2021年重庆市中考数学(A卷)试题及解析
精品解析:2021年重庆市九龙坡区育才中学中考数学三模试题(解析版)

2021年重庆市九龙坡区育才中学中考数学模拟试卷(三)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为小B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号写在括号内. 1. 在﹣3,﹣14,0,1四个数中,最大的数是()A. 1B. 0C. ﹣14D. ﹣3【答案】A【解析】【分析】根据实数大小比较判断即可;【详解】∵1>0>﹣14>﹣3,∴最大的数是1,故选:A.【点睛】本题主要考查了实数比大小,准确分析计算是解题的关键.2. 下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.【答案】A【解析】【详解】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.3. 在下列调查中,适宜采用全面调查的是()A. 检测一批电灯泡的使用寿命B. 了解九(1)班学生校服的尺码情况C. 了解我省中学生的视力情况D. 调查重庆《生活麻辣烫》栏目的收视率【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.检测一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意;B.了解九(1)班学生校服的尺码情况,必需采用全面调查,符合题意;C.了解我省中学生的视力情况,适合抽样调查,不符合题意;D.调查重庆《生活麻辣烫》栏目的收视率,适合抽样调查,不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应该选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 已知x﹣2y=4,xy=4,则代数式5xy﹣3x+6y的值为()A. 32B. 16C. 8D. ﹣8【答案】C【解析】【分析】变形代数式5xy﹣3x+6y为5xy﹣3(x﹣2y),直接代入求值即可.【详解】解:原式=5xy﹣3(x﹣2y).当x﹣2y=4,xy=4时,原式=5×4﹣3×4=20﹣12=8.故选:C.【点睛】本题考查了代数式求值问题,涉及到了整体代入的思想方法,要求学生能对代数式进行变形,得到所需要的式子,进行整体代入即可,考查了学生对代数式的变形与计算的能力以及整体思想的运用.5. 如图,BC∥ED,下列说法不正确是()A. 两个三角形是位似图形B. 点A是两个三角形的位似中心C. B与D、C与E是对应位似点D. AE:AD是相似比【答案】D【解析】【分析】根据位似变换的概念判断即可.【详解】解:A、∵BC∥ED,∴△ADE∽△ABC,∵△ADE与△ABC对应点的连线相交于一点,对应边平行或在同一条直线上,∴△ADE与△ABC是位似图形,本选项说法正确,不符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、AE:AD不是相似比,AE:AC是相似比,本选项说法错误,符合题意;故选:D.【点睛】本题考查的是位似变换的概念,两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6. +)A. 4B. 5C. 6D. 7【答案】C【解析】的值即可判断.【详解】解:(==46=+, 466.259<<<26 2.53∴<<<24464 2.543∴+<+<+<+即646 6.57<+<<46∴+的值更接近整数6∴()148183+⋅的值更接近整数6. 故选:C .【点睛】本题考查了估算无理数的大小以及二次根式的混合运算,估算无理数大小要用逼近法. 7. 如图,O 是ABC ∆的外接圆,已知50ACB ︒∠=,则ABO ∠的大小为( )A. 30︒B. 40︒C. 45︒D. 50︒【答案】B【解析】 【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO ,∴∠ABO=(180°-100°)÷2=40°,故选:B . 【点睛】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8. 下列说法正确的是()A. 若|a|=|b|,则a=bB. 内错角相等C. 2x-有意义的条件为x>2D. 点P(﹣3,2)关于y轴对称点的坐标为(3,2)【答案】D【解析】【分析】直接利用绝对值的性质以及二次根式的性质、关于y轴对称点的性质分别判断得出答案.【详解】解:A、若|a|=|b|,则a=±b,故此选项错误;B、两直线平行,内错角相等,故此选项说法错误;C、2x-有意义的条件为x≥2,故此选项错误;D、点P(﹣3,2)关于y轴对称点的坐标为(3,2),故此选项正确.故选:D.【点睛】本题考查了绝对值的性质以及二次根式的性质、关于y轴对称点的性质,正确掌握相关定义是解题的关键.9. 如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A. 7B. 11C. 13D. 20【答案】C【解析】【分析】过D作DG⊥BC于G,EH⊥BC于H,解直角三角形即可得到结论.【详解】解:过D作DG⊥BC于G,EH⊥BC于H,∴GH=DE=2,∵DG=EH=15,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,∴CG=9,HF=20,∴CF=GH+HF﹣CG=13米,故选:C.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.10. 如果关于x的分式方程1222x mx x++=--有非负整数解,关于y的不等式组21235(1)(3)y yy y m+⎧+⎪⎨⎪-<-+⎩有且只有3个整数解,则所有符合条件的m的和是()A. ﹣3B. ﹣2C. 0D. 2【答案】A【解析】【分析】分式方程去分母转化为整式方程,由解为非负整数解,以及不等式组只有3个整数解,确定出符合条件m的值即可.【详解】解:去分母得:x﹣m﹣1=2x﹣4,解得:x=3﹣m,由解为非负整数解,得到3﹣m≥0,3﹣m≠2,即m≤3且m≠1,不等式组整理得:224ymy≥-⎧⎪⎨-<⎪⎩,由不等式组只有3个整数解,得到y=﹣2,﹣1,0,即0<24m-≤1,解得:﹣2≤m<2,则符合题意m=﹣2,﹣1,0,之和为﹣3,故选:A.【点睛】此题考查了分式方程的解以及一元一次不等式组的整数解,解题关键是熟练掌握运算法则. 11. 如图,在Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB上的一点,连接CD,将△BCD沿CD 翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF翻折,点A恰好与点E重合.若DC=5,则AF的长为()A. 5B. 74C.54D. 4.5【答案】B【解析】【分析】根据折叠的性质和勾股定理定理即可得到结论.【详解】解:∵将△BCD沿CD翻折,使点B落在点E处,∴BD=DE,BC=CE=6,∠B=∠CED,∵将△ADF沿DF翻折,点A恰好与点E重合,∴∠A=∠DEF,AD=DE,AF=EF,∴∠FED+∠CED=90°,∴AD=DB,∴CD=DA=DB=12 AB,∵DC=5,∴AB=10,∴AC22AB BC-22106-=8,∴CF=8﹣AF,∴EF2+CE2=CF2,∴AF2+62=(8﹣AF)2,∴AF=74,故选:B.【点睛】本题考查了翻折变换、直角三角形斜边中线的性质、勾股定理等知识,解题的关键是正确寻找直角三角形解决问题.12. 在平面直角坐标系中,平行四边形ABCD的顶点A在y轴上,点C坐标为(﹣4,0),E为BC上靠近点C的三等分点,点B、E均在反比例函数y=kx(k<0,x<0)的图象上,若tan∠OAD=12,则k的值为()A. ﹣2B. ﹣25C. ﹣6D. ﹣42【答案】C【解析】【分析】根据已知条件运用点B,E都在反比例函数图象上,再运用tan∠OAD=12即可求解.