结构力学 2.结构的几何构造分析

合集下载

2.3几何组成分析步骤和举例 结构力学

2.3几何组成分析步骤和举例    结构力学
(二刚片规律) 1,2,3杆共点,为瞬变体系; 1, 2,3杆若不共点,则为几何不变 体系。
谢谢观看
学习情境二 结构的几何组成分析
学习单元 三 几何组成分析步骤和举例
学习情境二 结构的几何组成分析
2.3.1 几何组成分析步骤


2.3.2 撤二元体进行简化


2.3.3 合并大刚片进行简化

2.3.4 合理选择刚片
一、几何组成分析步骤
1. 步骤
去掉基础
1)复杂体系简化
(利用二元体推,6)二元体
A B C D 结论:无多余约束的几何不变体系
[例6]


(Ⅱ, Ⅲ)

(合理选择刚片,会找虚铰。)
分析:三铰不共线
(Ⅰ,Ⅱ) (Ⅰ, Ⅲ)
结论:无多余约束的不变体系
三、合并大刚片进行简化
(Ⅰ,Ⅱ)


分析:三铰不共线 结论:无多余约束的几何不变体系
(Ⅱ, Ⅲ) Ⅲ (Ⅰ, Ⅲ)
43C21
A
B

基本
刚片 (1,2)二元体
ABC (3,4)二元体
刚片Ⅰ
刚片Ⅰ,Ⅱ,Ⅲ连接铰三铰共线
结论:无多余约束的几何瞬变体系
三、合并大刚片进行简化
三刚片连接铰三铰共线 结论:无多余约束的瞬变体系
瞬变 无多余约束
不变 有多余约束
三、合并大刚片进行简化
53
基础+DE 刚片 (1,2)二元体
1E

解(a): 1) Ⅰ C Ⅱ
E


Ⅲ DⅠ
三刚片规律 几何不变 合并为大刚片
2) 合并的大刚片与大地
按二刚片规律几何不变, 无多余约束。

于玲玲结构力学第一章_结构的几何构造分析

于玲玲结构力学第一章_结构的几何构造分析

(2)图 b
刚片 I、II 和 I、III 分别由无穷远处的瞬铰 A、B 相连,由于点 A 和点 B 为同方向的无穷远点,根
据结论(1),两点其实是一点,因此该点与连接刚片 II、III 的铰 C 共线,三点共线,所以该体系为几何
瞬变体系。
(3)图 c
显然为几何常变体系。
(4)图 d
刚片 I、II、III 分别由铰 C 和无穷远处的瞬铰 A、B 相连,由于 A、B 不同方向,所以其连线是一条
(a)
A
(b) A
B
(c)
B
(d)
A
B
C
C
A
B
C
C
(a) E
C
A
D
图 1-5 B
(b) E
C
A
DB
图 1-6
注意:二元体的三个结点都必须是铰接,如图 1-6,b 图中的 CEB 部分是二元体,而 a 图中的 CEB
2
部分不是二元体,区别仅在于 C 结点的连接方式不同。 去掉二元体是体系的拆除过程,应从体系的周边开始进行,而增加二元体是体系的组装过程,应从
结点 F、G、H、I、J 用 10 根链杆分别连于基础和刚片,约束数为 10,因此,
W=1×3+2×5-6-10=-3
2、由计算自由度得出的结论
(1)若 W > 0,则体系缺乏必要约束,是几何常变的。注意:若所分析的体系没有与基础相连,应
将计算出的 W 减去 3,如果仍大于零,才可判断体系为几何常变,否则不是几何常变,详见例 1-3。
刚片,因此铰 O 不是瞬铰;而 b 图中的铰 O 是瞬铰,因为刚片 I、II 和链杆 3 组成一更大的刚片 IV,即
杆 1 和 2 连接的都是刚片 III 和 IV,因此铰 O 是瞬铰。

