人教版-高中数学选修2-3_1.1_分类加法计数原理与分步乘法计数原理

合集下载

分类加法计数原理与分步乘法计数原理-人教A版选修2-3教案

分类加法计数原理与分步乘法计数原理-人教A版选修2-3教案

分类加法计数原理与分步乘法计数原理-人教A版选修2-3教案教学目标1.了解分类加法计数原理与分步乘法计数原理的定义和特点。

2.学习应用分类加法计数原理与分步乘法计数原理,解决相关的计数问题。

教学内容一、分类加法计数原理1.定义:分类加法计数原理是把一个问题分成若干部分,先分别计数,然后将这些计数结果相加得到总数的方法。

2.应用实例:•在一个班级里,要选出3名男生和2名女生组成一支代表队。

共有8名男生和7名女生,问有多少种选法?•用4种不同的颜色涂一张旗子,每个小三角必须涂一种颜色,要求三角上的颜色不相同。

问涂法有多少种?二、分步乘法计数原理1.定义:分步乘法计数原理是将一个问题分成若干个部分,然后将不同部分的计数相乘得到总数的方法。

2.应用实例:•一个花坛里有4个种类的花,若每个种类的花至少有3朵且所有花的朵数总共是12朵,问每种花分别几朵?•用6个不同的字母组成一个含有4个字母的词,每个词不含重复的字母,问能组成多少个这样的词?如果这些词都要写出来,又该怎么做?教学重点与难点1.掌握分类加法计数原理和分步乘法计数原理的定义和应用。

2.通过应用实例,理解计数方法和思维过程。

教学方法与过程1.引入新知识,讲解分类加法计数原理和分步乘法计数原理的定义和特点。

2.通过应用实例,指导学生掌握计数方法和思维过程。

3.利用习题课或者课后作业,加强学生练习和巩固。

教学评估1.观察学生的课堂听讲情况和课后作业完成情况。

2.开展小组讨论或者个人练习,检查学生对分类加法计数原理和分步乘法计数原理的理解和应用。

3.开展试卷测试,评估学生计数能力的掌握程度。

教学参考文献1.人教A版高中数学选修2-3教材。

2.《高中数学学案集》。

分类加法与分步乘法计数原理-PPT

分类加法与分步乘法计数原理-PPT
(1)4+3+2=9(种)
(2)4×3×2=24(种)
20
典例讲评
例4 要从甲、乙、丙3幅不同的画 中选出2幅,分别挂在左、右两边墙上 的指定位置,求共有多少种不同的挂 法?
3×2=6(种)
21
课堂小结
1.分类加法计数原理和分步乘法计数
原理,都是解决完成一件事的方法数的
计数问题,其不同之处在于,前者是针
例2 某班有男生30名,女生24名, 现要从中选出男、女生各一名代表班 级参加朗诵比赛,求共有多少种不同 的选派方法?
30×24=720(种)
19
例3 书架有三层,其中第一层放有4本 不同的计算机书,第二层放有3本不同的 文艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不 同的取法? (2)从书架的第一,二,三层各取1本 书,有多少种不同的取法?
33
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
7371条
结束
178次
34
例5 随着人们生活水平的提高,某 城市家庭汽车拥有量迅速增长,汽车牌 照号码需要扩容.交通管理部门出台了一 种汽车牌照组成方法,每一个汽车牌照 都必须有3个不重复的英文字母和3个不 重复的阿拉伯数字,并且3个字母必须合 成一组出现,3个数字也必须合成一组出 现.那么这种办法共能给多少辆汽车上牌 照?
3种
N=5×4×3=60(种)
40
5. 用5种不同颜色给图中A,B,C,D四 个区域涂色,每个区域只涂一种颜色, 相邻区域的颜色不同,求共有多少种不 同的涂色方法?
54
A C3

人教版高数选修2-3第一章11分类加法计数原理与分步乘法计数原理复习教案(教师版)

人教版高数选修2-3第一章11分类加法计数原理与分步乘法计数原理复习教案(教师版)