【详解】如图所示,过点B作BN⊥x轴,过点E作EM⊥x轴∴EM∥BN∴△ECM∽△BCN∵E 为BC 三等分点∴EC =13BC ∴13EC EM CM BC BN CN === 设B 点的坐标为:(-m ,n )∵C (-4,0)∴OC =4∴ON =m ,BN =n则CN =4-m∴EM =13BN =3n CM =13CN =4-3m OM =OC -CM =4-4-3m =83m + ∴E (-83m +,3n ) ∵tan ∠OAD =12 ∴tan ∠OAD =12=OF OA 则OA =2OF∴tan ∠AFO =2∵四边形ABCD 是平行四边形∴AD ∥BC∴∠ECM =∠AFO∴tan ∠ECM =2EM CM = 即3n ÷4-3m =2 n =8-2m∴B (-m ,8-2m )E (-83m +,823m -),两点都在k y x=上 ∴-m (8-2m )=-83m +×823m - 解得m =1∴B (-1,6)∴k =-1×6=-6故选:C .【点睛】本题考查了反比例函数上点的坐标特征平行四边形的性质及解直角三角形,本题的解题关键是确定B ,E 点的坐标,利用tan ∠OAD =12的关系即可得出答案. 二、填空题:(本大题共6个小题,铅小题4分,共24分)13.(π﹣3)0﹣|﹣3|=_____.【答案】2【解析】【分析】直接利用零指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.【详解】解:原式=4+1﹣3=2.故答案为:2.【点睛】本题考查了二次根式的化简、0指数幂的性质和绝对值的性质,解决本题的关键是牢记相关结论与性质,并能熟练运用.14. 清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.【答案】8.4×10-6 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10-6, 故答案为:8.4×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15. 一个不透明的布袋内装有除颜色外,其余完全相同的2个红球,1个白球,1个黑球,搅匀后,从中随机摸出两个球,则摸到一个红球一个白球的概率为_____. 【答案】13【解析】【分析】先画树状图展示所有12种等可能的结果数,再找出摸到一个红球一个白球的结果数,然后根据概率公式求解.【详解】解:画树状图如图:共有12个等可能的结果,摸到一个红球一个白球的结果有4个,∴摸到一个红球一个白球的概率为412=13,故答案为:13.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16. 如图,在矩形ABCD中,AB=2AD=4,以点A为圆心,AB为半径的圆弧交CD于点E,交AD的延长线于点F,则图中阴影部分的面积为_____.(结果保留π)【答案】83π﹣3【解析】【分析】首先求出DE和AE,再利用特殊角的三角函数值求出∠DAE的度数,然后根据S阴影=S扇形AEF﹣S△ADE 即可求解.详解】解:∵AB=2AD=4,AE=AB,∴AD=2,AE=4.∴DE22224223AE AD--=,∴Rt△ADE中,cos∠DAE=2142 ADAE==,∴∠DAE=60°,则S△ADE=12AD•DE=12×2×33S扇形AEF=260483603ππ⨯=,则S阴影=S扇形AEF﹣S△ADE=8233π-.故答案为:8233π-.【点睛】本题综合考查了三角函数、矩形、勾股定理、扇形面积等内容,要求学生能利用相关概念和公式求出角以及线段的长,能利用面积公式求出图形的面积,因此,解决本题的关键是牢记公式,并做到熟练运用,本题运用了数形结合的思想方法.17. 小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.【答案】90【解析】【分析】根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答. 【详解】设小明的速度为akm/h,小亮的速度为bkm/h,23.5 2.5(3.52)(3.5 2.5)210bab a⎧=-⎪⎨⎪-+-=⎩,解得,12060ab=⎧⎨=⎩,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=90(千米),故答案为90.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.18. 假设某地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2020年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和2个出口,则从早晨6点开始经过__________小时车库恰好停满. 【答案】165【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,然后根据题意可列方程组进行求解.【详解】解:设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: ()()8237523275x y a x y a ⎧-=⎪⎨-=⎪⎩%%, 解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩, 则3316602216325a a ⎛⎫÷⨯-⨯= ⎪⎝⎭%(小时); 故答案为165. 【点睛】本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.三、解答题:(本大题8个小题,26题8分,19-25题每小题8分,共78分)19. 计算:(1)(2a ﹣b )2+(a +b )(a ﹣b );(2)(1﹣32x +)÷212x x -+. 【答案】(1)5a 2﹣4ab ;(2)11x + 【解析】【分析】(1)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式=4a 2﹣4ab +b 2+a 2﹣b 2=5a 2﹣4ab ;(2)原式=()()232·2211x x x x x x ++⎛⎫- ⎪+++-⎝⎭ =()()12·211x x x x x -+++- =11x +. 【点睛】本题考查了平方差公式和完全平方公式、分式的混合运算以及化简,要求学生熟记相关公式并能灵活运用,考查了学生对相关概念的理解能力和对公式的运用能力.20. 如图,在四边ABCD 中,AB DC AB AD =∥,,对角AC BD 、交于O AC ,平BAD ∠.(1)求证:四边形ABCD 是菱形;(2)过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE ,若254AB BD ==,,求OE 的长.【答案】(1)见解析;(2)4【解析】【分析】(1)先判断出∠CAB=∠DCA ,进而判断出∠DAC=∠DCA ,得出CD=AD=AB ,即可得出结论; (2)先判断出OE=OA=OC ,再求出OB=2,利用勾股定理求出OA ,即可得出结论.【详解】(1)证明:AB CD ∥ ,CAB ACD ∴∠=∠,AC 平分BAD ∠,CAB CAD ∴∠=∠ ,CAD ACD ∴∠=∠,AD CD ∴=又=AD AB ,AB CD ∴=,又AB CD ∥,∴四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,(2)解:菱形ABCD ,AC BD ∴⊥ ,12OA OC AC == ,12OB OD BD ==, CE AB ⊥,90AEC ∴∠=︒,又O 为AC 中点,12OE AC OA ∴==, 在Rt AOB 中,90AOB ∠=︒,22OA AB OB ∴=-22(25)24OE OA ∴==-=. 【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB 是解本题的关键.21. 某防护服生产公司旗下有A 、B 两个生产车间,为了解A 、B 两个生产车间工人的日均生产数量,公司领导小组从A 、B 两个生产车间分别随机抽取了20名工人的日均生产数量x (单位:套),并对数据进行分析整理(数据分为五组:A .25≤x <35,B .35≤x <45,C .45≤x <55,D .55≤x <65,E .65≤x <75).