超经典的考研数学考点与题型归类分析总结全集

合集下载

考研数学强化讲义之真题分类解析(吐血力荐)

考研数学强化讲义之真题分类解析(吐血力荐)

求:(1)证明
lim
x
xn
存在,并求之.
1
(2)计算 lim
x
xn1 xn
xn2
.
例 8 设数列xn满足:x1 0, xnexn1 exn 1(n 1, 2,
),
证明xn
收敛,并求
lim
n
xn
.
例 9 设 an
1 xn
0
1 x2 dx
(n 0,1, 2,
)
(1)证明:数列 {an } 单调减少,且
(C) f x 在 x 0 处连续但不可导 (D) f x 在 x 0 处可导

9

f
(
x)
lim
n
(n 1)x nx2 1
,

f (x) 的间断点为 x
.

10
求函数
f
(x)
= lim(
sin t
x
)sintsin x
的表达式,并指出函数
(D) F(x) 是单调函数 f (x) 是单调函数
例 2 设 f (x) 是周 期为 4 的可导奇 函数,且 f (x) 2(x 1), x [0, 2] ,则 f (7)
__________.
例 3 设 f (x)
x
2 sin t dt ,
x
(Ⅰ)证明 f (x) 是以 为周期的周期函数;(Ⅱ)求 f (x) 的值域.
(D)3

7
函数
f
(x)
lim(1
sin
t
)
x2 t
在 (, ) 内()
t 0
x
(A)连续 (B)有可去间断点 (C)有跳跃间断点 (D)有无穷间断点

数一考研数学知识点归纳

数一考研数学知识点归纳

【海文考研数学】:考研数学知识点归纳2008 年总考点数:50个。

其中高等数学25个。

线性代数11个。

概率论与数理统计14个。

2009 年2010年考研数一真题知识点分布计难所属知识点大纲要求类型题型算度科目量技巧%@高等12个特殊极限掌握利用两个重要极限求极限的方法计算型%@数学掌握多元复合函数一阶、二阶偏导数的多元复合函数求法;O/2求导;会求分段函数的导数,会求隐函数和由常规计算%O/@高等Mr当隐函数求导法参数方程所确定的函数以及反函数的%数学导数%@反常积分的收%@超纲分析计高等3敛性了解反常积分的概念,会计算反常积分%@题目算数学(审敛法)%@%@定积分的定义概念%@高等4理解不定积分与定积分的概念常规求极限理解%@数学理解矩阵的秩的概念,掌握用初基础线性5矩阵秩的性质常规%@等变换求矩阵的秩和逆矩阵的方法概念代数矩阵的特征值的定义;理解矩阵的特征值和特征向量的@6实对称矩阵相概念及性质,会求矩阵的特征值和特征常规概念%@线性理解代数似对角化的结向量@论理解随机变量的概念,理解分布函数的随机变量的分概念及性质,会计算与随机变量相联系布函数;基础概%@概率7的事件的概率;常规概率的加法公念应用%@统计掌握概率的加法公式、减法公式、乘法工式公式、全概率公式以及贝叶斯公式常用分布(均匀理解离散型随机变量及其概率分布的刀布,正态刀概念,掌握0—1分布、二项分布B基础概%@概率8的密度函数;常规(n,p)、几何分布、超几何分布、泊松念应用%@统计概率密度函数(Poisson)分布及其应用。

的性质(归一性)9参数方程求导了解高阶导数的概念,会求简单函数的常规,综合%@高等法; 高阶导数;技巧计算%@数学积分上限的函理解积分上限的函数,会求它的导数型@数的导数高阶导数定积分的换元 掌握不定积分和定积分的性质及定积%%@ 高等 数学10 积分法;分中值定理,掌握换元积分法与分部积 常规计算@分部积分法分法。