分类加法计数原理与分步乘法计数原理____________________________________________________________________________________________________________________________________________________________________1.掌握分类计数原理,分布计数原理的概念.2.掌握分类计数原理与分布计数原理的区别.3.能解决分类计数原理与分步计数原理的综合题.1.分类计数原理与分步计数原理(1)分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2 +…+m n种不同的方法注意:○1分类计数原理又称为加法原理;○2弄清楚完成“一件事”的含义,即知道做“一件事”或完成一个“事件”在题目中具体所指的内容;○3解决“分类”问题,用分类计数原理,即完成事件通过途径A,就不必再通过途径B,可以单独完成;○4每个题中,标准不同,分类也不同,分类的基本要求是:每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的方法(不重).(2)分步计数原理: 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.注意:○1分步计数原理又称为乘法原理;○2弄清楚完成“一件事”的含义,即知道完成一个“事件”在每个题中需要经过哪几个步骤;○3解决“分步”问题,用分步计数原理,需要分成若干个步骤,每个步骤都完成了,才算完成一个事件,注意各步骤间的连续性;○4每个题中,标准不同,分步也不同,分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是每个步骤之间的方法是无关的,不能相互替代.2.分类计数原理和分步计数原理的区别辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事。

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

【志鸿优化设计】2015版高中数学(人教)选修2-3课件:1.1分类加法与分步乘法

【志鸿优化设计】2015版高中数学(人教)选修2-3课件:1.1分类加法与分步乘法

1.1
问题导学
分类加法计数原理与分步乘法计数原理
当堂检测
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
一、分类加法计数原理的应用
活动与探究 问题 1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位 编号,总共能编出多少种不同的号码? 提示:因为英文字母共有 26 个,阿拉伯数字共 10 个,所以总共可以 编出 26+10=36(种)不同的号码. 问题 2:问题 1 中最重要的特征是什么? 提示:最重要的特征是“或”字的出现:每个座位可以用一个英文字 母或一个阿拉伯数字编号,故应分为两类方案.
1.1
目标导航
分类加法计数原理与分步乘法计数原理
预习导引
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
3.分类加法计数原理与分步乘法计数原理的区别与联系
分类加法计数原理 关键 词 分类 每类方法都能独立地完成这件 事,它是独立的、一次性的且每 次得到的是最后结果,只需一 种方法就可完成这件事 各类方法之间是互斥的、并列 的、独立的,即“分类互斥” 分步乘法计数原理 分步 每一步得到的只是中间结果,任何一 步都不能独立完成这件事,缺少任何 一步也不能完成这件事,只有各个步 骤都完成了,才能完成这件事 各步之间是关联的、独立的,“关联” 确保连续性,“独立”确保不重复,即 “分步互依”
预习导引
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
(2)分步乘法计数原理的特点有哪些? 提示:①完成一件事需要经过 n 个步骤,缺一不可;②完成每一步有 若干种方法;③把每一步的方法数相乘,就可以得到完成这件事的所有 方法数. (3)若 x∈{1,2,3},y∈{5,6,7},则 x· y 的不同值有( A.6 个 提示:D B.7 个 C.8 个 D.9 个 ).