得出了以下部分信息:A .B 两个生产车间工人日均生产数量的平均数、中位数、众数、极差如表:车间平均数(个) 中位数(个) 众数(个) 极差 A54 56 62 42 B a b 64 45“B 生产车间”工人日均生产数量在C 组中的数据是:52,45,54,48,54,其余所有数据的和为807. 根据以上信息,回答下列问题:(1)上述统计图表中,a = ,b = .扇形统计图B 组所对应扇形的圆心角度数为 °. (2)根据以上数据,你认为哪个生产车间情况更好?请说明理由(一条理由即可);(3)若A 生产车间共有200名工人,B 生产车间共有180个工人,请估计该公司生产防护服数量在“45≤x<65”范围的工人数量.【答案】(1)53,54,72;(2)“A车间”的生产情况较好,理由见解析;(3)估计生产防护服数量在“45≤x <65”范围的工人大约有199人【解析】【分析】(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,可求出“B生产车间”工人日均生产数量在C组的百分比,进而求出工人日均生产数量在B组的百分比,再根据平均数、中位数、众数的意义求解即可;(2)根据中位数、平均数、极差的比较得出答案;(3)根据两个车间的在“45≤x<65”范围所占的百分比,通过教师得出答案.【详解】解:(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,因此“C组”所占的百分比为5÷20=25%,“B组”所占的百分比为1﹣25%﹣10%﹣15%﹣30%=20%,所以“A组”的频数为:20×10%=2(人),“B组”的频数为:20×20%=4(人),“C组”的频数为:20×25%=5(人),“D组”的频数为:20×30%=6(人),“E组”的频数为:20×15%=3(人),因此“B车间”20名工人,日生产数量从小到大排列,处在中间位置的两个数的都是54,所以中位数是54,即b=54,“B车间”20名工人,日生产数量的平均数为:30×10%+40×20%+50×25%+60×30%+70×15%=53,即a=53,360°×20%=72°,故答案为:53,54,72;(2)“A车间”的生产情况较好,理由:“A车间”工人日均生产量的平均数,中位数均比“B车间”的高;(3)200×3720+180×(25%+30%)=199(人),答:A生产车间200人,B生产车间180人,估计生产防护服数量在“45≤x<65”范围的工人大约有199人.【点睛】本题考查了折线统计图、扇形统计图、平均数、中位数、众数以及极差,理解统计图中数量之间的关系是解题的关键.22. 如果自然数m使得作竖式加法m+(m+1)+(m+2)时对应的每一位都不产生进位现象,则称m为“三生三世数”,例如:12,321都是“三生三世数”,理由是12+13+14及321+322+323分别都不产生进位现象;50,123都不是“三生三世数“,理由是50+51+52及123+124+125分别产生了进位现象(1)分别判断42和3210是不是“三生三世数”,并说明理由;(2)求三位数中小于200且是3的倍数的“三生三世数”.【答案】(1)42不是“三生三世数”,3210是“三生三世数”,理由见解析;(2)102,111,120,132 【解析】【分析】(1)根据“三生三世数”的定义进行判断便可;(2)先根据“三生三世数”定义求出三位数中小于200的“三生三世数”,再求得其中是3的倍数的数便可.【详解】解:(1)∵42+43+44计算时会产生进位现象,∴42不是“三生三世数”,∵3210+3211+3212计算时不会产生进位现象,∴3210是“三生三世数”,(2)根据“三生三世数”的定义知,小于200的三位数中的“三生三世数”有:100,101,102,110,111,112,120,121,122,130,131,132,∵102,111,120,132能被3整除,∴三位数中小于200且是3的倍数的“三生三世数”有:102,111,120,132.【点睛】本题考查了有理数的加法、新定义,解题的关键是明确题意,利用题干中的新定义解答.23. 已知y=a|2x+4|+bx(a,b为常数).当x=1时,y=5;当x=﹣1时,y=3.(1)a=,b=;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数图象;并写出函数的一条性质:;(3)已知函数y=25|22|x-的图象如图所示,结合你所画的函数图象,直接写出方程a|2x+4|+bx=25|22|x-的近似解(精确到0.1).【答案】(1)1;﹣1;(2)当x≥﹣2时,y随x的增大而增大;(3)x1=﹣2.5,x2=2.8【解析】【分析】依题意(1)把当x=1时,y=5;当x=﹣1时,y=3分别代入函数y=a|2x+4|+bx(a,b为常数),可求出a和b的值;(2)根据对自变量x的范围的讨论,对函数进行变形,进而画出对应的函数图象;(3)根据两个函数图象的交点位置,估算出交点的横坐标即可;【详解】解:(1)根据题意可得,245243a ba b⎧++=⎪⎨-+-=⎪⎩,解得11ab=⎧⎨=-⎩,故答案为:1;﹣1;(2)根据题意,当x≥﹣2时,2x+4≥0,y=2x+4﹣x=x+4;当x<-2时,2x+4<0,则y=﹣2x﹣4﹣x=﹣3x﹣4.∴4,(2)34,(2)x xyx x+≥-⎧=⎨--<-⎩;由函数解析式可画出对应的函数图象,根据函数图象可得出对应函数的性质.故答案为:当x≥﹣2时,y随x的增大而增大;(3)根据函数图象,交点的横坐标就是该方程的解,根据图象估算对应的解为:x1=﹣2.5,x2=2.8;【点睛】本题主要考查待定系数求解析式、数形结合等,关键在如何准确应用数形结合求解;24. 为抗击新型肺炎疫情,某服装厂及时引进了一条口罩生产线生产口罩,开工第一天生产10万件,第三天生产14.4万件,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?【答案】(1)20%;(2)增加4条生产线【解析】【分析】(1)设每天增长的百分率x,根据题意第一天生产10万件,第三天生产14.4万件,列出方程即可解答.(2)设应该增加y条生产线,根据题意1条生产线最大产能是20万件/天,若每增加1条生产线,每条生产线的最大产能将减少2万件/天,现该厂要保证每天生产口罩60万件,列出方程即可解答.【详解】(1)设每天增长的百分率x,可得:10(1+x)2=14.4,解得:x=0.2,答:每天增长20%.(2)设应该增加y条生产线,根据题意可得:(20-2y)+(20-2y)y=60,解得:y=4,故答案为:4.【点睛】此题考查一元二次方程的应用,解题关键在于根据题意列出方程.25. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B (点A 在点B 的左边),与y 轴交于点C ,点A 、C 的坐标分别为(﹣3,0)、(0,2),对称轴为直线x =﹣2.(1)求抛物线的解析式;(2)如图,点D 与点C 关于抛物线的对称轴对称,连接AC ,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点M .点F 是直线AC 下方抛物线上的一动点,连接DF 交AC 于点G ,连接EG ,求△EFG 的面积的最大值以及取得最大值时点F 的坐标;(3)在(2)的条件下,点P 为平面内一点,在抛物线上是否存在一点Q ,是以点P 、Q 、F 、C 为顶点的四边形为矩形,如果存在,直接写出点P 的坐标,如果不存在,说明理由.【答案】(1)228233y x x =++;(2)S △EFG 最大为154,F (-32,-12);(3)P (-325,6125)或(-1910,15750). 【解析】 【分析】(1)将A 、C 的坐标代入函数式,再结合对称轴公式利用待定系数法求解即可;(2)根据待定系数法求出直线AC 、直线DE 的表达式,再根据三角形面积之间的关系表示出△EFG 的面积,从而得到当△DEF 的面积最大时△EFG 的面积最大,求出△DEF 面积的最大值进行计算即可; (3)设Q (m ,228233m m ++),P (x P ,y P ),分三种情况:①以CF 为对角线,②以CQ 为对角线,③以CP 为对角线,分别计算可得问题的答案.