光纤激光焊接工艺原理
大族激光焊接标准工艺

激光焊接概述激光焊接是激光材料加工技术应用旳重要方面之一,大族激光激光焊接机重要分为脉冲激光焊接和持续激光焊接两种。
脉冲激光重要用于1mm厚度以内薄壁金属材料旳点焊和缝焊,其焊接过程属于热传导型,即激光辐射加热工件表面,再通过热传导向材料内部扩散,通过控制激光脉冲旳波形,宽度,峰值功率和反复频率等参数,使工件之间形成良好旳连接。
在3C产品外壳、锂电池、电子元器件、模具补焊等行业有着大量旳应用。
脉冲激光焊接最大旳长处是工件整体温升很小,热影响范畴小,工件变形小。
持续激光焊接大部分都是高功率激光器,功率在500瓦以上,一般1mm以上旳板材都应当使用这种激光器。
其焊接机理是基于小孔效应旳深熔焊,深宽比大,可达到5︰1以上,焊接速度快,热变形小。
在机械、汽车、船舶等行业有着广泛旳应用。
尚有一部分小功率持续激光器,功率在几十到几百瓦之间,它们在塑料焊接及激光钎焊这些行业使用得比较多。
激光器工作原理:YAG激光器旳工作原理:激光电源一方面把脉冲氙灯点着,通过激光电源对氙灯脉冲放电,形成一定频率,一定脉宽旳光波,该光波通过聚光腔辐射到Nd3+:YAG激光晶体上,激发Nd3+:YAG激光晶体发光,再通过激光谐振腔谐振之后,发出波长为1064nm脉冲激光,该脉冲激光通过扩束、反射、(或经光纤传播)聚焦后打在所要焊接旳物体上;在PLC或工业PC机旳控制下,移动数控工作台,从而完毕焊接。
焊接时所需要旳脉冲激光旳频率、脉宽、波形、工作台速度、移动方向均可用单片机、PLC或工业PC机来控制,通过对激光旳频率、脉宽旳不同设定可调节控制脉冲激光旳能量。
光纤激光器旳工作原理:当泵浦光通过光纤中旳稀土离子时,就会被稀土离子所吸取。
这时吸取光子能量旳稀土原子电子就会鼓励到较高激射能级,从而实现离子数反转,反转后旳离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完毕受激辐射。
光纤激光器产生旳激光通过光纤输出,并与配套旳工作台配合,完毕相应旳焊接。
普通光纤激光焊接切换成环形光斑的方法

普通光纤激光焊接切换成环形光斑的方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言在现代制造业中,激光焊接技术因其高效、精确的特点而被广泛应用。
光纤激光器的原理及应用

光纤激光器的原理及应用前言光纤激光器是一种利用光纤作为介质传输激光能量的器件,具有高效率、高可靠性和方便布线的特点。
本文将介绍光纤激光器的工作原理以及其在各个领域的应用。
工作原理光纤激光器是通过一系列的光学元件将光线限制在光纤内部,并利用光纤中的光耦合技术将激光能量传输到目标位置的设备。
下面将详细介绍光纤激光器的工作原理。
1.激光器结构光纤激光器一般由泵浦源、光纤增益介质、谐振腔和输出光纤组成。
泵浦源提供能量供给,激发光纤增益介质中的活性离子跃迁发射出光子。
谐振腔用于产生激光的振荡和放大。
2.光纤增益介质光纤增益介质一般采用掺杂了活性离子的光纤,并且活性离子的浓度要足够高以保证放大效果。
常用的增益介质有掺铒光纤、掺镱光纤、掺铥光纤等。
3.泵浦源泵浦源一般采用激光二极管或固体激光器,通过泵浦能量将活性离子兴奋到激发态。
4.谐振腔谐振腔是光纤激光器中光的振荡和放大的地方。
谐振腔通常由两面具有高反射率的光纤光栅组成,形成一个光学腔,使激光在腔内进行反复反射,增强激光的能量。
5.输出光纤输出光纤负责将激光能量从激光器传输到目标位置。
输出光纤一般具有高纯度、低损耗和稳定的特点。
应用领域光纤激光器具有广泛的应用领域,下面将分别介绍光纤激光器在工业、医疗和通信领域的应用。
工业应用•材料加工:光纤激光器可以用于金属切割、焊接、打孔等材料加工工序,具有精确性高、速度快、不产生物理接触等优点。
•雷达测距:光纤激光器可以应用于测距仪器,利用激光器发射一束光线,通过测量光的反射时间来计算距离。
•光纤通信:光纤激光器可在光纤通信中作为信号的光源和放大器,具有高效率、高信号质量和大带宽等特点。
医疗应用•激光手术:光纤激光器可用于激光手术,如激光手术切割、焊接和去除异物等,具有创伤小、出血少、精确性高等优点。
•激光治疗:光纤激光器可用于激光治疗,如激光照射疗法、激光物理疗法和激光穿透疗法等,可以用于肌肤美容、康复和疾病治疗等。
《激光焊接工艺》课件