最新人教版高中数学选修2-3《分类加法计数原理与分步乘法计数原理》教学设计

最新人教版高中数学选修2-3《分类加法计数原理与分步乘法计数原理》教学设计

教学设计1.1分类加法计数原理和分步乘法计数原理整体设计教材分析两个原理的主要内容都是计算在完成一件事情中所有不同方法种数的问题,其区别在于:运用加法原理的前提条件是做一件事有n类方案,选择任何一类方案中的任何一种方法都可以独立完成此事,也就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是做一件事有n个步骤,只有依次完成所有的步骤后才能完成这件事,也就是说,完成这件事的各个步骤是相互依存的.两个原理本身是容易理解的,但学生又缺乏一定的认知基础,而这两个原理是我们学习排列、组合的基础,它的方法和思想贯穿于整章的教学内容中,故学生对两个原理的掌握程度决定后面两个单元的学习效果.所以在教学中要通过实例导入,引导学生利用实例分析两个原理的区别,明确使用的前提条件.课时分配4课时第一课时教学目标知识与技能1.归纳得出分类加法计数原理与分步乘法计数原理.2.初步学会区分“分类”和“分步”,能够用两个计数原理解决简单的计数问题.过程与方法通过对简单实例的分析概括,总结出分类加法计数原理和分步乘法计数原理.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力.重点难点教学重点:分类加法计数原理与分步乘法计数原理.教学难点:分类加法计数原理与分步乘法计数原理的准确理解.教学过程引入新课提出问题1:某家庭欲在五一期间从甲地去乙地进行自助旅游,一天中有火车3班,有汽车2班,那么这个家庭一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?提出问题2:后来听说丙地也是旅游胜地,于是改变行程,先从甲地到乙地,再从乙地到丙地,已知乙地到丙地一天中有飞机2班,轮船2班,问一天中乘坐这些交通工具从甲地到丙地共有多少种不同的走法?活动设计:请学生举手回答.活动成果:问题1如图1,从甲地到乙地共有两类不同的走法,其中坐火车有3种走法,坐汽车有2种走法,所以从甲地到乙地共有5种不同的走法.图1问题2如图2,先从甲地到乙地,再从乙地到丙地,有5类不同的方案.图2若从甲地到乙地乘火车1,从乙地到丙地有飞机2班,轮船2班共4种不同的走法;同样,若从甲地到乙地乘火车2、3和汽车1、2,从乙地到丙地均有飞机2班,轮船2班共4种不同的走法,所以从甲地经乙地到丙地共有4+4+4+4+4=4×5=20种不同的走法.设计意图:从两个具体的例子入手,引出这一章要研究的问题:计数问题.为引出分类加法计数原理和分步乘法计数原理做准备.1.分类加法计数原理探索新知提出问题1:由上述问题1,你能归纳猜想出一般结论吗?活动设计:先独立思考,后小组交流,学生总结,教师补充.活动成果:分类加法计数原理:完成一件事,有两类不同的方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.设计意图:培养学生的抽象概括能力,得到分类加法计数原理.理解新知提出问题1:在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?活动设计:请学生举手回答.活动成果:由于这名同学在A、B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A、B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于两所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4=9.设计意图:强调解决计数问题时,应特别注意使用计数原理的条件.提出问题2:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?活动设计:学生举手发言.活动成果:解:这名同学可以选择A、B、C三所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,在C大学中有3种专业选择方法.又由于三所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4+3=12.设计意图:加深对分类加法计数原理的理解,明确使用的条件.提出问题3:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?活动设计:学生举手发言.活动成果:共有m1+m2+m3种不同的方法.设计意图:将分类加法计数原理推广到三类的情况,为进一步推广奠定基础.提出问题4:如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.设计意图:推广分类加法计数原理,加深对分类加法计数原理的理解.2.分步乘法计数原理探索新知提出问题1:用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?活动设计:请学生举手回答.活动成果:用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码.设计意图:进一步应用分类加法计数原理,为引出分步乘法计数原理做准备.提出问题2:由上述问题,你能归纳猜想出一般结论吗?活动成果:分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.设计意图:培养学生的抽象概括能力,得到分步乘法计数原理.理解新知提出问题1:设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选择?活动设计:学生分析思路.