【详解】解:(1)将A 、C 的坐标(-3,0)、(0,2)代入函数式且对称轴为x =-2, ∴930222a b c c b a ⎧⎪-+=⎪=⎨⎪⎪-=-⎩,解得:23832 abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为:228233y x x=++;(2)由点A、C的坐标(-3,0)、(0,2)可知,直线AC为:223y x=+,∵DE∥AC,∴k DE=k AC,∴k DE=23,∵D与C关于x=-2对称,∴D(-4,2),∴直线DE为:21433y x=+,联立:22143328233y xy x x⎧=+⎪⎪⎨⎪=++⎪⎩,解得:1214xx=⎧⎨=-⎩,24x=-舍去,∴E的横坐标为1,代入可得,28162333y=++=,∴E(1,163),连接DC,作FK⊥x轴,交DE于K,∵DE∥AC,∴S△DEG=S△DEC,将x =0代入21433y x =+得:143y =, ∴M (0,143), ∴S △DEC =S △DCM +S △ECM =203, ∴S △DEG =203, ∵S △EFG =S △DEF -S △DEG =S △DEF -203, ∴当△DEF 的面积最大时,△EFG 的面积最大,设F 为(t ,228233t t ++),K (t ,21433t +), ∴S △DEF =S △DFK +S △EFK =12(x E -x D )(y K -y F )=252682333t t ⎛⎫--+ ⎪⎝⎭=252125()3312t -++, ∴当t =32-时,三角形DEF 面积最大,最大为12512,此时△EFG 面积的最大值为:12520151234-=, ∴当F (32-,12-)时,S △EFG 最大为154; (3)假设存在,∵C (0,2),F (32-,12-),且以P 、Q 、F 、C 为顶点的四边形为矩形, ∴设Q (m ,228233m m ++),P (x P ,y P ),则m ≠0,m 32≠-, ∴直线CF :12()52330()2CF k --==--,直线QC :22822283333QC m m k m m ++-==+, 直线QF :22812253233323QF m m k m m +++==++, ①矩形以CF 为对角线,则:C F P Q C F P Q x x x x y y y y QC QF +=+⎧⎪+=+⎨⎪⊥⎩,∴k QC •k QF =-1, ∴23212822233282513333P P x m y m m m m ⎧-=+⎪⎪⎪-=+++⎨⎪⎪⎛⎫⎛⎫+⨯+=-⎪⎪ ⎪⎝⎭⎝⎭⎩,∴4m 2+26m +49=0,∵22644491080∆=-⨯⨯=-<,∴无解,此时不存在;②以CQ 为对角线,则:C Q P F C Q P F x x x x y y y y CF QF +=+⎧⎪+=+⎨⎪⊥⎩,∴k CF •k QF =-1, ∴23228143325251333P p m x m m y m ⎧=-⎪⎪⎪++=-⎨⎪⎪⎛⎫⨯+=-⎪ ⎪⎝⎭⎩, ∴175m =-, ∴191015750P P x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴19157,1050P ⎛⎫- ⎪⎝⎭; ③以CP 为对角线,则:C P Q F C p Q F x x x x y y y y CF QC +=+⎧⎪+=+⎨⎪⊥⎩,∴k CF •k QC =-1, ∴232281223325281333P P x m y m m m ⎧=-⎪⎪⎪+=++-⎨⎪⎪⎛⎫⨯+=-⎪ ⎪⎝⎭⎩, ∴4910m =-,∴3256125PPxy⎧=-⎪⎪⎨⎪=⎪⎩,∴3261,525P⎛⎫- ⎪⎝⎭,综上,点P坐标为19157,1050⎛⎫- ⎪⎝⎭或3261,525⎛⎫- ⎪⎝⎭.【点睛】本题考查了二次函数的综合应用,矩形的判定等知识,熟练掌握函数图象上点的坐标特征和二次函数的性质,理解坐标与图形的性质,会解一元二次方程,会运用分类讨论的思想解决问题是解题的关键.26. 如图,在△ABC和△DEF中,AB=AC,DE=DF,∠BAC=∠EDF=120°,线段BC与EF相交于点O.(1)若点O恰好是线段BC与线段EF的中点.①如图1,当点D在线段BC上,A、F、O、E四点在同一条直线上时,已知BC=43,DE=3,求AD 的长;②如图2,连接AD,CF相交于点G,连接OG,BG,当BG⊥OG时,求证:BG=3 CG.(2)若点D与点A重合,CF∥AB,H、K分别为OC、AF的中点,连接HK,直接写出HKAE OF-的值.【答案】(1)①19AD=;②见解析;(2)31HKAE OF+=-【解析】【分析】(1)①根据中点的定义求出OB,利用三角函数求出AB、OA和OE,再利用勾股定理解答即可;②延长GO至H,使得OH=OG,连接HC,OD,AO,利用SAS证明△BOG≌△COH,接着证明△AOD∽△COF 进而进一步得到A、G、O、C四点共圆,得出∠OGC=∠OAC=60°,利用特殊角的三角函数值即可完成求证;(2)过F作FH⊥BC交BC延长线于点H,利用SAS证明△ABE≌△ACF,得到相等的角和边,接着证明△OBE∽△OHF,点A、O、C、F四点共圆等,利用三角函数等知识分别求出HK、AE、OF,进而直接代入求解即可.【详解】解:(1)①∵O 点是BC 、EF 的中点,∴OB =OC =12BC =OE =OF , ∵AB =AC ,∠BAC =120°,∴∠BAO =60°∴4sin 60OB AB ===︒,2tan 60OB OA ===︒, 同理,由∠EDF =120°,O 是EF中点,DE =∴3sin 602OE DE =︒⨯==, ∴OE =OF =32,OD =12DE∴AD2==; ②延长GO 至H ,使得OH =OG ,连接HC ,OD ,AO ,∵点O 是BC ,EF 的中点,∴OB =OC ,OE =OF ,∴OD ⊥EF ,AO ⊥BC ,在△BOG 和△COH 中,OB OC BOG COH OG OH =⎧⎪∠=∠⎨⎪=⎩,∴△BOG ≌△COH (SAS ),∴∠BGO =∠CHO ,BG =CH ,∵BG ⊥OG ,∴∠BGO =∠CHO =90°,∴∠EDF =∠BAC =120°,∴∠OFD =∠OCA =30°,∴OF,OC,∴OD OA OF OC=,∵∠AOD=∠COF,∴△AOD∽△COF,∴∠OAD=∠OCF,∴∠AGC=∠AOC=90°,∴A、G、O、C四点共圆,∴∠OGC=∠OAC=60°,在Rt△GHC中,∠GHC=90°,∠HGC=60°,∴3HCCG=,∴HC=3CG,∴BG=3CG.(2)过F作FH'⊥BC交BC延长线于H',∵∠BAC=∠EAF=120°,∴∠BAE=∠CAF,在△ABE和△ACF中,AB ACBAE CAFAE AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACF(SAS),∴∠ABE=∠ACF,BE=CF,∵AB∥CF,∴∠BAC=∠ACF=120°,∵∠ABC =∠ACB =30°,∴∠CBE =∠ABE ﹣∠ABC =90°,∵∠FCH '=180°﹣∠ACF ﹣∠ACB =30°,∠FH 'C =90°,∴FH '=12CF , ∵∠CBE =∠CH 'F =90°,∴BE ∥FH ',∴△OBE ∽△OH 'F , ∴2BE OE FH OF='=, 设AE =AF =m ,如图,作AG '⊥EF ,∴EG '=2m ,AG '= 12m∴EF ,∵OE =2OF ,∴OE =23EF m ,OF ,∴OG '=OE -EG ',∴OG AG ''= ∴∠G AO '=30°,∴∠BAO =90°,∠OAF =∠OFA =30°,∴OA =OF =3m ,∠AOF =120°, ∴OE =2OA ,∴∠EAO =90°,∠AOE =60°,∵∠AOF =∠ACF =120°,∴点A 、O 、C 、F 四点共圆,设A 、O 、C 、F 四点都在⊙M 上,连接AM ,OM ,CM ,FM ,∴∠AMF=120°,∵∠AMO=2∠AFO=60°=12∠AMF,∴OM垂直平分AF,∵点K是AF的中点,∴点K OM上,∵MK=12AM=12OM,OH=CH,∴KH=12CM=12OM,∵OM=OA=AM=3m,∴KH=3m,∴331633mHKAE OFm m+==--.【点睛】本题综合考查了相似三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、圆以及它的内接四边形等的相关知识,要求学生理解并掌握相关概念与性质,牢记公式等。
