光纤光栅应变传感器温度补偿计算值的改进

合集下载

光纤光栅的应变和温度传感特性研究

光纤光栅的应变和温度传感特性研究

光纤光栅的应力和温度传感特性研究 (1)一 光纤光栅传感器理论基础 (1)1 光纤光栅应力测量 (1)2 光纤光栅温度测量 (2)3 光纤光栅压力测量 (3)二 光纤光栅传感器增敏与封装 (3)1 光纤光栅的应力增敏 (4)2 光纤光栅的温度增敏 (4)3 光纤光栅的温度减敏 (5)4 嵌入式敏化与封装 (5)5 粘敷式敏化与封装 (7)三 光纤光栅传感器交叉敏感问题及其解决方法 (9)1 参考光纤光栅法 (10)2 双光栅矩阵运算法 (10)3 FBG 与LPFG 混合法 (11)4 不同包层直径熔接法 (12)5 啁啾光栅法 (12)光纤光栅的应力和温度传感特性研究一 光纤光栅传感器理论基础1 光纤光栅应力测量由耦合模理论可知,光纤布拉格光栅(FBG)的中心反射波长为:2B eff n λ=Λ (1)式中:eff n 为导模的有效折射率,Λ为光栅的固有周期。

当波长满足布拉格条件式(1)时,入射光将被光纤光栅反射回去。

由公式(1)可知,光纤光栅的中心反射波长B λ随eff n 和Λ的改变而改变。

FBG 对于应力和温度都是很敏感的,应力通过弹光效应和光纤光栅周期Λ的变化来影响B λ,温度则是通过热光效应和热胀效应来影响B λ。

当光纤光栅仅受应力作用时,光纤光栅的折射率和周期发生变化,引起中心反射波长B λ移动,因此有:eff BB effn n λλ∆∆∆Λ=+Λ (2) 式中:eff n ∆为折射率的变化,∆Λ为光栅周期的变化。

光栅产生应力时的折射率变化:()21211112effeff e effn n P P P n μμεε∆=---=-⎡⎤⎣⎦ (3) 式中: ()21211112e eff P n P P μμ=--⎡⎤⎣⎦ (4) ε是轴向应力,μ是纤芯材料的泊松比,11P 、12P 是弹光系数,e P 是有效弹光系数。

假设光纤光栅是绝对均匀的,也就是说,光栅的周期相对变化率和光栅段的物理长度的相对变化率是一致的。

光纤光栅温度补偿技术研究

光纤光栅温度补偿技术研究

光纤光栅温度补偿技术研究摘要:光纤光栅同时敏感温度和应变。

因此,在测量与应变相关的物理量时,需要补偿温度的影响。

本文综述目前用于温度补偿的算法。

这些算法包括需要建立输入输出解析表达式的回归分析法和不需要建立解析表达式的机器学习法。

这些方法都可以实现温度补偿,但是,相比之下,机器学习法更为灵活,方便,在光纤传感领域具有一定的应用前景。

关键词:光纤光栅温度补偿传感器机器学习法光纤光栅是一种新型光无源器件,具有体积小、本征防爆、抗电磁干扰、易于复用、耐高温及耐腐蚀等优点,受到研究人员极大的关注。

光纤光栅同时敏感温度和应变。

当测量与应变相关的被测量时,就需要补偿温度影响。

如何补偿温度的影响一直是科研人员潜心研究的问题。

1 光纤光栅传感原理根据光纤光栅的耦合模理论,均匀非闪耀光纤光栅可将其中传输的一个导模耦合到另一个沿相反方向传输的导模而形成窄带反射波,反射波峰值波长随应变和温度的偏移量为:从式(1)可以看出,温度和应变都会影响光纤光栅的波长偏移,因此,若测量与应变有关的物理量,就需要补偿温度的响应。

如何补偿温度是科研人员潜心研究的问题。

2 温度补偿方法目前,温度补偿方法分为两类:硬件补偿法,即根据弹性元件自身的特点,测量光纤光栅反射波峰值波长差或反射波带宽消除温度的影响;模型法,即通过监测温度信号,建立输入输出模型进行温度补偿。