考研高等数学知识点总结

考研高等数学知识点总结

高等数学知识点总结导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研大学的数学知识点总结

考研大学的数学知识点总结

考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。

希望能对大家的学习有所帮助。

考研高数38个高频知识点汇总

考研高数38个高频知识点汇总

考研⾼数38个⾼频知识点汇总 在2020年考研数学的备考过程中,⾼数是很重要的⼀部分。

为此,⼩编整理了相关内容,希望能帮助到您。

考研⾼数38个⾼频知识点汇总 ⼀、函数极限连续 1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。

2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。

掌握利⽤两个重要极限求极限的⽅法。

理解⽆穷⼩、⽆穷⼤以及⽆穷⼩阶的概念,会⽤等价⽆穷⼩求极限。

3、理解函数连续性的概念,会判别函数间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最.⼤值、最⼩值定理和介值定理),并会应⽤这些性质。

重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。

难点是分段函,复合函数,极限的概念及⽤定义证明极限的等式。

⼆、⼀元函数微分学 1、理解导数和微分的概念,导数的⼏何意义,会求平⾯曲线的切线⽅程,理解函数可导性与连续性之间的关系。

2、掌握导数的四则运算法则和⼀阶微分的形式不变性。

了解⾼阶导数的概念,会求简单函数的n阶导数,分段函数的⼀阶、⼆阶导数。

会求隐函数和由参数⽅程所确定的函数的⼀阶、⼆阶导数及反函数的导数。

3、理解并会⽤罗尔中值定理,拉格朗⽇中值定理,了解并会⽤柯西中值定理。

4、理解函数极值的概念,掌握函数最.⼤值和最⼩值的求法及简单应⽤,会⽤导数判断函数的凹凸性和拐点,会求函数图形⽔平铅直和斜渐近线。

5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交⾓。

6、掌握⽤罗必塔法则求未定式极限的⽅法,重点是导数和微分的概念,平⾯曲线的切线和法线⽅程函数的可导性与连续性之间的关系,⼀阶微分形式的不变性,分段函数的导数。

罗必塔法则函数的极值和最.⼤值、最⼩值的概念及其求法,函数的凹凸性判别和拐点的求法。

2023-2024年考研《数学》必备知识点考点汇编

2023-2024年考研《数学》必备知识点考点汇编

考研数学公式整理1 1.等价代换的补充2.泰勒公式3.基本导数公式4.几个常用函数的高阶导数5.不定积分的基本积分公式6.定积分性质7.渐近线8.微分中值定理考研数学公式整理2 ⚫二重积分的性质⚫对称性⚫ 莱布尼茨判别法则⚫麦克劳林级数⚫狄利克雷收敛定理⚫奇偶函数的傅里叶级数⚫常用的二次曲面考研数学公式整理31.行列式的性质()()()11121311121321222321222331323331323311111212131321222331.0,0.,.,.T A A k k ka ka ka a a a a a a k a a a a a a a a a a b a b a b a a a a ==+++行列互换,其值不变,即某行列全为则行列式的值为某行列有公因子则可把提到行列式外面某行列每个元素都是两个数之和则可拆成两个行列式之和性质1 性质2 性质3 性质4 ()()()11121311121321222321222332333132333132331112131112132122231121122213313233..0..a a ab b b a a a a a a a a a a a a a a k a a a a a a a a a ka a ka a ka a a a =+=++两行列互换,行列式的值变号两行列元素相等或对应成比例,则行列式的值为某行列倍加到另一行(列),行列式的值不变性质5 性质6 性质7 23313233a a a a +2.抽象型行列式—解法解题思路:对抽象型行列式,计算方法主要是利用行列式的性质,矩阵的性质,特征值及相似等。