2021年重庆市数学中考试题(B卷)及解析

2021年重庆市中考数学试卷(B卷)一.选择题(本大题共12个小题,每小题4分,共48分,每小题的四个选项中只有一个是正确的)1.(4分)(2015•常州)﹣3的绝对值是( ) A.3B.﹣3C.D.2.(4分)(2015•重庆)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A.B.C.D.3.(4分)(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是( ) A.对重庆市中学生每天学习所用时间的调查 B.对全国中学生心理健康现状的调查 C.对某班学生进行6月5日是“世界环境日”知晓情况的调查 D.对重庆市初中学生课外阅读量的调查4.(4分)(2015•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)(2015•重庆)计算3﹣的值是( ) A.2B.3C.D.26.(4分)(2015•重庆)某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据的中位数是( ) A.9.7B.9.5C.9D.8.87.(4分)(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是( ) A.五边形B.六边形C.七边形D.八边形8.(4分)(2015•重庆)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是( ) A.有两个不相等的实数根B.有两个相等的实数根 C.两个根都是自然数D.无实数根9.(4分)(2015•重庆)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为( ) A.70°B.60°C.55°D.35°10.(4分)(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是( ) A.32B.29C.28D.2611.(4分)(2015•重庆)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是( ) A.小强从家到公共汽车在步行了2公里 B.小强在公共汽车站等小明用了10分钟 C.公共汽车的平均速度是30公里/小时 D.小强乘公共汽车用了20分钟12.(4分)(2015•重庆)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值是( ) A.6B.﹣6C.12D.﹣12二.填空题(本大题6个小题,每小题4分,共24分)13.(4分)(2015•重庆)据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学记数法表示为 .14.(4分)(2015•重庆)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上中线的比为 .15.(4分)(2015•重庆)计算:(3.14﹣)0+(﹣3)2= .16.(4分)(2015•重庆)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是 (结果保留π).17.(4分)(2015•重庆)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程+1=的解为负数的概率为 .18.(4分)(2015•重庆)如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF= .三.解答题(本大题2个小题,每小题7分,共14分)19.(7分)(2015•重庆)解二元一次方程组.20.(7分)(2015•重庆)如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE 上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.四.解答题(本大题4个小题,每小题10分,共40分)21.(10分)(2015•重庆)化简下列各式:(1)2(a+1)2+(a+1)(1﹣2a)。
重庆市2021年中考数学试卷(B卷)及解析

2021年重庆市中考数学试卷(B卷)一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体3.计算a•a2结果正确的是()A.a B.a2C.a3D.a44.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣16.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.219.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.011.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.二.填空题(共6小题)13.计算:()﹣1﹣=.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.26.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.2021年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣【分析】根据倒数的定义,可得答案.【解答】解:5得倒数是,故选:B.2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体【分析】根据平面与曲面的概念判断即可.【解答】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.3.计算a•a2结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的乘法法则计算即可.【解答】解:a•a2=a1+2=a3.故选:C.4.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°【分析】根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1【分析】将a+b的值代入原式=1+(a+b)计算可得.【解答】解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5【分析】根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2【分析】设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米【分析】过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EF=x,则DF=2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长.由矩形的判定定理得出四边形EFCM是矩形,故可得出EM=FC,CM=EF,再由锐角三角函数的定义求出AM的长,进而可得出答案.【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.11.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4【分析】延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.【解答】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.【分析】过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.二.填空题(共6小题)13.计算:()﹣1﹣=3.【分析】先计算负整数指数幂和算术平方根,再计算加减可得.