2.1 硬件补偿法2.1.1 测量峰值波长差将两个相同光纤光栅布置在梁上下表面相同的位置,形成差动结构,测量两个光纤光栅峰值波长的差;或者将一根光栅分成两部分,一部分处于自由状态,敏感温度,另一部分利用聚合物结构封装起来或粘贴在弹性元件上,敏感温度和应力,通过测量两部分光纤光栅的峰值波长差消除温度的影响。

2.1.2 测量带宽在任意温度下,只要光纤光栅整体的温度保持一致,则光纤光栅各点因温度而引起的变化就是相同的,即环境温度仅对光纤光栅反射波长有影响,不影响带宽。

根据这一原则,将光纤光栅斜向粘在等腰三角形梁的侧面[3]等。

光纤光栅传感器应变和温度交叉敏感问题

光纤光栅传感器应变和温度交叉敏感问题

光纤光栅传感器应变和温度交叉敏感问题
1.2 光纤布拉格光栅原理 光纤布拉格光栅通常满足布拉格条件
式中,λB为Bragg波长,n为有效折射率,A为光栅周 期。 当作用于 光纤光栅的被测物理量(如温度、应力等)发 生变化时,会引起n和A的相应改变,从而导致λB的漂移; 反过来,通过检测λB的漂移。也可得知被测物理量的信息。 Bragg光纤光栅传感器的研究主要集中在温度和应力的准 分布式测量上。温度和应力的变化所引起的λB漂移可表示 为:
2.2 双参量矩阵法 双参量矩阵法是运用各种方法将温度 和应力对同一光波的影响分别作用于该光 波的不同参量上,然后推导出对应关系, 以实现应力和温度的区分测量。近年来, 有许多方法基于这一思想的交叉敏感问题 解决方案。如混合FBG/长周期光栅法、二 次谐波法、超结构光栅法等。
光纤光栅传感器应变和温度交叉敏感问题
在图1所示的光纤光栅传感器结构中,光源为宽谱光 源且有足够大的功率,以保证光栅反射信号良好的信噪比。 一般选用侧面发光二极管ELED的原因是其耦合进单模光 纤的光功率至少为50~100 µW。而当被测温度或压力加 在光纤光栅上时。由光纤光栅反射回的光信号可通过3 dB 光纤定向耦合器送到波长鉴别器或波长分析器,然后通过 光探测器进行光电转换,最后由计算机进行分析、储存, 并按用户规定的格式在计算机上显示出被测量的大小。 光纤光栅除了具备光纤传感器的全部优点外.还具有 在一根光纤内集成多个传感器复用的特点,并可实现多点 测量功能。
光纤光栅传感器应变和温度交叉敏感问题
2.4 温度(应力)补偿法 其实,目前研究较多的还是温度补偿 法。该方法主要通过某种方法或装置先将 温度扰动引起的波长漂移剔除掉,从而使 应变测量不受温度的影响。近年来,国内 外许多学者提出了关于FBG交叉敏感的问 题,主要考虑实现对温度、应变同时测量 的温度补偿方法。它们分为单FBG法和双 FBG法两大类。