活动成果:思路分析:选出一组参赛代表,可以分两个步骤:第1步是选男生,第2步是选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30×24=720种不同的选法.设计意图:在用原理做题时,要从完成一件事的角度去分析,完成这件事是分成几个不同的步骤还是几个不同的类别.提出问题2:学校要为同学们订做新校服,有三个服装厂,每个服装厂均提供了五种款式,每种款式均有六种颜色可供选择,那么学校有多少种不同的订做校服的选择?活动设计:学生举手回答.活动成果:可以把订做校服这件事分成三个步骤来完成.第一步,选择服装厂,有3种选择;第二步,选择款式,有5种选择;第三步,选择颜色,有6种选择.根据分步乘法计数原理,共有3×5×6=90种不同的选择.设计意图:将分步乘法计数原理推广到分三步的情况,为进一步推广奠定基础.提出问题3:由上述问题,你能得到更一般的结论吗?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.设计意图:推广分步乘法计数原理,加深学生对分步乘法计数原理的理解.提出问题4:比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?活动成果:1.相同点:都是回答有关完成一件事的不同方法种数的问题.2.不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:引导学生对两个计数原理作比较,加深对原理使用条件的理解.运用新知例书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?思路分析:(1)要完成的事是“取一本书”,由于不论取书架的哪一层的哪一本书都可以完成这件事,因此是分类问题,应用分类计数原理.(2)要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有在第1、2、3层中都取一本书后,才能完成这件事,因此是分步问题,应用分步计数原理.(3)要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4种方法;第2类方法是从第2层取1本文艺书,有3种方法;第3类方法是从第3层取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N=m1+m2+m3=4+3+2=9.(2)从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N=m1×m2×m3=4×3×2=24.(3)N=4×3+4×2+3×2=26.【巩固练习】要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3×2=6.6种挂法可以表示如下:【变练演编】为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码.在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的一个.这样的密码共有多少个?解:(1)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有10种不同的方法;第二步,确定第二位密码,有10种不同的方法;第三步,确定第三位密码,有10种不同的方法;第四步,确定第四位密码,有10种不同的方法.根据分步乘法计数原理,不同的密码共有10×10×10×10=10 000个.(2)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第二步,确定第二位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第三步,确定第三位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第四步,确定第四位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法.根据分步乘法计数原理,不同的密码共有36×36×36×36=364个.设计意图:进一步加深对分类加法计数原理和分步乘法计数原理的理解,初步接触分类加法计数原理和分步乘法计数原理的综合运用.【达标检测】1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同的路线有________条.2.十字路口来往的车辆,如果不允许回头,共有________种行车路线.3.某地的部分电话号码是0543316××××,后面的每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?答案:1.(1)9(2)6 2.12 3.10 000课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理,以及它们的区别与联系.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.2.方法收获:分类讨论、化归思想.3.思维收获:抽象概括问题的能力.补充练习【基础练习】1.(1)在图Ⅰ的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在图Ⅱ的电路中,合上两只开关以接通电路,有多少种不同的方法?2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?答案:1.(1)5(2)6 2.(1)12(2)60【拓展练习】已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少?