主要的公式有:11112121.,2.,3.,4.5.6.,,,,7..T T n n n n A n A A A A A n kA k A A B n AB A B A n A AA n A A n A A n AB A B λλλλλλ−*−−=======L L 若是阶矩阵是的转置矩阵,则;若是阶矩阵则;若都是阶矩阵,则;若是阶矩阵,则;若是阶可逆矩阵,则;若是阶矩阵的特征值则;若阶矩阵与相似,则4.逆矩阵的性质()()111111111111;10;;.A A kA A k k AB B A AA AB A B −−−−−−−−−−−−==≠==+≠+1)()2)()3)();4) 没公式特别注意:5.逆矩阵—解法()()()()111111111110,..,,,.0000.0000A A A AA E E A AB n AB E A B A B AB A A A B B BB A*−−−−−−−−−−−≠=→==+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦若则都是阶矩阵则对型化为型.;方法一:用伴随方法二:用初等变换方法三:用定义方法四:用单位矩阵恒等变形方法五:用分块公式6.矩阵的秩定理8.具体向量组如何判定相关无关()()1212121212,,,,,,0,,,1.,,,,,,00.m m m n n x r m m n n n n ααααααααααααααα⇔=⇔<=+⇔=≠L L L L L 对具体(含参数)向量组如何判定相关无关?向量组相关(无关)齐次方程组有非零解(只有零解)(向量个数)((向量个数)).个维向量必相关个维向量相关(无关)()定理1推论1推论21212112121212,,,,,,,,,,,,,,,,,,,,,m m m m nm m m r m ααααααααβββααααααβββ++−⎧⎨⎩⎧⎨⎩L L L L L L L 若向量组相关,增加个数后的向量组则仍相关;对应减少向量坐标后的向量组若向量组无关,减少个数后的向量组则仍无关.对应增加向量坐标后的向量组定理29.抽象向量组如何证明无关10.特征值和特征向量的性质11.相似矩阵的性质()()111,.A B nnii ii i i A B A B r A r B E A E B a b λλλλ==⇒=⇒=⇒−=−=⇒=∑∑:()(必要条件);;即;()()()11112,,,,,,,.n n n n n n A B P AP B P A kE P B kE P A P B A B A kE B kE A kE B kE r A kE r B kE A B A B A PB P −−−−=+=+=+++=++=+=:::::()如设则因此由要想到进而;由要想到进而可用相似求 12.矩阵相似对角化的条件()()11,0.n i i nTn ii i A A n A i i n r E A i A n A r A A A a λλαβ=Λ⇔⇔−−=⇐⇐==Λ⇔≠∑::有个线性无关的特征向量;的重特征值有个无关的特征向量,即;有个不同的特征值;是实对称阵.对或的矩阵注:13.正定定理()12,,,0,0000,T n T ii f x x x x Ax x x Ax A A A a A =⇔∀≠>⇔⇔≤L 二次型正定有;的特征值都大于;的全部顺序主子式大于.若的主对角线某元素则必不正定.定理4注:14.等价、相似、合同()(),.,.A B A B A B A B A B P Q PAQ B r A r B ≅⇔=⇔=两个同型矩阵与,若可经过初等变换变成称与等价,记作同型矩阵矩阵与等价存在可逆矩阵和使;判定1,,,.,,A B P P AP B A B A B A B A B A B A B A B A B −=ΛΛΛ::::两个方阵与若存在可逆矩阵使称与相似,记作若与的迹或秩或行列式或特征值不相等,则与不相似;若,但不能对角化则与不相似;若,且则与相似.判定,,,..T T T A B C C AC B A B A B A B x Ax x Bx A B =⇔⇔:两个实对称矩阵与若存在可逆矩阵使称与合同,记作实对称矩阵与合同二次型和有相同的正、负惯性指数;实对称矩阵与有相同的正、负特征值个数判定考研数学公式整理41.概率基本公式()()()()()()()()()()()()()()()()()()1.=.3.=..P A P A P A B P A P B P AB P A B C P A P B P C P AB P AC P BC P ABC P A B P A P AB P AB =−+−=++−−−+−−=U U U 正面直接求概率困难时可考虑此公式,比如涉及"至少、至多"等字眼.