《光纤光栅温度应变解调仪研究》

《光纤光栅温度应变解调仪研究》

《光纤光栅温度应变解调仪研究》篇一一、引言随着科技的不断进步,光纤光栅(FBG)技术在众多领域中得到了广泛的应用。

作为一种新兴的传感器技术,光纤光栅能够实现对温度和应变的精确测量,具有高灵敏度、高分辨率和抗电磁干扰等优点。

光纤光栅温度应变解调仪作为光纤光栅技术的核心设备,其性能的优劣直接影响到光纤光栅测量系统的准确性。

因此,对光纤光栅温度应变解调仪的研究具有重要意义。

二、光纤光栅基本原理及特性光纤光栅是通过在光纤内部形成周期性的折射率变化来实现对光信号的调制。

当光在光纤光栅中传播时,会与光纤中的周期性结构发生相互作用,产生特定的光谱响应。

光纤光栅对温度和应变非常敏感,能够通过测量光谱的漂移来推算出温度和应变的值。

三、解调仪的构成及工作原理光纤光栅温度应变解调仪主要由光源、光纤环路、光电检测器以及解调电路等部分组成。

光源发出宽带光,经由光纤环路传输至光纤光栅,反射后形成的光信号再经由光电检测器转换为电信号,最后通过解调电路将电信号转换为温度和应变的数值。

四、解调仪的关键技术及研究进展1. 解调技术:光纤光栅的解调技术是影响其性能的关键因素。

目前常用的解调技术包括光谱分析法和干涉法等。

这些技术具有高灵敏度、高分辨率和快速响应等特点,为提高解调仪的测量精度提供了保障。

2. 信号处理:解调仪中的信号处理技术对于提高测量精度和稳定性至关重要。

通过对信号进行滤波、放大和数字化处理,可以有效地消除噪声干扰,提高信噪比。

3. 温度补偿:为了消除温度对测量结果的影响,解调仪通常采用温度补偿技术。

通过在系统中引入温度传感器或采用自校准算法等手段,可以实现对温度的精确补偿,提高测量结果的准确性。

五、应用及发展趋势光纤光栅温度应变解调仪在众多领域中得到了广泛的应用,如桥梁健康监测、石油化工、航空航天等。

随着科技的不断发展,解调仪的性能将不断提高,应用领域也将进一步拓展。

未来,光纤光栅技术将与人工智能、物联网等技术相结合,实现更加智能化的监测和控制系统。

光纤光栅应变传感器实测状态下温度补偿值修正方式

光纤光栅应变传感器实测状态下温度补偿值修正方式

光纤光栅应变传感器实测状态下温度补偿值修正方式
在光纤光栅应变传感器实测状态下,温度补偿值可以通过以下方式进行修正:
1. 温度校准:在实测状态下,将传感器暴露在不同温度下,并记录相应的传感器输出值。

通过比较不同温度下的输出值和已知温度的差异,可以建立温度校准曲线。

根据温度校准曲线,可以将实际测量得到的传感器输出值与温度之间建立关联,从而实现温度补偿。

2. 温度补偿算法:基于已有的温度校准曲线,可以开发相应的温度补偿算法。

通过输入实际测量得到的传感器输出值和当前温度,温度补偿算法可以对输出值进行修正,以消除温度对传感器测量的影响。

3. 温度传感器组合:将光栅应变传感器与温度传感器组合在一起,通过同时测量光栅应变和温度,可以实时获取温度信息。

温度传感器的输出值可以作为温度补偿值,用于修正光栅应变传感器的输出值。

需要注意的是,光纤光栅应变传感器在实测状态下的温度补偿值修正方式,可能因具体应用场景和传感器类型而有所不同。

上述提到的方法仅为一般性的参考,具体的温度补偿值修正方式需要根据实际情况进行选择和实施。

光纤光栅应变传感器的温度补偿

光纤光栅应变传感器的温度补偿
维普资讯
第3 7卷 第 2期
20 0 7年 3月
东 南 大 学 学 报 (自然科学版 )
J UR AL OF S T E T UN V RST ( trl c neE io ) O N OU H AS I E IY Na a Si c dt n u e i
根据其测量范围还可分为点式光纤传感器积分式光纤传感器分布式光纤传感器3从传感器能实现测量的变量而言又可以分为温度传感器应变传感器位移传感器速度传感器钢筋腐蚀传感器与混凝土碳化传感器光纤光栅则是一种传感型点式传感器能够进行温度应变测量已经在桥梁水利建筑上得到广泛应用光纤光栅传感器是裸光栅经钢套筒封装保护后形成的
s e e h r l o mp r uecmp na o n epoet f o s u t nd r gs a a— l v .T ef mua fe ea r o e st na dt rjc o nt ci u n t i mes e o t t i h c r o i rn
Ab t a t n o d r t lctt e tmp r t r o e ai n me h d oft e fb r Br g r t tan s r c :I r e o e ii h e e a u e c mp ns to t o h e a g g ai sr i i ng s n o n a u ae n se lse v e s re c ps l td i te le e,ba e n t e mir sr cur ft e e c p u ae e o s d o h c o tu t e o n a s ltd s ns r,t e c re h h o — lto q ai n ewe n ai n e u to b t e wa e e g h ha g h s n o , e v r n n a tmp r t e n s an v ln t c n e of t e e s r n io me tl e e aur a d t i r c a ge i d c d b sn te i t ra i lme h n c lme ha im t e a g g ai g a d g i e h n se u e y u i g h n e f ca c a ia c n s bewe n Br g r t n u d n