解答:要确定圆的方程可以分成三个步骤:第一步,确定a的值,有3种不同的选择;第二步,确定b的值,有4种不同的选择;第三步,确定半径r的值,有2种不同的选择.根据分步乘法计数原理得,共可表示圆的个数为3×4×2=24.设计说明本节课是计数原理的起始课,是全章内容的理论依据和知识基础.重点介绍分类加法计数原理和分步乘法计数原理,理解两个原理的区别与联系,并会初步应用两个原理解决计数问题.本节课的设计主要是实例分析、问题驱动、归纳总结、类比思考、启发引导、自主探索等教学方式.主要特点是引导学生把两个原理总结出来,并总结出两个原理的区别与联系.实例分析总结、类比分析是本节课设计的主要特点.本节课突出教师的主导作用和学生的主体地位,在教师所提问题的引导下,学生自主完成探究新知和理解新知的过程,在运用新知时进行变练演编,加深学生对知识的理解和问题转化的能力.备课资料例1某学校食堂备有5种素菜、3种荤菜、2种汤.现要配成一荤一素一汤的套餐.问可以配制出多少种不同的品种?分析:1.完成的这件事是什么?2.如何完成这件事?(配一个荤菜、配一个素菜、配一个汤)3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,配一个荤菜,有3种选择;第二步,配一个素菜,有5种选择;第三步,配一个汤,有2种选择.共有N=3×5×2=30种不同的品种.例2有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书.(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分类:第一类,从上层取一本书,有5种选择;第二类,从下层取一本书,有4种选择.共有N=5+4=9种.(2)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,从上层取一本书,有5种选择;第二步,从下层取一本书,有4种选择.共有N=5×4=20种.(设计者:徐西文)第二课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.教学过程复习回顾提出问题1:某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?提出问题2:有一个班共有46名学生,其中男生有21名.(1)现要选派一名学生代表本班参加学校的学代会,则有多少种不同的选派方法?(2)若要选派男、女学生各一名代表本班参加学校的学代会,则有多少种不同的选派方法?活动设计:请同学分析思路和解法依据,并由另外的同学补充.活动成果:1.要完成领带和衬衣的搭配可以分两个步骤:第一步,选择一条领带,有4种不同的选择;第二步,选择一件衬衣,有6种不同的选择.根据分步乘法计数原理,共有4×6=24种不同的搭配方法.2.(1)要选派一名学生代表本班参加学校的学代会有两类不同的选法:第一类,选男生,有21种不同的选择;第二类,选女生,有25种不同的选择.根据分类加法计数原理,共有21+25=46种不同的选择.(2)要选派男、女学生各一名代表本班参加学校的学代会,可以分成两个步骤:第一步,选男生,共有21种不同的选择;第二步,选女生,共有25种不同的选择.根据分步乘法计数原理,共有21×25=525种不同的选法.设计意图:通过以上两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:上一节课我们学习了分类加法计数原理和分步乘法计数原理,并将两个原理进行了推广,请同学们回忆我们推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题.(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:检查学生对两个原理的掌握情况,为本节课的学习提供知识基础和方法提示.典型示例例1给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?思路分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,选中间字符;第三步,选最后一个字符.而首字符又可以分为两类.解:第一步,先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种不同的选法.第二步,中间字符和末位字符各有9种不同的选法.根据分步乘法计数原理,最多可以有13×9×9=1 053种不同的选法,即最多可以给1 053个程序命名.例2核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4个不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?思路分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据.第1位第2位第3位第100位↑↑↑↑4种4种4种4种解:100个碱基组成的长链共有100个位置,如上图所示.从左到右依次在每个位置中,从A、C、G、U中任选一个来填入,每个位置有4种填充方法.根据分步计数原理,长度为100的所有可能的RNA分子种数为.例3电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?思路分析:由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用下图来表示一个字节.第1位第2位第3位第8位↑↑↑↑2种2种2种2种一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符.(2)由(1)知,用一个字节所能表示的字符不够6 763个,我们就考虑用2个字节能够表。