超过个事件的加法公式往往会有两两互斥的条件考减法公式是考试的重点;(1)逆事件的概率(2)加法公式(3)减法公式注:注:注: ()()()()()()()()()()()()0,,=.1;.P A A B P AB P B A P B A P A P B A P B A P B A P B C A P B A P BC A P BC A >=−−=−= 若称在发生的条件下,发生的概率为条件概率记为,且条件概率也是概率,满足概率的一切性质与公式,如(4)条件概率注:()()()()0,=.P A P AB P A P B A >⋅如果则 (5)乘法公式()()()()121=,,1,,.,.n i j ni i i i A A A A A i j n B P B P A P B A B A B P B =Ω=Φ≤≠≤=∑U UL U I 若且则对任一事件有如果某个事件的发生总是与某些原因或前一阶段的某些结果有关则总是使用全概率公式把各种导致发生的可能性(概率)加起来求(6)全概率公式 注:()()()()()()()121=,,1,0,.,,.n i j i jj niii j j A A A A A i j n P A P B A B P B P A B P A P B A B A P A B =Ω=Φ≤≠≤>=∑U UL U I 若且,则对任一事件只要则如果已知发生了去探求是某原因导致发生的可能性(概率)则总是使用贝叶斯公式看这一原因占总的原因的比例注(7)贝叶斯公式 :2. 独立与互斥、包含的关系()()01,01,,P A P B A B A B <<<<设如果与互斥或存在包含关系则与不独立.3.常见的分布{}()(){}()()()1011,0,1.0101,1,.1,0,1,,.,01,,.12,,kk n k k kn X P X k p p k X p p X B p X P X k C p p k n X n p p X B n p n X X B n p −−−==−=<<−==−=<<:L ::1.分布如果随机变量的分布律为则称服从参数为()的分布记为2.二项分布如果随机变量的分布律为则称服从参数为()的二项分布记为()次伯努利试验中试验成功的次数服从二项分布;()对最可能发生(成注:()(){}(){}()()1111.,0,1,2,!0,.1,1,2,1,.k k k n p k n p e X P X k k k X X P X P X k p p k X p p X G p X λλλλλ−−+−≤≤+===>==−=<<L:L:功)的次数满足3.泊松分布如果随机变量的分布律为则称服从参数为()的泊松分布记为4.几何分布如果随机变量的分布律为则称服从参数为(0)的几何分布记为伯努利试验中首次成功所需的试验次数服从几何分布.注:()()()()(){}5.1,,0,0,,,,.,.1,,,,.a x b X f x b a x a x a X a b X U a b X F x a x b b a x b d cX U a b a c d b P c X d b a⎧<<⎪=−⎨⎪⎩<⎧⎪−⎪=≤<⎨−⎪≥⎪⎩−≤<≤<<=−::均匀分布如果随机变量的概率密度为其他则称服从上的均匀分布记为的分布函数为若对则注: ()()()(){}{}{}o o ,0,00,1,0..0,0,10,;2,0,.x x a e x X f x e x X X E X F x x X E a P X a e t s P X t s X s P X t λλλλλλλλ−−−⎧>=>⎨⎩⎧−≥=⎨<⎩∀>≥=∀>≥+≥=≥::6.指数分布如果随机变量的概率密度为其中为参数;其他则称服从参数为的指数分布,记为的分布函数为若则对则对则注:()()()()()()()()()()()()()222222222o 2o ,.,,,.,0,10,1;,;.1,,0,1;21,0x x x x x X f x x X X N X N x x x t dt dt X X N N x x μσμσμσμσϕϕμμσσ−−−−−∞=−∞<<+∞===−∞<<+∞Φ==−Φ−=−ΦΦ=⎰⎰::::7.正态分布如果随机变量的概率密度为:则称服从参数为的正态分布记为特别地当时称为记为概率密度分布函数若则标准化标准正态分布,注:()()o 222o 1;23,,,;4,X N aX b N a b a X Y aX bY μσμσ+++::若则若分别服从正态分布,且相互独立,则服从正态分布.4. 两个常见的二维连续型随机变量1.