硬度检测
对焊缝进行拉伸、弯曲、冲击等试验,检 测其力学性能。
通过硬度计测量焊缝及热影响区的硬度, 判断材料的冶金状态。
焊接质量的控制措施与标准
控制焊接参数
选择合适的激光功率、焊接速度、光斑直径 等参数,确保焊接质量稳定。
控制母材与填充材料
确保母材与填充材料的冶金性能符合要求, 减少杂质与气体含量。
《激光焊接工艺》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 激光焊接技术概述 • 激光焊接设备与材料 • 激光焊接工艺参数 • 激光焊接质量检测与控制 • 激光焊接技术的发展趋势与展望
01
激光焊接技术概述
激光焊接技术的定义
激光焊接技术是一种利用高能激光束 照射在材料表面,使材料熔化、冷却 并形成连接的工艺方法。
。
01
激光焊接设备与材 料
激光焊接设备的种类与特点
脉冲激光焊接机
适用于薄板、有色金属的精密焊接,具有能 量集中、热影响区小等特点。
光纤激光焊接机
具有光束质量好、聚焦光斑小、能量密度高 等特点,广泛应用于各种材料的焊接。
连续激光焊接机
适用于厚板、高熔点金属的焊接,具有焊接 速度快、深宽比大等特点。
通过添加填充金属丝,提高焊接质量和效率。
3
激光复合焊接技术
结合激光焊接和电弧焊接的优势,实现高效、高 质量的焊接。
激光焊接技术的未来发展方向
智能化控制
利用先进的传感器和控制系统,实现激光焊接过程的 智能控制。
高能束流加工技术
结合激光、电子束和离子束等高能束流加工技术,提 高加工效率和精度。
新型激光器研发
激光焊接工艺的基本知识

激光焊接工艺的基本知识概述激光焊接是一种高能量密度的热源焊接方法,利用激光束将工件加热到熔化或融合状态,实现金属材料的连接。
激光焊接具有高精度、高速度、低变形等优点,在航空航天、汽车制造、电子设备等领域得到广泛应用。
工作原理激光焊接主要通过激光束对工件表面进行聚焦,使其吸收激光能量产生热源,从而使工件局部区域迅速升温并达到熔化或融合状态。
通过控制激光束的功率、聚焦方式和运动轨迹,实现对工件的精确加热和连接。
设备与系统激光源激光源是激光焊接系统的核心部件,常见的激光源包括CO2激光器、固态激光器和纤维激光器等。
不同类型的激光源具有不同的特点和适用范围,选择合适的激光源对于实现高质量的焊接至关重要。
光学系统光学系统主要包括激光束传输系统和聚焦系统。
激光束传输系统用于将激光束从激光源传输到焊接头,常见的传输方式有光纤传输和反射镜传输。
聚焦系统用于将激光束聚焦到工件上,通常包括凸透镜、平凸透镜和聚焦镜等。
控制系统控制系统是激光焊接过程中的关键部分,用于控制激光功率、聚焦位置和运动轨迹等参数。
通过精确控制这些参数,可以实现对焊接过程的精确控制和优化。
工艺参数激光功率激光功率是影响焊接速度和质量的重要参数。
功率过低会导致无法达到熔化或融合状态,功率过高则容易引起气孔、裂纹等缺陷。
根据工件材料和厚度的不同,选择合适的激光功率进行焊接。
焦距焦距是指从聚焦镜到工件焊点的距离,影响激光束的聚焦效果和焊接质量。
焦距过大会导致焊缝变宽、深度不足,焦距过小则容易引起激光束的散射和偏离。
根据焊接要求和工件形状选择合适的焦距。
扫描速度扫描速度是指激光束在工件表面移动的速度,影响焊接线能量分布和熔池形态。
扫描速度过快会导致熔池不稳定、焊缝细节不清晰,扫描速度过慢则容易引起过热和变形。
根据工件材料和要求选择合适的扫描速度。
气体保护气体保护是激光焊接中常用的一种方法,通过向焊接区域供应惰性气体,如氩气或氮气等,可以有效防止氧化、脱氢和杂质的进入,提高焊接质量。
激光焊接光路设计