分类加法计数原理和分步乘法计数原理教案

分类加法计数原理和分步乘法计数原理教案

分类加法计数原理和分步乘法计数原理教案
高二数学创优课教案
 高中二年级《数学》选修2-3第一章:计数原理
 §1.1分类加法计数原理和分步乘法计数原理(第二课时)
 教材地位:
 分类计数原理和分步计数原作用并不限于用来推导排列数、组合数公式,实际上其解决问题的思想方法贯穿在整个学习的始终:当将一个较复杂的问题通过分类进行分解时,用的是加法原理;当将它通过分步进行分解时,用的是乘法原理由于其思想方法独特,它也是培养和发展抽象思维能力和逻辑思维能力的好素材。

 教材作用:
 分类计数原理和分步计数原理是解决计数问题的最基本、最重要的方法。

它起到承前启后的作用:它可以弥补列举法一一数出这个数的不足,使其计数时更加灵活,同时又为研究排列与组合,运用归纳法导出排列数公式与组合数公式,并提出组合数的两个性质,以简化组合数的计算和为推导二项式定理作好铺垫。

 一、教学目标:
 1、知识与技能:
 (1)进一步熟悉分类计数原理与分步计数原理的内容.
 (2)归纳总结分类或分步标准的确。

1.1分类加法计数原理与分步乘法计数

1.1分类加法计数原理与分步乘法计数

第4步,取左边第四位上的数字,有2种选取方法
有分步乘法计数原理知,可以组成不同的四位密 码共有N=4×4×3×2=96(个)
例1:用0、1、2、3、4这5个数字可组成多少个无 重复数字的: (1)四位密码?(2)四位数?(3)四位奇数?
解:(2)法二:四位密码与四位数区别在与:四位密码, 首位可以位0,而作为四位数,首位不能位0,除此之外, 是相同的,因此,只需求出首位位0的四位密码有多少个
练习1 在所有的两位数中,个位数字大于十位数字 的两位数共有多少个? 分析1: 按个位数字是2,3,4,5,6,7,8,9分成8类,在 每一类中满足条件的两位数分别是: 1个,2个,3个,4个,5个,6个,7 个,8 个. 根据加法原理共有 1+2+3+4+5+6+7+ 8 =36 (个).
分析2: 按十位数字是1,2,3,4,5,6,7,8分成8类,在 每一类中满足条件的两位数分别是: 8个,7个,6个,5个,4个,3个,2个,1个. 根据加法原理共有 8+7+6+5+4+3+2+1 = 36 (个)
何时用加法原理、乘法原理呢?
加法原理 完成一件事情有n类方法,若每一类方 法中的任何一种方法均能将这件事情 从头至尾完成. 分类要做到“不重不漏”
乘法原理 完成一件事情有n个步骤,若每一步的 任何一种方法只能完成这件事的一部 分,并且必须且只需完成互相独立的 这n步后,才能完成这件事. 分步要做到“步骤完整”
选修2-3 1.1分类加法计数原理
分步乘法计数原理(2)
问题1:用A~Z或0~9给教室的座位编号
分析: 给座位编号有2类方法, 第一类方法, 用英文字母,有26种号码; 第二类方法, 用阿拉伯数字,有10种号码; 所以 有 26 + 10 = 36 种不同号码.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 书架的第1层放有4本不同的计算机书,第2
层放有3本不同的文艺书,第3层放有2本不同的 体育书. (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种 不同的取法?
例3.要从甲、乙、丙3幅不同的画中选出2幅, 分别挂在左、右两边墙上的指定位置,问共 有多少种不同的挂法?
N m1 m2 mn
种不同的方法.
练习:
1、一件工作可以用2种方法完成,有5人会用第1种 方法完成,另有4人会用第2种方法完成,从中选出 1人来完成这件工作,不同选法的种数是 . 2、现有高中一年级的学生3名,高中二年级的学 生5名,高中三年级的学生4名.从中任选1人参加 接待外宾的活动,有多少种不同的选法? 3、用一个大写英文字母或一个阿拉伯数字给教室 里的座位编号,总共能编出多少种不同的号码?
例5 核糖核酸(RNA)分子是在生物细胞中发现的化学 成分,一个RNA分子是一个有着数百个甚至数千个位置的 长链,长链中每一个位置上都由一种称为碱基的化学成分 所占据.总共有4种不同的碱基,分别用A,C,G,U表示. 在一个RNA分子中,各种碱基能够以任意次序出现,所以 在任意一个位置上的碱基与其他位置上的碱基无关.假设 有一类RNA分子由100个碱基组成,那么能有多少个不同的 RNA分子?