二维均匀()()()()(){},,1,,,0,,,,,D D GDX Y D X Y DS f x y S D S X Y D G D P X Y G S ⎧∈⎪=⎨⎪⎩⊂∈=在平面区域上服从均匀分布则,其中是的面积.其他设在区域上服从均匀分布若则;注:2.二维正态()()()()()222212121212221122,,,,;.,,,;1,1.,,,,,,,,0.X Y N EX EY DX DY X N Y N X Y aX bY X Y X Y μμσσρμμσσρμσμσρ====∈−+⇔=:::其中(1)反之不对(独立时可以);(2)的条件分布都是正态分布;(3)服从正态分布;(4)独立不相关即注:5.期望{}()()()()()()()()()()111,2,,.,.i i i i i i i i X P X x p i Y g X X EX x p Eg X g x p X f x Y g X X EX xf x dx Eg X g x f x dx ∞∞==+∞+∞−∞−∞=========∑∑⎰⎰L 设离散型随机变量的分布律为是的函数,则;设连续型随机变量的概率密度为是的函数,则;(1)一维离散型(2)一维连续型(){}()()()()()()()()()()()()11,,,1,2,,,,,,.,,,,,,,,.i j iji j ij i j X Y P X x Y y p i j Z g X Y X Y Eg X Y g x y p X Y f x y Z g X Y X Y Eg X Y g x y f x y dxdy ∞∞==+∞+∞−∞−∞========∑∑⎰⎰L 设二维离散型随机变量的联合分布为是的函数,则设二维连续型随机变量的联合概率密度为是的函数,则(3)二维离散型(4)二维连续型()()()o o o o 1234,,.Ec c E aX c aEX c E X Y EX EY X Y E XY EX EY =+=+±=±=⋅;;;若独立则(5)性质6.方差()()222.DX E X EX EX EX =−=−(1)定义()()()()()()()()2o 2o o 2o o 2210,;20342,5,,,.DX EX EX DX Dc D aX b a DX D X Y DX DY Cov X Y X Y D X Y DX DY D XY DXDY DX EY DY EX ≥=+=+=±=+±±=+=++;;;若独立则(2)性质7.常用分布的数学期望和方差()()()()()()()()()()()o o o o 22o o 2o 22o 11,,12,,13,114,5,,212116,7,,280,11.X B p EX p DX p p X B n p EX np DX np p X P EX DX p X G p EX DX p pb a a bX U a b EX DX X E EX DX X N EX DX X N E X D X λλλλλλμσμσπ==−==−==−==−+========−::::::::如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则8.协方差()()()()()()()()()()()()()()()o oo o 121211122122,.1,,,,2,03,,,,,,,.Cov X Y E X EX Y EY E XY EX EY Cov X Y Cov Y X Cov X X DX Cov X c Cov aX bY abCov X Y Cov aX bX cY dY acCov X Y adCov X Y bcCov X Y bdCov X Y =−−=−⋅⎡⎤⎣⎦====++=+++;;;4(1)定义(2)性质9.相关系数,0,.XY XY Cov X Y X Y ρρ==如果称和不相关(1)定义{}oo o o 1123=1,11,04,1,0XY YX XX XY XY XYa b P Y aX b a Y aX b a ρρρρρρ==≤⇔=+=>⎧=+=⎨−<⎩;;1;存在使;如果则.(2)性质10.大数定律1.依概率收敛{}1212,,,,,,0,lim 1,,,,,,,.n n n Pn n X X X a P X a X X X a X a εε→∞>−<=⎯⎯→L L L L 对随机变量序列和常数如果对任意的有则称随机变量序列依概率收敛于记为2.切比雪夫大数定律1211,,,,,,,1,2,,110,lim 1.n k k k n ni i n i i X X X EX DX DX k P X EX n n εε→∞===⎧⎫>−<=⎨⎬⎩⎭∑∑L L L 设独立,期望方差都存在,方差有一致上界则对任意的有3.