激光焊接光路设计1.引言1.1 概述概述部分:激光焊接是一种高效、精确的焊接技术,广泛应用于制造业和工程学领域。
它利用激光束的高能量密度来瞬间加热材料,使其熔化并通过凝固形成牢固的焊点。
相比传统的焊接方法,激光焊接具有许多优势,例如焊缝狭窄、热影响区小、焊接速度快等。
在激光焊接过程中,光路设计起着至关重要的作用。
光路设计是指在激光束从激光器到焊接头部的传输过程中,通过适当的镜头、光纤和反射器等光学元件的安排,来保证激光能量的高效传输和聚焦。
光路设计的好坏直接影响到焊接质量和效率。
光路设计的关键要点包括激光器的选择、光路的稳定性、聚焦效果以及激光束的质量等。
首先,选择合适的激光器对于焊接效果至关重要。
不同激光器具有不同的功率、波长和调制特性,需要根据具体需求来选择。
其次,光路的稳定性是保证激光束传输的关键因素,需要合理安装和调整光学元件,减少光路中的散射和反射损耗。
此外,聚焦效果的好坏也会直接影响到焊接质量和工艺参数的选取。
最后,激光束的质量需要通过合理的光学元件设计和使用,来减少光束发散和畸变。
未来,随着激光技术的发展和应用的扩大,激光焊接光路设计也将面临新的挑战和机遇。
例如,随着光纤激光器的发展,光纤传输将成为激光焊接的主要方式,需要进一步研究和改进光纤传输的技术。
另外,激光束的调控和控制也是光路设计领域的研究重点,可通过自适应光学、波前传感等技术来实现。
因此,激光焊接光路设计具有广阔的研究和应用前景,对于推动激光焊接技术的发展具有重要意义。
1.2 文章结构文章结构部分的内容如下:本文共分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的,旨在介绍文章的主题和框架。
正文部分分为激光焊接的原理和应用、光路设计的重要性两个小节,主要对激光焊接技术的原理和应用进行探讨,并强调了光路设计在这一过程中的重要性。
结论部分总结了激光焊接光路设计的关键要点,同时展望了未来激光焊接光路设计的发展方向。
激光焊接技术简要介绍

激光焊接技术介绍激光焊接是利用激光的辐射能量来实现有效焊接的工艺,其工作原理是:通过特定的方式来激励激光活性介质(如CO2和其他气体的混合气体、YAG钇铝石榴石晶体等),使其在谐振腔中往复振荡,从而形成受激辐射光束,当光束与工件接触时,其能量被工件吸收,在温度达到材料熔点时便可进行焊接。
激光焊接可分为热传导焊和深熔焊,热传导焊的热量通过热传递向工件内部扩散,只在焊缝表面产生熔化现象,工件内部没有完全熔透,基本不产生汽化现象,多用于低速薄壁材料的焊接;深熔焊不但完全熔透材料,还使材料汽化,形成大量等离子体,由于热量较大,熔池前端会出现匙孔现象。
深熔焊能够彻底焊透工件,且输入能量大、焊接速度快,是目前使用广泛的激光焊接模式。
激光焊接的好处:①采用激光焊接可以获得高质量的接头强度和较大的深宽比,且焊接速度比较快。
②由于激光焊接不需真空环境,因此通过透镜及光纤,可以实现远程控制与自动化生产。
③激光具有较大的功率密度,对难焊材料如钛、石英等有较好的焊接效果,并能对不同性能材料施焊。
④可进行微型焊接。
激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中激光焊接的缺点:①激光器及焊接系统各配件的价格较为昂贵,因此初期投资及维护成本比传统焊接工艺高,经济效益较差。
②由于固体材料对激光的吸收率较低,特别是在出现等离子体后(等离子体对激光具有吸收作用),因此激光焊接的转化效率普遍较低(通常为5%~30%)。
③由于激光焊接的聚焦光斑较小,对工件接头的装备精度要求较高,很小的装备偏差就会产生较大的加工误差。
激光焊接对人有害吗?焊接机发出的激光的不可见性和能量太高,非专门人员别去接触激光源,否则很危险。
另外激光也属于电磁波,但是焊机用的激光波长都很大,所以没有紫外线之类短波长光波的辐射危害。
焊接过程中会产生许多气体,但大多是惰性气体,没啥毒性,但也要看焊接材料的不同区别对待,最好做好防护措施,减少气体吸入。
激光焊接头结构原理

