6.1 平方根 (2)
七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

6.2平方根(第2课时)的教学设计一.学习目标知识与技能:1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法:1.经历平方根概念的构成过程,让先生不仅掌握概念,而且进步和巩固所学知识的运用能力.2.培养先生求同与求异的思想,经过比较进步考虑成绩、辨析成绩的能力.情感、态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养先生严谨的科学态度.二.教学重点、难点重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.难点:1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行平方根的运算.三.学习方法:自主 合作 探求四.学习过程设计检查先生完成情况(:教师经行抽查,找出典型的成绩经行讲解)(一).自学范围:请自学教材第3页至第5页;(二).知识回顾:1. 64.0的算术平方根是 ;16 的算术平方根是 ;2. =-2)6( ;=971(二)算术平方根的平方:(1) 的平方等于3; (2)比较大小:32与23;平方根与算术平方根的联系与区别:联系:1.平方根包含算术平方根,算术平方根是平方根的一种.2.只需非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只需一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a1 .以下说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.以下说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根必然大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(C) a2+14. 指出以下各数的算术平方根:(1)0.04 (2)1645. 面积为9的正方形,边长=;面积为7的正方形,边长=;6.比较大小:8313-与81本节小结先生自主总结,先生畅谈本人的学习播种。
人教版七年级数学下册6.1平方根(第2课时)优秀教学案例

2.同伴评价:学生之间进行互相评价,交流学习心得,取长补短,共同进步。
3.教师评价:教师对学生的学习过程和结果进行评价,关注学生的成长,给予及时的鼓励和指导,提高学生的学习积极性。
4.教学反思:教师应针对课堂教学情况进行反思,不断调整教学策略,以提高教学效果。
2.问题导向:教师在教学过程中设计了一系列具有启发性的问题,引导学生思考、讨论,激发了学生的思维活力,培养了学生的独立思考能力。
3.小组合作:教师组织学生进行小组讨论和合作探究,让学生在实践中体验和理解平方根的性质,培养了学生的团队协作能力和沟通能力。
4.教学策略灵活运用:教师根据学生的学习情况,灵活运用情景创设、问题导向、小组合作等教学策略,使学生在轻松愉快的氛围中学习数学,提高了学生的学习效果。
(三)小组合作
1.小组讨论:教师应组织学生进行小组讨论,让学生在讨论中交流思想、分享经验,促进学生的共同成长。
2.小组合作探究:教师应引导学生开展小组合作探究活动,如共同解决一个实际问题,让学生在实践中体验平方根的性质。
3.小组评价与反馈:教师应组织小组评价与反馈,让学生在评价中认识自我,提高自我,培养学生的团队协作能力。
(二)讲授新知
1.平方根的性质:教师通过讲解和示例,引导学生学习平方根的性质,如非负性、互为相反数等。
2.完全平方数:教师介绍完全平方数的概念,引导学生理解完全平方数的性质,如一个数的平方根只有一个非负整数解等。
3.平方根的运算:教师讲解平方根的运算规则,如求一个数的平方根时,可以先求其平方再开方等。
(三)学生小组讨论
1.小组活动:教师组织学生进行小组讨论,让学生分享各自的学习心得,互相提问、解答疑问。
人教版数学七年级下册6.1平方根(第2课时)说课稿

(三)教学重难点
1.教学重点:
(1)平方根的概念和性质的理解。
(2)求平方根的方法的掌握。
(3)运用平方根知识解决实际问题。
2.教学难点:
(1)平方根的概念的理解,特别是平方根与算术平方根的区别。
(2)求平方根的方法中,估算和试除法的运用。
(3)实际问题的解决,需要学生具备较强的观察能力和逻辑思维能力。
4.游戏活动:设计一些与平方根相关的数学游戏,如“平方根接龙”,让学生在游戏中巩固知识。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价,并提供有效的反馈和建议:
1.自我评价:让学生回顾本节课所学内容,自我评估对平方根概念的理解程度和掌握情况。
2.同伴评价:鼓励学生相互评价,分享彼此的学习心得和方法,互相学习,共同进步。
2.平方根的性质:了解平方根的性质,如正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
3.求平方根的方法:掌握求平方根的基本方法,包括估算、试除法和计算器法。
(二)教学目标
1.知识与技能:
(1)理解平方根的概念,掌握平方根的性质。
(2)学会求一个正数的平方根,能运用估算、试除法和计算器法进行求解。
板书内容主要包括:
1.平方根的定义和符号表示。
2.平方根的性质,如正数的平方根有两个,零的平方根是零等。
3.求平方根的方法,包括估算、试除法和计算器法。
4.课堂例题和学生的解题过程。
板书风格简洁明了,使用清晰的字体和标记,确保学生能够快速识别和记忆关键信息。在教学过程中,板书的作用是提供视觉辅助,帮助学生理解和记忆教学内容。为确保板书清晰、简洁且有助于学生把握知识结构,我会提前规划板书内容,避免过度拥挤,适时更新板书内容,保持信息的准确性和条理性。
6.1平方根(课时2)课件(新人教版七年级数学下)

2 7 和27的大小.