结构力学 PPT课件

结构力学 PPT课件

总复习
1
NaA 2
1 1m×4=4m
解:取1-1以右为分离体 ∑Y=0 NC=-10kN 取2-2以右为分离体
O
∑Y=6+YB+YC=0
6kN
YB=0
∑MO=0 NA=0
a
2
6kN
8kN
6kN
总复习
第八章 静定结构影响线
一、影响线的定义:
定义:当单位荷载(P=1)在结构上移动时,表示结构某一指
定截面中某项内力变化规律的曲线,称为该项内力的影响线。
二、叠加法绘制弯矩图
Q M AB M BA Q0
AB
l
AB
•首先求出两杆端弯矩,连一虚线, •然后以该虚线为基线, •叠加上简支梁在跨间荷载作用下的弯矩图。
三、内力图形状特征 1、在自由端、铰支座、铰结点处,无集中力偶作用,截
面弯矩等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
总复习
M M 0 Hy
Q Q0 cos H sin N Q0 sin H cos
2、在拱的左半跨取正右半跨取负;
3、仍有 Q=dM/ds 即剪力等零处弯矩达极值;
4、 M、Q、N图均不再为直线。
5、集中力作用处Q图将发生突变。
6、集中力偶作用处M图将发生突变。
四、三铰拱的合理轴线 在给定荷载作用下使拱内各截面弯矩
2、刚结点上各杆端弯矩及集中力偶应满足结点的力矩平 衡。两杆相交刚结点无m作用时,两杆端弯矩等值,同侧受拉。
3、具有定向连结的杆端剪力等于零,如无横向荷载作用, 该端弯矩为零。
4.无何载区段 5.均布荷载区段 6.集中力作用处 7.集中力偶作用处
平行轴线
Q图

结构力学第2章共17页

结构力学第2章共17页

(3) 判断多余约束的个数时,内部多余约束也应考虑
在内。
上一页
例:图示体系为具有三个多余
下一页 约束的几何不变体系。因为矩形刚片
本身有三个多余约束。
(4) 瞬变体系必有多余约束。
烟台大学
第2章 平面体系的几何构造分析
五、体系的计算自由度与自由度
返回
1. 计算自由度与自由度的关系
自测
S(自由度) W(计算自由度)= n(多余约束)
个基本刚片开始。
烟台大学
第2章 平面体系的几何构造分析
二、几个容易混淆的概念
返回
1. 二元体
自测
E C
A
DB
帮助
注意:上图的AE与EB(AC与CD)不是二元体,它
们之间多了一根链杆CD(EB)。
开篇
例如,在分析下图所示体系的几何构造时不可以将
退出
DFE视为二元体。因为点F除与杆DF、EF相连外, 还
O2
(b)
烟台大学
第2章 平面体系的几何构造分析
四、应注意的问题
返回
(1) 刚片必须是内部几何不变的部分。
自测
例如,不能把图a中的 (a) F
帮助
EFGD取作刚片(图b),
因为它是几何可变的。
E
G D
(b)
F
ED G
开篇
(2) 在得出结论时, 应写明体系的几何构造特性, 还
应写明有几个多余约束.
退出
帮助
2. 自由度与几何体系的关系
开篇
几何不变体系的自由度为零,凡是自由度大于零的体
系都是几何可变体系。
退出
3. 几何性质与静定、超静定的关系
开篇
线,则组成几何不变体系,且无多余约束。

龙驭球结构力学答案.pptx

龙驭球结构力学答案.pptx

习题解答
P.37 2-4(e)
结构力学 8
习题解答
P.37 2-4(e)
结构力学 9
三杆共线,瞬变
习题解答
P.38 2-6(b)
结构力学10
几何不变,无多余约束
习题解答
P.38 2-6(c)
结构力学11
三杆共点,瞬变
习题解答
P.38 2-7(a)
结构力学12
几何不变,无多余约束
习题解答
P.39 2-8(a)
DD
CC
EE FPFP
DD
CC
FPFP
EE
AA
BB
AA
BB
习题解答
P.110 3-4 (g) 判断M图的正误,并改正错误
结构力学48
B
C
B
q
D
A
A
C q
D
习题解答
P.110 3-4 (h) 判断M图的正误,并改正错误
结构力学49
FPFaP a FPFaP a
FPFaP a
FPFaP a FPFaP a
AA
DD
AA
DD
习题解答
P.110 3-4 (d) 判断M图的正误,并改正错误
结构力学45
FPFP
DD
CC
EE
FPFP
DD CC
EE
AA
BB
AA
BB
习题解答
P.110 3-4 (e) 判断M图的正误,并改正错误
结构力学46
qq
qq
习题解答
P.110 3-4 (f) 判断M图的正误,并改正错误
结构力学47
选作题: P.109 3-3 (a) (e) (g) (l) P.112 3-8 (c) P.112 3-9 (a) P.113 3-11