【解答】解:原式=5﹣2=3,故答案为:3.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:94000000=9.4×107,故答案为:9.4×107.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)【分析】由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.【分析】首先确定甲乙两人的速度,求出总里程,再求出甲到达B地时,乙离B地的距离即可解决问题.【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.【分析】设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42﹣9y,进而确定出y≤,再根据“三个时段返现总金额为2510元”,得出25x=42y﹣43,进而得出≤y≤,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.【解答】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.【考点】4A:单项式乘多项式;4C:完全平方公式;6C:分式的混合运算.【专题】512:整式;513:分式;66:运算能力;69:应用意识.【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解答】解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD =180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【考点】V5:用样本估计总体;W4:中位数;W5:众数.【专题】542:统计的应用;69:应用意识.【分析】(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【解答】解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【考点】#3:数的整除性.【专题】32:分类讨论;66:运算能力.【分析】(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a,则百位数字为a+5(0<a≤4的整数),得出百位数字和十位数字的和为2a+5,再分别取a=1,2,3,4,计算判断即可得出结论.【解答】解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.【考点】F3:一次函数的图象;F5:一次函数的性质;FD:一次函数与一元一次不等式;P5:关于x轴、y轴对称的点的坐标.【专题】533:一次函数及其应用;64:几何直观.【分析】(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.【解答】解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.【考点】9A:二元一次方程组的应用;AD:一元二次方程的应用.【专题】523:一元二次方程及应用;69:应用意识.【分析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;32:分类讨论;65:数据分析观念.【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)直线BC的解析式为y=﹣x+2,令y=0,则x=3,令x=0,则y=2,故点B、C的坐标分别为(3,0)、(0,2);则y=ax2+bx+2=a(x+)(x﹣3)=a(x2﹣2x﹣6)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,故抛物线的表达式为:y=﹣x2+x+2①;。
2021年重庆市九龙坡区育才中学中考数学一诊复习试卷 (解析版)

2021年重庆市九龙坡区育才中学中考数学一诊复习试卷一、选择题(每小题4分).1.下列各数中,﹣3的倒数是()A.3B.C.D.﹣32.下列四个标志图中,是中心对称图形的是()A.B.C.D.3.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的俯视图是()A.B.C.D.4.计算(4b)2正确的是()A.16b B.8b2C.4b2D.16b25.如图,△ABC与△DEF位似,点O为位似中心.已知AB:DE=1:3,且△ABC的周长为4,则△DEF的周长为()A.8B.12C.16D.366.如图,△ABC内接于⊙O,AD是⊙O的直径,若∠C=63°,则∠DAB等于()A.27°B.54°C.37°D.63°7.按如图所示的运算程序,能使输出结果为33的是()A.a=3,b=4B.a=2,b=4C.a=4,b=3D.a=5,b=4 8.如果方程x2﹣x﹣2=0的两个根为α,β,那么α2+β﹣2αβ的值为()A.7B.6C.﹣2D.09.重庆实验外国语学校某数学兴趣小组,想测量华岩寺内七佛塔的高度,他们在点C处测得七佛塔顶部A处的仰角为45°,再沿着坡度为i=1:2.4的斜坡CD向上走了5.2米到达点D,此时测得七佛塔顶部A的仰角为37°,七佛塔AB所在平台高度EF为0.8米,则七佛塔AB的高约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.20.8B.21.6C.23.2D.2410.若关于x的分式方程=2有非负整数解,关于y的不等式组有且只有4个整数解,则所有符合条件的a的和是()A.﹣3B.﹣2C.1D.211.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y千米,甲车行驶的时间为x小时,y与x之间的关系如图所示,对于以下说法:①甲车从A地到达B地的行驶时间为2小时;②甲车返回时,y与x之间的关系式是y=﹣100x+550;③甲车返回时用了3个小时;④乙车到达A地时,甲车距A地的路程是170千米.其中正确的结论是()A.①②B.②③C.③④D.②③④12.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数(其中x>0)图象上的一点,点B在x轴正半轴上,过点B作BC⊥OB,交反比例函数的图象于点C,连接OC交AB于点D,若,则△BCD的面积为()A.B.6C.D.5二、填空题(共6小题).13.2021年1月中旬石家庄市出现疫情反复后,全市立即启用了核酸检测信息统一平台,满足常态化核酸检测和短时间、大规模核酸检测要求.目前,通过该平台累计采样超过1280000人次,数据1280000用科学记数法可以表示为.14.计算:=.15.一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是.16.如图,在矩形ABCD中,∠DBC=30°,DC=4,E为AD上一点,以点D为圆心,以DE为半径画弧,交BC于点F,若CF=CD,则图中的阴影部分面积为(结果保留π).17.如图,在△ABC中,点D是线段AB上的一点,过点D作DE∥AC交AC于点E,将△BDE沿DE翻折,得到△B'DE,且点C恰好为线段B'D的中点,若B'C=3,且tan B =,则线段BE的长度为.18.为了抵抗病毒的侵袭,某学校组织教师到社区卫生服务中心接种疫苗,由于疫苗数量有限,所以要分批进行接种.初中三个年级都有教师参加第一批疫苗接种,其中初一年级和初三年级参加疫苗接种的教师人数之比是3:4.第二批疫苗到货后,三个年级新增接种人数之比是5:6:2.增加后,初二年级接种总人数占这三个年级接种总人数之和的,并且增加后,初二和初三年级新增接种人数之和是这两个年级接种总人数之和的,则这三个年级第一批接种总人数与第二批接种总人数之比为.三、解答题:(本大题共8个小题,19至25题每题10分,26题8分,共78分)解答时都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上。
部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。
知道反比例函数的图象是双曲线,。
会分象限利用增减性。