【学习体会】
1.本节课你独立思考了那些知识?参与讨论了哪些知识? 还有那些疑惑? 2.本节课你最成功的地方是什么?说给你小组成员听听.
【当堂达标】 1. 比较下列各数的大小: (1)
65与8 ;(2)
5-1 与1 . 2
2.已知
2.3409 =1.53,求 23409 的值
6.2平方根(第二课时)
பைடு நூலகம்
【学习目标】
1.能用“夹值法”求一个数的平方根的近似值. 2.会用计算器求一个数的算术平方根. 3.理解被开方数扩大(缩小)与它的算数平方根扩大(缩小)的规律.
【重点难点】
重点:利用“夹值法”求一个数的算术平方根. 难点:理解被开方数扩大(缩小)与它的算术平方根扩大(缩小)的规律.
创设情景
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 大正方形的边长是多少?
2 到底有多大?
【课中探究】
数学活动一:估值 根据自己的经验,你估计一下
2
大约有多大?
数学活动二:探究 ∵1² =1 2² =4 ∴1< 2 <2 ∵1.4² =1.96 1.5² =2.25 ∴1.4< 2 <1.5 ∵1.41² =1.9881 1.42² =2.0164 ∴1.41< 2 <1.42 ∵1.414² =1.999396 1.415² =2.002225 ∴1.414< 2 <1.415…… 事实上,越往下进行,得到的值就越准确。 2 =1.41421356…
3.用计算器计算:(如需取近似值,则精确到0.01) ( 1)
1369
;(2) 101.2036 ;(3) 5
.
它是一个无限不循环小数,像这样的数还有很多,如: 3、 5 …….
沪科版数学七年级下册6.1《平方根》教学设计2)

沪科版数学七年级下册6.1《平方根》教学设计2)一. 教材分析《平方根》是沪科版数学七年级下册第六章的第一节内容。
本节内容主要介绍了平方根的概念、求一个数的平方根的方法以及平方根的性质。
通过本节内容的学习,学生能够理解平方根的概念,掌握求一个数的平方根的方法,了解平方根的性质,为后续学习立方根、算术平方根等概念打下基础。
二. 学情分析七年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。
但是,学生对平方根的概念和性质可能比较陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对负数的平方根有一定的困惑,需要进行重点解释和澄清。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.了解平方根的性质,能够运用平方根的性质解决实际问题。
3.培养学生的数学思维能力,提高学生的数学解决问题的能力。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.对负数的平方根的理解和掌握。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和主动性。
2.使用多媒体教学辅助工具,通过动画和图形展示平方根的概念和性质,帮助学生形象理解。
3.通过实例和练习,让学生动手操作和思考,巩固所学知识,提高学生的实际应用能力。
六. 教学准备1.多媒体教学课件。
2.练习题和测试题。
3.教学黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的实例,如跳伞运动员打开降落伞后的高度变化,汽车刹车后的速度变化等,引导学生思考这些现象背后的数学规律。
然后提出问题:“你们知道这些现象背后有什么共同的数学概念吗?”学生可能会回答有理数的乘方,这时教师可以引导学生思考乘方的相反数问题,引出平方根的概念。
2.呈现(10分钟)教师在黑板上写出平方根的定义,解释平方根的概念,并通过图形和动画展示平方根的性质。
同时,教师可以举例说明如何求一个数的平方根,如求4的平方根,引导学生理解求平方根的方法。
6.1 平方根(第2课时)教学设计-人教七下优质课精品