开始
子模块1 18条执行路径
子模块2 45条执行路径
子模块3 28条执行路径
A
子模块4 38条执行路径 子模块5 43条执行路径 结束
7371条
178次
例8 随着人们生活水平的提高,某城市家庭汽车拥有 量迅速增长,汽车牌照号码需要扩容.交通管理部门出台 了一种汽车牌照组成方法,每一个汽车牌照都必须有3个 不重复的英文字母和3个不重复的阿拉伯数字,并且3个字 母必须合成一组出现,3个数字也必须合成一组出现.那么 这种办法共能给多少辆汽车上牌照? 共能给22 464 000辆汽车上牌照. 用两个计数原理解决计数问题时,最重要的是在开始 计算之前要进行仔细分析——需要分类还是需要分步。 分类要做到“不重不漏”,分步要做到“步骤完整”
4100个
A C A G U C C G AU G A
例6 电子元件很容易实现电路的通与断、电位的高与 低等两种状态,而这也是最容易控制的两种状态.因此计 算机内部就采用了每一位只有0或1两种数字的记数法,即 二进制.为了使计算机能够识别字符,需要对字符进行编 码,每个字符可以用一个或多个字节来表示,其中字节是 计算机中数据存储的最小计量单位,每个字节由8个二进 制位构成.问: (1)一个字节(8位)最多可以表示多少个不同的字符? (2)计算机汉字国际码(GB码)包含了6 763个汉字,一 个汉字为一个字符,要对这些汉字进行编码,每个汉字至 少要用多少个字节表示?
探究2:如果完成一件事有三类不同方案,
在第1类方案中有m1种不同的方法,在第2类
方案中有m2种不同的方法,在第3类方案中 有m3种不同的方法,那么完成这件事共有多 少种不同的方法?
N=m1+m2+m3
想一想:如果完成一件事情有n类不同方案, 在每一类中都有若干种不同方法,那么应当 如何计数呢?
一般归纳: m1 完成一件事情,有n类方案,在第1类办法中有 m2 种不同的方法 种不同的方法,在第2类方案中有 mn ……在第n类方案中有 种不同的方法.那么完成这件 事共有
练习:
1、 要从甲、乙、丙3名工人中选出2名分别上日班和晚 班,有多少种不同的选法? 2、乘积(a1+a2+a3 )(b1+b2+b3+b4 )(c1+c2+c3+c4+c5) 展开后共有多少项? 3、从数字1、2、3、4、5中任选三个数字可以组成多少个无重 复数字的三位数?
4、由数字0,1,2,3,4,5可以组成多少个有重复数字的三位数?
例4、给程序模块命名,需要用3个字符,其中首 字符要求用字母A~G或U~Z,后两个要求用数字 1~9,问最多可以给多少个程序命名? 解:第1步:选首字符,共有7+6=13种选法 第2步:选中间字符,共有9种选法
第3步,选最后一个字符,共有9种选法
根据分步计数原理,最多可以有13×9×9= 1053个不同的名称
解:第1步:从3幅画中选1幅挂在左边墙上,有3种 选法 第2步:从剩下的2幅画中选1幅挂在右边墙上,有2 种选法
根据分步乘法计数原理,不同挂法的种数是
N=3×2=6
练习:
1、 在由电键组A、B组成的串联电路中,
如图,要接通电源,使电灯发光的方法 有几种?
练习:
2、某学校的一个班级组织学生义务献血,在体 检合格的学生中,是o型血的有10人,A型血 的有7人,B型血的有8人,AB型血的有5人, (1)从中任选1名学生去献血,有多少种不同的 选法? (2)从四种血型的学生中各选1名学生去献血, 有多少种不同的选法? (3)从中任选2名具有不同血型的学生去献血, 有多少种不同的选法?
如果做一件事情,完成它需要三个步骤,在第一步中
有m1种不同的方法,在第二步中有m2种不同的法,在第三 步中有m3类不同的方法,那么完成这件事情有 N=m1×m2×m3 种不同的方法.
如果做一件事情,完成它需要n个步骤,在第一步中有
m1种不同的方法,在第二步中有m2种不同的法,… 第n步中有mn类不同的方法,那么完成这件事情有 N=m1×m2×m3×…….×mn 种不同的方法.
13、在所有的两位数中,个位数字比十位数字大的两位数有多少 个?
14、有架楼梯共6级,每次只允许上一级或两级,求上完这架楼梯 共有多少种不同的走法? 15、某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其 中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人, 有多少种不同的选法?