伯努利大数定律(),,,,0,lim 1.n X n A A p X X B n p P p n εε→∞⎧⎫>−<=⎨⎬⎩⎭:设是重伯努利试验中事件发生的次数每次试验事件发生的概率为即则对任意的有4.辛钦大数定律1211,,,,,,0,lim 1.n n k i n i X X X EX P X n μεμε→∞=⎧⎫=>−<=⎨⎬⎩⎭∑L L 设独立同分布,期望存在则对任意的有11.中心极限定理1.列维—林德伯格中心极限定理()22122,,,,,,,,lim .n k k n t i x n X X X EX DX X n x P x dt x μσμ−−∞→∞==⎧⎫−⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰L L 设独立同分布期望方差都存在,则对任意的有2.拉普拉斯中心极限定理()()22,,lim .t x n X B n p x P x dt x −→∞⎧⎫⎪≤==Φ⎬⎪⎭⎰:设,则对任意的有12.三大抽样分布()()()()(){}()()()()()()()2122222222212122222222,,,01,,.01,,,2;n n n n X X X N X X X n X X X n P n n f x dx f x n n n X n EX n DX n X ααχαχχααχχαχχχαχχ+∞++++++<<>====⎰L L L :::设相互独立且都服从标准正态,则服从自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则若221.χn 分布(1)定义:(2)上α分位点(3)χ分布的性质()()()221212,,,.n Y n X Y X Y n n χχ++::,且独立则()()()()(){}()()()()()()()()()()()()21201,,,,.01,,,01,1,t n X N Y n X Y n t t n P t n t n fx dx fx t n t n t n t f x t n t n n t n N t t n t F αααααχαααα+∞−<<>===−⎰:::::设,且独立,的分布对于给定的()称满足(是的概率密度)的数为的上分位点.分布的概率密度是偶函数故,且当自由度充分大时分布近似于,;则2.t 分布(1)定义:(2)上α分位点(3)t 分布的性质().n()()()()(){}()()()()()()()122212111212221212,12121212,,,,,.01,,,,,,1,,F n n X n Y n X Y X Xn n n n F F n n Y Y n n P F n n F n n f x dx f x F n n F n n F n n F F n n F Fαααχχαααα+∞<<>==⎰:::::设且独立,则服从第一自由度为,第二自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则3.F 分布(1)定义:(2)上α分位点(3)F 分布的性质()()()()211211221,1,,,.,n n F F n n F n n F n n αα−=:;若则13.矩估计的求法1222111,...11()n kk k k i i n ni ii i A X EX n X EX X EX X EX X EX X X DX n n α======⎧⎧==⎪⎪⎨⎨=−=⎪⎪⎩⎩∑∑∑:用样本矩替换总体矩——即:对一个未知参数的情形 令对两个未知参数的情形 令或原理步骤14.最大似然估计的求法()()()()121121.,,,;,,,,;,.ln ln .0,.ln 0,ln .i nn i i i nn i i a L x x x f x L x x x p x b Ld L c d d L L d θθθθθθθθ=====⎡⎤⎣⎦=⎡⎤⎣⎦==∏∏L L :写出样本的似然函数取对数得求导解出即可若无解即单调,则应该用定义法找出的最大似然估计量步骤连续型离散型15.估计量的评价标准121212,.,,,.0,lim 1,,Pn E D D P θθθθθθθθθθθεθθεθθθθ∧∧∧∧∧∧∧∧∧∧∧→∞=<⎧⎫>−<=⎯⎯→⎨⎬⎩⎭若则称是的无偏估计量设都是的无偏估计量若则称比更有效若对任意的有即则称是的一致估计量.(1)无偏性(2)有效性(3)一致性16. 求置信区间的步骤{}1212,,12:,,.T a b P a T b a T b ααθθθθθθ∧∧∧∧<<=−⎛⎫<<<< ⎪⎝⎭(1)构造统计量并确定其分布;(2)给定,确定常数使得;(3)由()反解出的范围得置信区间。