结构力学复习指导

结构力学复习指导
上一张 下一张 退 出
第2章 结构的几何构造分析
计算自由度计算公式
W=各部件的自由度总和-全部约束总数
W 3m (2n r) (适用于任何体系)
W 2J (b r) (只适用于铰结体系)
W>0(几何可变)
W=0(无多余约束) 是几何不变的必要条件
上一张 下一张 退 出
W<0(有多余约束)
上一张 下一张 退 出
二、二刚片规则
规则: 二个刚片用一个铰和 一根不通过此铰的链杆相连, 组成的体系是几何不变的, 且无多余约束。
二个刚片用不完全相 交,也不完全平行的三根链 杆相连,组成的体系是几何 不变的,且无多余约束。
应用条件:
上一张 下一张 退 出
上一张 下一张 退 出
上一张 下一张 退 出
三、二元体规则
二元体定义:由两根不在 同一直线上的链杆连接一 个新结点的构造,称为二
元体。
规则:在一个体系上增加
或拿掉二元体,不会改变
原体系的几何构造性质。
上一张 下一张 退 出
二元体形式
上一张 下一张 退 出
二 元体的运用
上一张 下一张 退 出
几何组成分析举例
几何组成分析依据:前述三个规则(分析时可将基础 <大地>以及体系中的一根梁一根链杆或某些几何不 变部分视为一刚片) 步骤: (1)如果给定的体系可以看成是两个或三个刚片时则 可直接利用规则一、二加以判断。 (2)如果给定体系不能归结为两个或三个刚片时则先 把其中能直接观察出的某些几何不部分当作刚片, 或撤二元体使体系的组成简化,这样不会影响原体 系的几何构造性质,然后再根据规则做出判别。
平面几何不变体系的组成规律
一、三刚片规则

体系的几何组成分析-结构力学

体系的几何组成分析-结构力学

结论:无多余约束的几何不变体系
(3)平面内三个刚片的连接
刚片Ⅱ B
铰A 刚片Ⅲ 链杆2
C
刚片Ⅰ
规律3 三个刚片用三个 铰两两相连,且三个铰 不在一直线上,则组成 无多余约束的几何不变 体系。
对象:刚片I、Ⅱ和Ⅲ 联系:铰A(Ⅱ和Ⅲ )、B ( I和Ⅱ)、C(I和Ⅲ ),三铰不共线 结论:无多余约束的几何不变体系
• 体温低于 35 ℃为体温过低: 危重患 者、 极度衰弱的患者失去产生足够热 量的能力 ,导致体温
• 低温治疗: 临床上由于病情需要,常 采用人工冬眠或物理降温作为治疗措 施
作业
、发热的类型有哪几种 、发热常用的处置方法有哪些
➢ 杆件与杆件之间的连接—结点
单铰结点 2个约束
链杆 1个约束
单刚结点 3个约束
2.2 自由度和约束
2.2 自由度和约束
教学目标:
掌握自由度的基本概念 掌握约束的定义与分类
教学内容:
自由度 约束
知识点
自由度
✓等于体系的独立运动方式。
✓等于体系运动时可以独立改
y
变的坐标数目。
B
y
A
x x
一个点在平面内有两个自由度。
工程结构的自由度等于零
y
y
x x
一个刚片在平面内有三个自由度。
解:三角形法则,得刚片Ⅰ 、Ⅱ 对象:刚片Ⅰ、Ⅱ 联系:铰A,链杆1,不共线 结论:几何不变,无多余约束
例5: 分析体系的几何组成。
B
C
A
ⅠⅡ
解:去二元体,得
对象:刚片Ⅰ、Ⅱ、Ⅲ 联系:铰A,B、C,不共线 结论:几何不变,无多余约束

例6: 分析体系的几何组成。

02-2结构力学第二章 平面体系的几何组成分析-作业答案汇总

02-2结构力学第二章 平面体系的几何组成分析-作业答案汇总

38 3 2 29 3 3
3个单铰结点, 3个折算为2个单铰结点的复铰结点
支杆
b3
11/73
(II III) 刚片II
(I II)
刚片III
几何不变且无多余约束
j9 单链杆:12根 复链杆:2根 折算为6根单链杆
W 2 j b 29 12 6 0
5/73
【作业1】分析图示体系的几何构造
图3

【作业1】分析图示体系的几何构造
图4
先考察如图所示结构
∞(II III)
9/73
【作业2】求图示系统的计算自由度
刚片 m 1 单刚结点 g 4 铰结点 h 0 支杆 b 3
内部无多余约束刚片
W 3m 3g 2h b
31 3 4 3 12
10/73
【作业2】求图示系统的计算自由度
刚片 m 8
单刚结点 g 2
W 3m 3g 2h b
铰结点 h 9
刚片 m 14 单铰链结点 h 18
刚片II
刚片III
(I II)
(I III) 刚片I
瞬变体系
其中折算为2个单铰结点的 复铰结点有6个
∞(II III)
其中折算为3个单铰结点的 复铰结点有2个 单刚结点 2个 g 2 和基础相连的支杆 0个 b 0
W 3m 3g 2h b
314 3 2 218 0
∞(II III)
刚片II (I II) (I III) 刚片III
刚片I
几何不变且无多余约束
(I II) 刚片II (I III) 刚片III
刚片I
几何不变且无多余约束
7/73
【作业2】求图示系统的计算自由度
图1 并进行几何构造分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档