激光焊接头结构原理激光焊接是一种高能量密度的焊接方法,通过将高能量激光束聚焦在焊接接头上,使其升温并融化,进而实现焊接的目的。
激光焊接头结构起着至关重要的作用,它决定了激光焊接的质量和效果。
激光焊接头结构主要由激光源、光束传输系统、聚焦光学系统和工件组成。
激光源是激光焊接的核心部件,它产生高能量密度的激光束。
常见的激光源有固态激光器、二极管激光器和光纤激光器等。
激光源的选择应根据焊接材料的特性和焊接要求来确定,以获得最佳的焊接效果。
光束传输系统用于将激光束从激光源传输到焊接接头。
光束传输系统通常由光纤、光束导管和反射镜组成。
光纤是一种将激光束传输到焊接头的有效方式,具有柔性、耐高温和高能量密度等特点。
光束导管可以将激光束从激光源传输到焊接头,同时对激光束进行保护,防止激光束在传输过程中损失能量。
反射镜用于调整和控制激光束的传输方向和光斑大小,以满足不同焊接要求。
聚焦光学系统是激光焊接头结构中至关重要的部分,它将激光束聚焦在焊接接头上,实现高能量密度的局部加热和熔化。
聚焦光学系统通常由凸透镜或反射镜组成,根据焊接要求和焊接材料的特性来选择合适的聚焦光学元件。
聚焦光学系统的设计和调整对于激光焊接的质量和效率具有重要影响。
工件是激光焊接头结构中的另一个重要组成部分,它是焊接的目标和焊接接头的一部分。
工件的形状、材料和尺寸都会对激光焊接产生影响。
在激光焊接过程中,工件应具备良好的光学性能和热传导性能,以保证焊接的质量和效果。
总结起来,激光焊接头结构原理包括激光源、光束传输系统、聚焦光学系统和工件。
这些组成部分共同作用,实现激光焊接的目的。
激光焊接头结构的设计和调整需要根据焊接要求和焊接材料的特性来确定,以获得最佳的焊接效果。
激光焊接作为一种高能量密度的焊接方法,在汽车、航空航天、电子、制造业等领域具有广泛的应用前景,对于提高焊接质量和效率具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤激光焊接工艺原理
光纤激光焊接是一种高能量密度焊接技术,利用激光束对焊接材料进行瞬间加热,实现焊接的过程。
光纤激光焊接具有焊缝质量高、焊接速度快、热影响区小等优点,被广泛应用于汽车制造、航空航天、电子器件等领域。
光纤激光焊接的原理主要包括激光产生、光纤传输、聚焦和焊接四个过程。
激光产生过程是光纤激光焊接的起始阶段。
激光器通过电能、光能或化学反应等方式产生激光束。
在光纤激光焊接中,通常采用光纤激光器作为激光源,其通过光纤传输能量到焊接头部。
光纤传输是将激光束从激光器传输到焊接头部的过程。
光纤激光焊接中常用的光纤是光导纤维,其具有高能量传输效率和灵活性。
光纤传输的关键是保持激光束的能量和形状,以确保焊接质量。
聚焦是将激光束聚焦到焊接点上的过程。
在光纤激光焊接中,常用的聚焦方式有共聚焦和透镜聚焦。
共聚焦是通过光纤激光器自带的光束整形器实现,可以将激光束聚焦到数毫米的范围。
透镜聚焦则通过透镜将激光束聚焦到更小的范围,实现高精度焊接。
焊接是光纤激光焊接的核心过程。
在焊接过程中,激光束瞬间加热焊接材料,形成熔池,并通过熔池的凝固形成焊缝。
焊接过程中需
焊接质量。
光纤激光焊接的工艺原理主要包括两个方面:热传导和熔池控制。
热传导是指激光束加热焊接材料后,热量通过热传导方式传递到周围区域的过程。
热传导对焊缝形成和热影响区大小有重要影响。
当激光束加热焊接材料时,焊接材料中的温度会升高,形成一个高温区域。
随着时间的推移,高温区域的热量会通过热传导方式传递到周围区域,从而使整个焊接区域达到一定温度。
熔池控制是指对焊接材料的熔化和凝固过程进行控制,以实现良好的焊缝形成。
在焊接过程中,激光束的功率和焦点位置会影响熔池的形成和凝固。
当激光束功率较高时,焊接材料会迅速熔化形成较大的熔池,从而得到较宽的焊缝。
而当激光束功率较低时,焊接材料熔化较少,形成较小的熔池,从而得到较窄的焊缝。
光纤激光焊接工艺的原理使得焊接速度和焊接质量得到了双重提升。
与传统焊接相比,光纤激光焊接具有焊缝质量高、焊接速度快、热影响区小等优点。
在汽车制造、航空航天、电子器件等领域广泛应用,为工业制造提供了一种高效、精确的焊接解决方案。
光纤激光焊接工艺原理是通过激光产生、光纤传输、聚焦和焊接四个过程实现焊接的技术。
其核心原理是热传导和熔池控制,通过控
光纤激光焊接工艺的应用广泛,为工业制造提供了一种高效、精确的焊接解决方案。