考研数学二知识点总结

考研数学二知识点总结一、高等数学1. 函数、极限与连续- 函数的定义与性质- 极限的概念与计算- 连续函数的性质与应用2. 微分学- 导数的定义与性质- 常见函数的导数- 微分的应用3. 积分学- 不定积分的基本概念与性质- 定积分的基本概念与性质- 积分技巧与方法4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面5. 重积分- 二重积分的计算- 三重积分的计算- 重积分的应用6. 无穷级数- 级数的基本概念- 正项级数的收敛性- 幂级数与泰勒级数二、线性代数1. 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用2. 矩阵- 矩阵的基本运算- 矩阵的逆- 矩阵的秩3. 向量空间- 向量空间的基本概念- 子空间与维数- 向量间的线性关系4. 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用5. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化6. 二次型- 二次型的标准型- 二次型的正定性- 二次型的应用三、概率论与数理统计1. 随机事件与概率- 随机事件的定义与性质- 概率的计算与性质- 条件概率与独立性2. 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 随机变量的数学期望与方差3. 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差4. 大数定律与中心极限定理- 大数定律的含义与应用- 中心极限定理的含义与应用5. 样本与估计- 样本的概念与性质- 点估计与区间估计- 估计量的评价标准6. 假设检验- 假设检验的基本思想- 显著性水平与P值- 常用的假设检验方法四、离散数学1. 集合与关系- 集合的基本概念与运算- 关系的基本概念与性质- 等价关系与偏序关系2. 图论基础- 图的基本概念与性质- 路径、回路与图的连通性- 图的着色问题3. 逻辑与布尔代数- 命题逻辑的基本结构- 布尔代数的运算与性质- 逻辑表达式的简化4. 递归与算法复杂度- 递归函数的性质与计算- 算法复杂度的概念与分类- 常见算法的时间复杂度分析请注意,这只是一个基本的大纲和示例内容。

考研数二知识点归纳总结

考研数二知识点归纳总结考研数学二,通常指的是高等数学和线性代数的组合。

以下是对考研数学二知识点的归纳总结:# 高等数学部分1. 函数、极限、连续性- 函数的概念与性质- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点2. 一元函数微分学- 导数的定义与几何意义- 基本初等函数的导数- 高阶导数- 微分中值定理- 洛必达法则- 函数的单调性与极值问题- 曲线的凹凸性与拐点- 函数图形的描绘3. 一元函数积分学- 不定积分与定积分的概念- 基本积分公式- 换元积分法与分部积分法- 定积分的性质与几何意义- 定积分的计算- 广义积分4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度5. 多元函数积分学- 二重积分与三重积分- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理6. 无穷级数- 常数项级数的收敛性- 幂级数与泰勒级数- 函数的幂级数展开7. 常微分方程- 一阶微分方程的解法- 高阶微分方程的降阶- 线性微分方程的解法# 线性代数部分1. 矩阵理论- 矩阵的运算- 矩阵的秩与行列式- 逆矩阵与伴随矩阵- 分块矩阵2. 线性空间与线性变换- 向量空间的定义与性质- 基与维数- 线性变换与矩阵表示- 特征值与特征向量3. 线性方程组- 齐次线性方程组与非齐次线性方程组- 高斯消元法- 克拉默法则- 矩阵的行列式与线性方程组的解4. 特征值问题与二次型- 特征值与特征向量的计算- 对称矩阵的谱分析- 二次型的标准化与规范型5. 内积空间与正交性- 内积空间的定义与性质- 正交基与正交投影- 正交变换与酉矩阵6. 矩阵分解- 矩阵的LU分解- 矩阵的QR分解- 奇异值分解(SVD)结束语:考研数学二的知识点广泛且深入,掌握这些基础知识点是解决复杂数学问题的关键。