16、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的 两端点颜色不同,如果只有5种颜色可供使用,求共有多少种不同 S 的染色方法?
例1:在填写高考志愿表时,一名高中毕业生了 解到,A,B两所大学各有一些自己感兴趣的强项 专业,具体情况如下: A大学 B大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学 如果这名同学只能选择一个专业,那么他共有多 少种选择呢?
想一想 在填写高考志愿表时,一名高中毕业 生了解到,A,B,C三所大学各有一些自己感兴趣 的强项专业,具体情况如下: A大学 B大学 C大学 生物学 数学 环境科学 化学 会计学 地质学 医学 信息技术学 车辆工程 物理学 法学 工程学 如果这名同学只能选择一个专业,那么他共有多 少种选择呢?
C D A B
17、 ①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数; ③用0,1,2,……,9可以组成多少个无重复数字 的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字 的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字 的4位奇数; ⑥用0,1,2,……,9可以组成多少个有两个重复 数字的4位整数.
9、如图,从甲地到乙地有2条路,从乙地到丁地有3条路;从 甲地到丙地有4条路可以走,从丙地到丁地有2条路。从甲地到 丁地共有多少种不同地走法? 甲地 乙地
丙地
丁地
ቤተ መጻሕፍቲ ባይዱ
10、如图,该电路,从A到B共有多少条不同的线路可通电?
A
B
11、集合A={1,2,-3},B={-1,-2,3,4} .从A,B 中各取1个元素作为 点P(x,y) 的坐标. (1)可以得到多少个不同的点? (2)这些点中,位于第一象限的有几个? 12、甲、乙、丙3个班各有三好学生3,5,2名,现准备推选 两名来自不同班的三好学生去参加校三好学生代表大会,共有 几种不同的推选方法.
…在
分类计数原理与分步计数原理有什么异同?
相同点:分类计数原理与分步计数原理都是涉及 完成一件事的不同方法的种数的问题。 不同点:分类计数原理与“分类”有关,各种 方法相互独立,用其中任何一种方法都可以完成这 件事;分步计数原理与“分步”有关,各个步骤相 互依存,只有各个步骤都完成了,这件事才算完 成.
问题1 某班级有34位男生,15位女生,现 要选一位同学参加演讲比赛,则有多少种不 同的选法? 问题2 秋天到了,学校举行“全民健身”登 山活动,山的南面有3条登山路线,山的北面 有2条登山路线,要登上山顶,问共有多少种 不同的路线?
探究1:你能说说以上两个问题的共同特征吗?
分类加法计数原理
完成一件事有两类不同方案,在第1类 方案中有m种不同的方法,在第2类方案中有 n种不同的方法.那么完成这件事共有 N=m+n 种不同的方法.
(1)256个
(2)2个
例7 计算机编程人员在编写好程序以后需要对 程序进行测试,程序员需要知道到底有多少条执 行路径(即程序从开始到结束的路线),以便知 道需要提供多少个测试数据.一般地,一个程序模 块由许多子模块组成.如图所示是一个具有许多执 行路径的程序模块. (1)这个程序模块有多少条执行路径; (2)为了减少测试时间,程序员需要设法减少测 试次数,你能帮助程序员设计一个测试方法,以 减少测试次数吗?
完成一件事 有两类不同方案,在第1类方案中 有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有 N=m+n 种不同的方法.
问题1 我们班级有34位男生,15位女生,现要选一位同学 参加演讲比赛,则有多少种不同的选法? 问题2 秋天到了,学校举行“全民健身”登山活动,山 的南面有3条登山路线,山的北面有2条登山路线,要登上 山顶,问共有多少种不同的路线?
计数原理
§1.1 分类加法计数原理与分步乘法计数原理
实际问题
2008年29届夏季奥运会在北京举行.奥运会足 球赛共有16个队参赛.它们先分成4个小组 进行循环赛,决出8强,这8个队按确定的程 序进行淘汰赛后,最后决出冠亚军,此外还决 出了第三、第四名.问一共安排了多少场比赛?
相关文档
最新文档