS过程简介
• proc calis语句是必须的,且此语句还可添 加一些选项,这些选项主要包括: • (1)数据集选项,如DATA= 使用的数据 集的名字;INRAM= 使用已存在的并被分 析过的模型;OUTRAM= 将模型的说明存 入输出数据集,备以后INRAM调用。 • (2)数据处理选项,如EDF= 在没有使用 原始数据且未指定样本数N时为模型指定自 由度;NOBS= 指定样本数N。
四、结构方程模型的优缺点
1.优点
• ①不但可研究可观测变量 ,而且还可研究不能直接 观测的变量(隐变量) 的关系 ,不但能研究变量间的 直接作用 ,还可研究变量间的间接作用; • ②可同时处理多个因变量; • ③容许自变量及因变量含测量误差; • ④可通过路径图直观地显示变量间的关系; • ⑤研究者可构建出隐变量间的关系 ,并验证这种 结构关系是否合理; • ⑥能分解相关系数 ,来考察一个变量对另一变量的 直接作用和间接作用。
• (3) 一个完善的通径图并不表示一定包含尽 可能多的箭头。相反 ,统计学上最感兴趣的 是 ,寻找用尽可能少的箭头去联结尽可能少 的变量 ,而这时的通径图又能对所代表的样 本拟合得好; • (4) 待估参数不应多于 m ( m + 1) / 2 ( m 为x 显变量的个数) ; • (5)避免隐变量名实不符的问题;
2
ζ2
52
62
72
82
y5
5
y6
6
y7
7
y8
8
4、结构方程模型的优点
Bollen和Long(1993)指出SEM有以下优点 :
(1)可同时考虑及处理多个依变项(endogenous / dependent variable); (2)容许自变及依变(exogenous / endogenous)项含测量误差;
• (3)参数估计方法选项,METHOD= 规定 参数的估计方法,估计方法有多种,如ML、 GLS、ULS、WLS等,默认的是ML。 • (4)最优化选项,OMETHOD= 最优化方 法包括LM、CG、NR、QN,缺省时为LM。 • (5)输出选项,主要是控制输出结果包括 的内容。 CALIS提供几种方法说明构建的 理论模型。在多数情况下,LINEQS语句和 RAM语句用起来比较方便,LINEQS语句直 接描述结构方程组,路径图可以用RAM语 句描述。至于具体选择哪个语句主要取决 于个人习惯。
2.缺点
• ①在 SEM 的应用早期由于其自身的相对复杂性 和不完善性 ,使研究者们未能准确把握其内涵 ,因 而出现了误用并把统计结果作为确定因果关系方 向的证据 ,这显然是本末倒置。又由于 SEM 对模 型的接受没有统一标准 ,所以在有等价模型的情况 下研究者很难拒绝某些模型 ,这也给模型选择带来 了困难; • ②影响 SEM 解释能力的主要问题是指定误差 ,但 SEM 程序目前还不能对指定误差加以检验。如果 用样本特征推论总体可能会犯以偏概全的错误;
(3)与因素分析类同,SEM容许潜伏变项(如:社经地位)由多个观察指标变项
(如:父母职业、收入)构成,并可同时估计指标变项的信度及效度(reliability and validity);
(4)SEM可采用比传统方法更有弹性的测量模型(measurement model),如某一
指标变项/题目从属于两潜伏因子;在传统方法,项目多依附单一因子; (5)研究者可构划出潜伏变项间的关系,并估计整个模式是否与数据拟合。
能估计的。
如:分析自信 (X)与外向(Y)之间的关系:
用4个题目测量自信,4个题目测量外向。
传统上先计算外向题目的总分(或者平均分)和自信题目的 总分(或者平均分),再计算两个总分(或者平均分)的相关, 这种计算所得的两个潜变量(外向和自信)的关系,不一定恰 当,但是结构方程模型能提供更佳的答案(如典型相关分析
结构方程模型
一、结构方程模型简介 1、什么是结构方程模型 2、为什么使用结构方程模型
3、结构方程模型的结构
4、结构方程模型的优点 5、结构方程模型中的变量 6、结构方程模型常用图标
1、什么是结构方程模型
结构方程模型( Structural Equation Model)是基于变量 的协方差矩阵来分析变量之间关系的一种统计方法。所以,有 时候也叫协方差结构分析。 我们的课程只考虑线性结构方程模型。
模型修正
• 模型的修正主要包括: • (1) 依据理论或有关假设 ,提出一个或数个合理的 先验模型; • (2) 检查潜变量与指标间的关系 ,建立测量方程模 型; • (3) 若模型含多个因子 ,可以循序渐进地 ,每次只检 验含两个因子的模型 ,确立测量模型部分合理后 , 最后再将所有因子合并成预设的先验模型 ,作总体 检验; • (4) 对每一模型 ,检查标准误、标准化残差、修正 指数、参数期望改变值、χ 2 及各种拟合指数 ,据此 修改模型。
г——外源变项对内生变项的影响(如:社经地位对学业成就) ζ——模式内未能解释部份(即模式内所包含的变项及变项间关系所未能解
释部分)
1 X1
2 X2
3 X3
4 X4Βιβλιοθήκη 1 y12 y23 y3
4 y4
11 21
31
41
11 21
11 21
31
41
1
1 21
ζ1
等)。
x1 x2 自信 外向 y1 y2
x3 x4
y3 y4
模型举例
3、结构方程模型的结构
结构方程模型可分为:测量模型和结构模型
(1)测量模型:指标和潜变量之间的关系
x x y y
说明:
x,y是外源(如:六项社经指标)及内生(如:中、英、数成绩)指标。 δ,ε是X,Y测量上的误差。 Λx是x指标与ξ潜伏变项的关系(如:六项社经地位指标与潜伏社经地位的关 系)。 Λy是y指标与η潜伏变项的关系(如:中、英、数成绩与学业成就间关系)。
模型评价
• 评价一个刚建构成或修正的模型时 ,主要检查(1)结构方程的 解是否适当 ,包括迭代估计是否收敛、各参数估计值是否在 合理范围内; (2) 参数与预设模型的关系是否合理; (3) 检视多 个不同类型的整体拟合指数 ,如:绝对拟合指数有 χ 2 、RMSEA (root mean square error of approximation ,近似误 差均方根) 、SRMR ( standardized root mean square residual , 标准化残差均方根) 、GFI (goodness of fit index ,拟合优度指 数) 、A GFI (adjusted goodness of fit index ,调整拟合优度指 数) ,以及相对拟合指数 NNFI(non- normed fit index 非范拟合 指数) 、NFI ( normed fit index ,赋范拟合指数) 、CFI (comparative fit index ,比较拟合指数) 等 ,以衡量模型拟合程 度。
相关文档
最新文档