希望以上的归纳总结能够帮助考生系统地复习和巩固相关知识,为考研数学二的考试做好充分的准备。

考研数学常考题型解题方法技巧归纳数学三

考研数学常考题型解题方法技巧归纳数学三一、考研数学三的那些事儿。

考研数学三啊,真的是好多小伙伴心里的一道坎儿呢。

这门学科涵盖的知识点那叫一个多,就像一个装满各种宝藏(虽然有时候是让人头疼的宝藏)的大宝箱。

数学三在经济、管理类专业的考研中可是占着举足轻重的地位,分数占比那是相当大的,要是能在这上面拿到高分,就像是给咱们的考研之路铺上了金光大道啊。

从题型上来说,有选择题、填空题还有解答题。

每种题型都有它自己的小脾气,咱们得摸透了才能对症下药。

比如说选择题,有些题看似简单,但是里面可能藏着不少小陷阱,就像那种表面平静,实则暗藏玄机的小湖泊。

填空题呢,需要咱们把答案填得准确无误,多一个零少一个零那可就完全不一样了。

解答题就更考验咱们的综合能力了,要把知识点融会贯通,一步一步地把解题过程写清楚。

二、常考题型大盘点。

1. 函数、极限与连续。

- 函数的性质是基础中的基础,像单调性、奇偶性这些。

判断函数的奇偶性有时候可以用一些小技巧,比如看函数表达式中变量的对称性。

对于极限的计算,洛必达法则可是个大宝贝,但是用的时候得注意条件哦。

当函数在某一点连续的时候,极限值就等于函数值,这个知识点经常在一些小的填空题里出现呢。

- 求极限的方法有好多,像等价无穷小替换,当看到一些三角函数或者指数函数的极限时,就可以考虑用等价无穷小。

比如说当x趋近于0的时候,sinx和x是等价无穷小,这个小知识在很多复杂的极限计算中能让咱们事半功倍。

2. 导数与微分。

- 导数的定义一定要理解得透透的,有些题就专门考导数定义的应用。

求导公式那是必须要背得滚瓜烂熟的,像(x^n)' = nx^(n - 1)这种基本公式,要是在考试的时候还得想半天,那可就太浪费时间了。

- 复合函数求导是个小难点,就像是俄罗斯套娃一样,一层一层地求导。

对于微分的概念,它和导数有着密切的联系,知道了导数就能很容易求出微分。

3. 一元函数积分学。

- 不定积分是求原函数的过程,这就像玩拼图,要把各种小碎片(积分公式)组合起来得到完整的图案(原函数)。

考研数学二考试重点难点总结

考研教学二教材下载电子教材我们讲义共写了八章,数学一的考生全部要学,而其它考生只需要其中的一部分。

根据共同需要的内容先讲的原则,讲课内容与顺序安排如下:第一章 函数、极限、连续 (全体) 第二章 一元函数微分学(全体) 第三章 一元函数积分学(全体) 第六章多元函数微分学 (全体) 第七章 §7.1 二重积分 (全体) 第四章 §4.1 一阶微分方程§4.3 微分方程的应用(数学四考生结束)§4.2 高阶微分方程(数学二考生结束)第八章 无穷级数 (数学三考生结束)第五章 向量代数与空间解析几何 第七章 §7.2 三重积分 §7.3 曲线积分 §7.4 曲面积分 数学一全部内容结束第一章 函数、极限、连续§1.1 函数(甲) 内容要点一、函数的概念1. 定义)(x f y =,I x ∈x 为自变量,y 为因变量或称为函数值y x f→: 为对应关系自变量在定义域里面取值的时候,所有的函数值的全体就称为值域。

口诀(1):函数概念五要素;对应关系最核心。

2. 分段函数(考研中用得很多)例1: 1,1,13)(2≥<⎩⎨⎧+=x x x x x f例2:0,0,<≥⎩⎨⎧-=x x x x x例3:1,10,0,),,max(3232>≤<≤⎪⎩⎪⎨⎧=x x x xx x x x x口诀(2):分段函数分段点;左右运算要先行。

3.反函数 例:2x y = 的反函数 y x ±=由于不单值,所以要看作 y x = 和yx -=,它们的图像与2x y =一致。

如果改变符号,写成x y =和 x y -=,那么它们的图像要变。

4.隐函数0),(=y x F 确定y 与x 的函数关系 有些隐函数能化为显函数,例:122=+y x ,21x y -=和21x y --=。

另外有些隐函数则不能化为显函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档