光纤光栅应变传感器的温度补偿及其工程应用

光纤光栅应变传感器的温度补偿及其工程应用

光纤 光 栅传 感器 的传 感 原 理 … 是 : 当光 纤 光 栅 周 围的应 变 、 温度 或其 他待 测 物理 量发 生 变化 时 , 会 引 将 起纤 芯折 射 率或 光栅 周 期 发 生 变化 , 而 引 起 光 纤 光 进 栅 的 中心波 长产 生 变 化 , 过 对 光 栅 中心 波 长 变 化 量 通 的测 量 , 可 间接获 得待 测 物理 量 的变化 情 况 。 即
() 1 通过 采 用 “ 载 预压 ” 预 先 让 便 梁 受 力 , 卸 法 使 便 梁支 点沉 降稳 定 , 于 确 保 线 路 的安 全 起 到 很 好 的 对
耐 高 温等 , 且粘 贴 或埋 入 到结 构 中不 会 对 其 性 能 造 并 成 明显 影 响 , 因此 广泛 应用 于工 程 结构 的应 变 、 温度 等 物 理量 的监 测 或 检 测 中。但 在 对 实 际 结 构 的监 测 之
中 , 于 光 纤 光 栅 的 中 心 波 长 对 温 度 与 应 变 均 敏 由
顶 进 结 束 后 前 面 方 向 偏 差 1 m, 低 偏 差 5c 高
+ 0c , 误 差 允 许 范 围 之 内 。 1 m 在
5 结 论
定抑 制 扎头 的作 用 。
参 考文 献 :
[ ] 冯 生 华 , 孚珩 . 市 地 道 顶 入 法 施 工 [ . 京 : 国 建 筑 工 业 1 张 城 M] 北 中 出版 社 ,9 2 18 . [] 刘 2 辉. 重载 铁路 下顶 进框 构 涵的施 工 技术 [] 铁 道建 筑 , 在 J.
当 光 纤 光 栅 在 自 由 状 态 下 仅 受 温 度 作 用 时 , 度 温
顶进 应 贯彻 “ 挖 、 顶 、 测 、 纠 ” 原 则 , 一 顶 少 慢 勤 勤 的 每

光纤光栅应变、温度交叉敏感问题研究现状分析

光纤光栅应变、温度交叉敏感问题研究现状分析

变化时 ,光纤的热光效应 和热膨胀作用也会弓起反射波长的变化。反射波长变化与应变和温度的 }
关 系为 :
△ / =(一 ) t 1 s+( + ) , AT 式 中 ,P 、 , e 和 分 别为 光纤 的弹光 系 数 、热 膨胀系 数和 热光 系数 。
( 2些 兰 兰
精 确获得所需 参量 ,正确评 价被 测物体状态 的保 证 。
! 塑 笙
动是 由温度变 化引起 的 ,还是 由应 变变化 引起 的 ,对 于确切 了解被测体 的状态是至关 重要 的 。也是
3 光栅交叉敏感问题现有解决方案分析
针对光纤 光栅 的交叉 敏感 问题 ,人们 已提 出了众 多 的解 决方案 ,分析各方 案的原理 、本质 ,可
有的很多方案仅从独立的光栅传感器角度进行分析,而未考虑实际工程应用中的具体情况 ,脱离了
与实际被测结构体 的联系。因此虽然方法众多, 但其能否解决应力、应变测量中的温度补偿问题, 还要与结构相结合 ,分析解决方案 中传感器的实际受力状态。
图 1 各 种光 栅 应变 、温 度交 叉 敏 感 问题 解 决 方案 归 类
。 — — — — — —
三兰
L J
图 2 管式 温 度 补 偿 封 装 结 构 示 意 图
图 3 两 端 螺 杆 调 节 温度 补偿 结构 示意 图
文献【】 5也是利用了光纤光栅在温度升高时受两端材料热膨胀作用产生压缩变形的原理 ( 如图 4
第1卷 第2 0 期
2 1 年 6月 01
石 家庄铁路 职业技 术学院学报
J RN OU ALO H 儿A HU N I TT EO A L YT C NO O FS I Z A G NS IuT FR I WA E H L GY
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档