能用待定系数法确定函数解析式。
会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。
?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
2021年中考数学真题知识分类练习试卷:代数式(含答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2021年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2021年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2021年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2021年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2021年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2021年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2021年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2021年的平均增长率保持不变,2016年和2021年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2021年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2021年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2021年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2021年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2021年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2021年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2021年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2021年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2021年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2021年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2021年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2021年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2021年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2021年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2021年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2021年中考数学试题【答案】2021【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2021;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2021,故答案为2021.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2021年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2021年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2021年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2021年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2021年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2021年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2021年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2021年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2021次输出的结果为__________.【来源】2021年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2021年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2021年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2021年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2021年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2021年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2021年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2021年中考数学试卷【答案】略。
2021年重庆市中考数学试卷(A卷)及答案(最新Word解析版)

2021年重庆市中考数学试卷(A卷)及答案(最新Word解析版)24.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所q两因数之差的绝对值最小,f=.有这种分解中,如果p,我们就称p×q是n的最佳分解.并规定:(n)例如12可以分解成1×12,2×6或3×4,因为121>62>43,所有3×4是12的最佳分解,所以f(12)=.(1)如果一个正整数a是另一个正整数B的平方,我们称之为正整数a为完全平方完全平方数m,总有f(m)=1;(2)如果是两位正整数T,T=10x+y(1≤ 十、≤ Y≤ 9,x,y是一个自然数),从交换一位数字得到的新数字中减去原来的两位正整数得到的差,十位数字是18,那么我们称这个数字为T“吉祥数”,并在所有“吉祥数”中找到F(T)的最大值五、解答题(本题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步接下来,画出必要的数字。
请在答题纸的相应位置写下解答过程25.在△abc中,∠b=45°,∠c=30°,点d是bc上一点,连接ad,过点a作ag⊥ad,在ag上取F点,连接DF。
将Da延伸至e,使AE=AF,连接eg、DG和Ge=DF(1)若ab=2,求bc的长;(2)如图1所示,当G点在AC上时,验证:BD=CG;(3)如图2所示,当点G位于AC的垂直平分线上时,直接写入的值.X+3和X轴在a点和B点相交(a点在B点的左侧),26.如图1,在平面直角坐标系中,抛物线y=x2+与y轴交于点c,抛物线的顶点为点e.(1)判断△abc的形状,并说明理由;(2)当△ PCD最大,Q从点P开始,首先沿适当的路径移动到抛物线对称轴上的点m,然后沿垂直于抛物线对称轴的方向移动到Y轴上的点n,最后沿适当的路径移动到点a。
当点Q的运动路径最短时,求点n的坐标及点q经过的最短路径的长;(3)如图2所示,平移抛物线,使抛物线的顶点e在光线AE上移动。
精品解析:2022年重庆市中考数学真题(A卷)(解析版)

A B. C. D.