6.1 平方根(第2课时)一、内容和内容解析1.内容用有理数估计带根号的无理数的大小,初步认识一些无限不循环小数,用计算器求算术平方根.2.内容解析通过用有理数估计2的大小,得到2的越来越精确的近似值,进而给出2是无限不循环小数的结论.这个估算过程既体现了估算平方根大小的一般方法,又为后面学习无理数作铺垫.使用计算器进行复杂的运算,可以使学习的重点更好地集中到理解数学的本质上来.本节课对初步培养学生的估算意识,发展估算能力,起到重要的作用.基于以上分析,可以确定本课的教学重点:能用有理数估计一个带算术平方根符号的无理数的大致范围.二、教材解析对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,因此学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根2到底有多大,对学生来讲是一个新问题.本课利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论.另外,本课还使学生了解利用计算器可以求出任意一个正数的算术平方根.通过一个实际问题,给出了一种常见的用有理数估计无理数的方法,它利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,也使学生感受到估算能力是生活中需要的一种能力.三、教学目标和目标解析1.教学目标(1)用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.(2)用计算器求一个非负数的算术平方根.2.目标解析达成目标(1)的标志:学生了解用夹逼法求2的近似值的过程和方法,并初步认识无限不循环小数的特点;学生能够利用与被开方数最接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小.达成目标(2)的标志:给出一个非负数,学生能够利用计算器算出它的算术平方根.四、教学问题诊断分析在2出现之前,学生已经知道利用乘方运算,通过观察的方法求一些完全平方数的算术平方根,但是对于象2这样的非完全平方数,它的算术平方根2到底有多大,对学生来说是一个新问题.另外,通过分析2的一系列不足近似值和过剩近似值来估计它的大小,给出2是无限不循环小数的结论,对学生来说也比较困难.基于以上分析,本课的教学难点:用夹逼法估计2的大小.五、教学过程设计1.解决上节课的问题问题12有多大呢?师生活动:学生思考,讨论并估计2大概有多大.由直观可知,2大于1而小于2.追问1 你是怎样判断出2大于1而小于2的?学生回答:因为12=1,22=4,而1<2<4,所以1<2<2.追问2 你能不能得到2的更精确的范围呢?因为1.42=1.96,1.52=2.25,而1.96<2<2.25,所以1.4<2<1.5;因为1.412=1.988 1,1.422=2.061 4,而1.988 1<2<2.016 4,所以1.41<2<1.42;因为1.4142=1.999 396,1.4152=2.002 225,而1.999 396<2<2.002 225,所以1.414<2<1.415;……师生活动:让学生继续用这种思路计算出更加精确的近似值.教师展示:教师讲解:事实上,2=1.414 213 562 373…,它的小数位数无限,且小数部分不循环,这样的小数称为无限不循环小数,2是一个无限不循环小数.实际上,许多正有理数的算术平方根(例如3,5,7等)都是无限不循环小数.追问3 你以前见过这种数吗?学生回答: =3.141 592 635 897…【设计意图】通过用有理数估计2的大小,使学生初步体会2是无限不循环小数;同时这个过程也给出了用有理数估计带算术平方根符号的无理数的大小的一般方法.2.用计算器求算术平方根大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).例1 用计算器求下列各式的值:(1)1363;依次按键 3 136显示:56.∴1363=56.(2)2(精确到0.001).依次按键 2 ,,显示:1.414 213 562.1.414≈. 教师讲解:计算器上显示2的值是1.414 213 562,它是有限位小数,这容易给我们一个错觉“2是有理数”,而当我们用平方运算来验证时,发现(1.414 213 562)2≠2,因此用计算器计算得到的1.414 213 562仅是2的近似值.【设计意图】使学生学会使用计算器可以很方便的计算出任意一个正数的算术平方根(或算术平方根的近似值).问题2 你能解决章引言中提出的问题吗?同学们,你们知道宇宙飞船离开地球进入轨道正常运行的速度在什么范围吗?这时它 的速度要大于第一宇宙速度v 1(单位:m/s )而小于第二宇宙速度v 2(单位:m/s ).v 1,v 2的大小满足21v =gR ,22v =2gR ,其中g ≈9.8m/s 2,R 是地球半径,R ≈6.4×106m .怎样求v 1,v 2呢?追问1你能把v 1,v 2表示出来吗?学生回答:根据算术平方根的定义及符号表示,可知v 1=gR ,v 2=gR 2.追问2你能算出v 1,v 2吗?学生回答:因为g ≈9.8,R ≈6.4×106,可以直接代入求值,然后用计算器求v 1和v 2,得v 1≈6104.68.9⨯⨯≈7.9×103,v 2≈6104.68.92⨯⨯⨯≈1.1×104.因此,第一宇宙速度v 1大约是7.9×103 m/s ,第二宇宙速度v 2大约是1.1×104 m/s .【设计意图】让学生利用算术平方根的概念,借助信息技术手段解决实际问题,进一步复习巩固算术平方根的概念和求法,并体会数学的应用价值.问题3 利用计算器计算,并将计算结果填在表中,你发现了什么规律?师生活动:学生能够通过按计算器填表,并发现:结论中每隔一个格中的数字都一样,只是小数点的位置不一样.教师追问:被开方数的变化与算术平方根的变化之间有什么联系?学生回答:被开方数每扩大100倍,其算术平方根就扩大10倍.【设计意图】使学生初步认识:被开方数的小数点向右或向左移动2位,它的算术平方根的小数点就相应地向右或向左移动1位.问题4 你能用计算器计算3(精确到0.001)吗?并利用你在问题3中发现的规律说出03.0,300,000 30的近似值.师生活动:学生根据上题的结论回答问题.追问 你能根据3的值说出30是多少吗?【设计意图】使学生能够辨别什么情况下才可以使用这个规律.例2 比较大小:21- 5与0.5. 师生活动:引导学生分析要比较21- 5与0.5,只需要比较5-1与1的大小关系,即比较5与2的大小.因为5>4=22,所以5>2.因此21- 5>0.5. 【设计意图】通过例题的讲解提高学生的估算能力.问题5 小丽想用一块面积为400 cm 2的正方形纸片,沿着边的方向剪出一块面积为300 cm 2的长方形纸片,使它的长宽之比为3 : 2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?教师提问:“你能将这个问题转化为数学问题吗?你是怎样转化的?”学生回答:解:设剪出的长方形的两边长分别为3x cm 和2x cm ,则有3x ·2x =300,6x 2=300, x 2=50,x =50,故长方形纸片的长为350cm ,宽为250cm .追问 长方形的长和宽与正方形的边长之间的大小关系是什么?小丽能用这块纸片裁出符合要求的纸片吗?学生回答:因为50>49,所以50>7,而350>3×7=21,21 cm 比原正方形的边长20 cm 更长,这是不可能的.所以,小丽不能用这块纸片裁出符合要求的纸片.【设计意图】使学生体会算术平方根以及用有理数估计带算术平方根符号的无理数的大小在实际生活中的应用.3.归纳小结问题6 举例说明如何估算算术平方根的大小.【设计意图】总结本课主要内容.4.布置作业第44页第1,2(1)(2)(4)题;习题6.1第6题.五、目标检测设计1.利用计算器求下列各式的值(结果精确到0.01).(1)867; (2)46254.0.【设计意图】考查学生是否会使用计算器求一个数的算术平方根.2.比较大小:(1)35 _______6; (2)-5+1 ______-22. 【设计意图】考查学生是否会用有理数估计无理数的大致范围.3.一个正方形的草坪面积为658m 2,问这个草坪的周长是多少?(精确到0.1m )【设计意图】考查学生能否将实际问题转化为数学问题并进行解答.。
七年级数学下册 第六章 实数 6.1 平方根(第2课时)教学课件2下册数学课件
【错因】错将 的9平方根看成(kàn chénɡ)是9的平方根.
第二十二页,共二十三页。
内容(nèiróng)总结
6.1 平 方 根。6.1 平 方 根。a的平方根或_________.即如果x2=a,那么__叫做__的。1.定义:
No 求一个数a的_______的运算.。3.已知x2=36,那么x= ________。【思路点拨】把带分数化成假分数,含有乘
C.2的平方根是
D.2的算术平方根是
2
2
第七页,共二十三页。
3.已知x2=36,那么(nà me)x= __±__6____;如果(-a)2=(7)2, 那么a= ____±__7__.
第八页,共二十三页。
知识点一 求平方根
【示范(shìfàn)题1】求下列各数的平方根: (1)121.(2)2 .(3)7 (-13)2.(4)-(-4)3.
第五页,共二十三页。
【自我诊断】
1.判断对错: (1)任何数的平方根都有两个(liǎnɡ ɡè) ×( )
(2)只有正数才有平方根 ( ) × (3)一个正数的平方根的平方还是这个正数. ( ) √
第六页,共二十三页。
2.下列说法(shuōfǎ)不正确的是 C( )
A.- 是22的平方根
B. 是2的平2 方根
第十六页,共二十三页。
(3)如果是非负数,对于不易(bù yì)求出平方根的正数,可以
用计算器直接得出.
第十七页,共二十三页。
知识点二 平方根的性质及其应用(yìngyòng) 【示范题2】(2016·罗定市期中)已知一个正数x的平方根是 a+3和2a-15,求a和x的值.