【答案】C
【解析】
【分析】先利用正方形的性质得到 , , ,利用角平分线的定义求得 ,再证得 ,利用全等三角形的性质求得 ,最后利用 即可求解.
【详解】解:∵四边形 是正方形,
∴ , , ,
【答案】
【解析】
【分析】根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.
【详解】解:根据题意列表如下:
A
B
C
A
AA
BA
CA
B
AB
BB
CB
C
AC
BC
CC
共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,
所以P(抽取的两张卡片上的字母相同)= = .
【答案】C
【解析】
【分析】连接OB,先求出∠A=30°,OB=AC=3,再利用 =tan30°,即可求出AB的长度.
【详解】解:连接OB,
∵OB=OD,
∴△OBD是等腰三角形,
∴∠OBD=∠D,
∵∠AOB是△OBD的一个外角,
∴∠AOB=∠OBD+∠D=2∠D,
∵ 是 切线,
∴OB⊥AB,
∴∠ABO=90°,
2022年重庆市中考数学试卷A卷
一、选择题
1.5的相反数是( )
A. B.﹣ C.5D.﹣5
【答案】D
【解析】
【分析】根据相反数的定义(只有符号不同的两个数互为相反数)即可得.
【详解】解:5的相反数是 ,
故选:D.
【点睛】本题考查了相反数,熟记定义是解题关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年重庆市中考数学试卷(A卷)一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2021•重庆)在﹣4,0,﹣1,3这四个数中,最大的数是()A.﹣4 B.0C.﹣1 D.32.(4分)(2021•重庆)下列图形是轴对称图形的是()A.B.C.D.3.(4分)(2021•重庆)化简的结果是()A.4B.2C.3D.24.(4分)(2021•重庆)计算(a2b)3的结果是()A.a6b3B.a2b3C.a5b3D.a6b5.(4分)(2021•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.(4分)(2021•重庆)如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65°B.55°C.45°D.35°7.(4分)(2021•重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2098.(4分)(2021•重庆)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=29.(4分)(2021•重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°10.(4分)(2021•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.(4分)(2021•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.3012.(4分)(2021•重庆)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC 与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2D.4二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2021•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为.14.(4分)(2021•重庆)计算:20210﹣|2|=.15.(4分)(2021•重庆)已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC 与△DEF对应边上的高之比为.16.(4分)(2021•重庆)如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A 为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是.(结果保留π)17.(4分)(2021•重庆)从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是.18.(4分)(2021•重庆)如图,在矩形ABCD中,AB=4,AD=10.连接BD,∠DBC 的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题(共2小题,满分14分)19.(7分)(2021•重庆)解方程组.20.(7分)(2021•重庆)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.四、解答题(共4小题,满分40分)21.(10分)(2021•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.22.(10分)(2021•重庆)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w <20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.(10分)(2021•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.24.(10分)(2021•重庆)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD,大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0。
25,为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1:1。
75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0。
60,sin31°≈0。
52)五、解答题(共2小题,满分24分)25.(12分)(2021•重庆)如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC 角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.26.(12分)(2021•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE′,FF′分别垂直于x轴,交抛物线于点E′,F′,交BC于点M,N,当ME′+NF′的值最大时,在y轴上找一点R,使|RF′﹣RE′|的值最大,请求出R点的坐标及|RF′﹣RE′|的最大值;(3)如图2,已知x轴上一点P(,0),现以P为顶点,2为边长在x轴上方作等边三角形QPG,使GP⊥x轴,现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P 到达点A时停止,记平移后的△QPG为△Q′P′G′.设△Q′P′G′与△ADC的重叠部分面积为s.当Q′到x轴的距离与点Q′到直线AW的距离相等时,求s的值.2021年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2021•重庆)在﹣4,0,﹣1,3这四个数中,最大的数是()A.﹣4 B.0C.﹣1 D.3考点:有理数大小比较.分析:先计算|﹣4|=4,|﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4<﹣1,再根据正数大于0,负数小于0得到﹣4<﹣1<0<3.解答:解:∵|﹣4|=4,|﹣1|=1,∴﹣4<﹣1,∴﹣4,0,﹣1,3这四个数的大小关系为﹣4<﹣1<0<3.故选D.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(4分)(2021•重庆)下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4分)(2021•重庆)化简的结果是()A.4B.2C.3D.2考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(4分)(2021•重庆)计算(a2b)3的结果是()A.a6b3B.a2b3C.a5b3D.a6b考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出(a2b)3的结果是多少即可.解答:解:(a2b)3=(a2)3•b3=a6b3即计算(a2b)3的结果是a6b3.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).5.(4分)(2021•重庆)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C不符合题意;D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(4分)(2021•重庆)如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65°B.55°C.45°D.35°考点:平行线的性质.分析:根据平行线的性质求出∠2的度数即可.解答:解:∵AB∥CD,∠1=135°,∴∠2=180°﹣135°=45°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7.(4分)(2021•重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:先对这组数据按从小到大的顺序重新排序:198,209,216,220,230.位于最中间的数是216,则这组数的中位数是216.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.(4分)(2021•重庆)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2考点:解一元二次方程-因式分解法.分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.9.(4分)(2021•重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°考点:切线的性质.分析:由AB是⊙O直径,AE是⊙O的切线,推出AD⊥AB,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.解答:解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.10.(4分)(2021•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度考点:一次函数的应用.分析:根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.解答:解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.11.(4分)(2021•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30考点:规律型:图形的变化类.分析:仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.解答:解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大.12.(4分)(2021•重庆)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC 与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2D.4考点:菱形的性质;反比例函数图象上点的坐标特征.分析:过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.解答:解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.点评:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2021•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为3。