第十八页,共二十三页。
第三页,共二十三页。
七年级数学下册6.1平方根(第2课时)教学设计
3.教师强调平方根在实际生活中的应用,提醒学生要善于观察、思考,将所学知识运用到实际中。
4.布置课后作业,要求学生巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的平方根知识,培养学生的数学思维能力,特布置以下作业:
(二)讲授新知
1.教师给出平方根的定义:平方根是一个数a,使得a的平方等于给定的数b。即:如果a²=b,那么a叫做b的平方根,记作a=√b。
2.教师引导学生探讨平方根的性质,如:一个正数有两个平方根,互为相反数;0的平方根是0;负数没有平方根。
3.教师通过具体例子,讲解平方根的运算规律,如:√9×√16=√(9×16)=√144=12等。
1.完成课本第92页的练习题1、2、3,其中第3题要求学生通过自主探究,发现平方根的运算规律,并总结出来。
2.选取一道实际问题,运用平方根知识进行求解,如计算家庭成员的手机屏幕面积、家中客厅的面积等。要求学生将解题过程和答案写在作业本上,以培养学生在实际情境中运用数学知识的能力。
3.尝试估算以下数的平方根:√15、√20、√30。要求学生用文字描述估算过程,并在小组内交流分享,以促进学生之间的合作与交流。
4.预习下一节课的内容,了解立方根的概念和性质,为课堂学习做好准备。
5.结合本节课所学,撰写一篇数学日记,分享自己在学习平方根过程中的心得体会,以及如何将所学知识应用于解决实际问题。
注意事项:
1.学生在完成作业时,要注重解题过程的书写,保持字迹清晰、步骤完整。
2.家长要关注孩子的作业完成情况,适时给予指导和鼓励,培养孩子独立解决问题的能力。
此外,学生在解决实际问题时,可能缺乏将问题转化为数学模型的能力。针对这一点,教师应设计贴近生活的实例,让学生在实际情境中感受平方根的作用,提高学生将数学知识应用于解决实际问题的能力。
6.1.1算术平方根(2)
1.算术平方根的概念是么?算术平方根等于 本身的数是多少? 2.求出下列各数的算术平方根.
3.求下列式子的值.
9 2 1 5 25
7
2
4.练习册第21页第5,7题.
二、呈现目标
1.理解算术平方根的性质.
2.学会应用算术平方根的性质解决实际问题.
三、自主学习、合作探究
1.思考任意有理数都有算术平方根吗?试举 例说明. 2.若a>b>0,则 a 和 b 有怎样的大小关系? 试举例说明.
3.在 a 中,a有什么条件限制? a 是一个什 么数?
⑴已知 y 平方根.
x 1 1 x 4,求xy的算术
2014
⑵若 a 3 b 4 0 ,求 a b
的值.
四、课堂检测
⑴已知 y 平方根.
x 7 7 x 28 ,求xy的算术
⑵若 2a 3 2b 1 0 ,求 a b
2
2014
的值.
人教版数学七年级下册6.1平方根(第2课时)教学设计
-通过例题,演示如何求一个非负数的平方根,并解释计算过程。
2.教学内容:讲解平方根的性质,如唯一性、正负性等。
教学过程:
-引导学生观察平方根的性质,如一个非负数的平方根只有一个正数解和一个负数解。
-通过例题,说明在求解平方根时,如何判断其正负性。
四、教学内容与过程
(一)导入新课
1.教学内容:通过实际情境引入平方根的概念,激发学生的学习兴趣。
教学过程:
-以一个正方形图形为例,展示边长为a的正方形,其面积为a²。提问:如果已知正方形的面积为a²,如何求出其边长a?
-学生思考并回答,引导学生意识到求边长a的过程就是求一个数的平方根。
-引入平方根的定义,让学生明白平方根在数学中的重要性。
3.拓展思维训练:
-针对学有余力的学生,布置一道探究性问题,如探究平方根与算术平方根的关系,激发学生的探究兴趣,培养学生的自主学习能力。
-探讨平方根在数学其他领域的应用,如勾股定理、二次方程等,提高学生的知识整合能力。
4.课后反思:
-要求学生撰写课后反思,总结自己在学习平方根过程中的收获和困惑,以及解决困惑的方法。
2.教学内容:回顾已学的平方运算,为学习平方根打下基础。
教学过程:
-让学生计算几个简单的平方运算,如2²、3²等,巩固平方运算的知识。
-提问:平方运算与平方根有什么关系?引导学生发现平方与平方根的互为逆运算关系。
(二)讲授新知
1.教学内容:讲解平方根的定义,掌握平方根的表示方法。
教学过程:
-给出平方根的定义:如果一个数的平方等于另一个数,那么这个数叫做另一个数的平方根。
3.精讲精练,巩固知识: