原子吸收光谱分析解读

合集下载

原子吸收光谱分析

原子吸收光谱分析

原子吸收光谱分析一、光谱基本原理原子吸收光谱是利用原子在特定波长的光照射下,原子从基态跃迁到激发态,吸收光能的原理。

根据波长的选择,原子吸收光谱可分为光电、可见、紫外和X射线等光谱。

其中,紫外-可见光谱(UV-Vis)是应用最广泛的分析方法。

原子吸收光谱依靠光源、样品和检测器共同完成分析。

在光源方面,通常使用中空阴极灯、氢、氩等气体放电灯作为发射源;在样品中,需要有吸收光线的元素,如金属、无机盐或有机物中的元素;检测器则根据不同光谱区域的吸收信号进行测量。

二、仪器构成原子吸收光谱分析仪器主要包括光源、光学系统、样品室和信号接收装置。

光源通常采用中空阴极灯,通过通电使高纯度金属蒸发产生原子,金属原子处于激发态时吸收特定波长的光,从而完成光谱分析。

光学系统包括一个反射镜和一个衍射光栅,用于选择特定波长的光进入样品池。

样品室通过控制进样量和流速将待测样品引入到光路中,使其与待测元素发生反应。

信号接收装置一般采用光电倍增管或CCD相机,将吸收的光信号转化为电信号,并通过放大和分析处理,最终得到光谱图谱。

三、应用原子吸收光谱分析在许多领域都有广泛应用。

在环境领域,可以用于测定水、土壤和空气中的重金属、汞、铅等元素的含量,以评估环境的污染程度。

在食品安全和农业领域,可以用来检测食品中的农药残留、微量元素含量等。

在药物和化学品的质量控制中,原子吸收光谱也被广泛应用,用于检测药品中的微量金属离子、无机盐等。

此外,原子吸收光谱还用于地质勘探、金属材料分析、放射性元素检测等领域。

四、未来发展随着科学技术的不断发展,原子吸收光谱分析也在不断完善。

一方面,研发更先进的光源和光学系统,提高光源的稳定性和精确性,加强光学系统的分辨率和选择性。

另一方面,开发更灵敏的检测器,提高信号接收装置的灵敏度和快速性。

此外,利用微纳米技术,制备新型材料,提高原子吸收光谱的灵敏度和选择性。

同时,结合化学计量学、机器学习等技术手段,用于光谱数据处理和解析,进一步提高分析的准确性和效率。

原子吸收光谱分析_图文_图文

原子吸收光谱分析_图文_图文
②火焰温度越高,产生的激发态原 子越多;
③火焰温度取决于燃气与助燃气类 型及比例。 常用火焰包括:空气-乙炔(2300℃)、
氧化亚氮-乙炔(3000 ℃) 等。
火焰类型:
化学计量火焰:
温度高,干扰少,稳定,背景低,常用。
富燃火焰:
还原性火焰,燃烧不完全.适于 测定较易形成难熔氧化物的元素Mo 、Cr 、稀土等。
自然宽度
(2) 谱线变宽
无外界影响下谱线具有的宽度。
多普勒变宽(热变宽)Δ D
由原子热运动导致。 多普勒效应:一个运动着的原子发出的光,如果运动方向 离开观察者(接受器),则其频率较静止原子所发的频率低; 反之,则高。
因此,多普勒变宽与元素原子质量、温度和谱线频率有关。
谱线频率越大、原子质量越小、温度越高,Δ D越大。
8.4 定量分析方法
1. 标准曲线法
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度c作标准曲线:
A = lg(I0/I) = kcL 在相同条件下测定试样的吸光度A数据,在标准曲线上查出 对应的浓度值。
注意在高浓度时,标准曲线易 发生弯曲。向浓度轴弯曲(负偏离 )由自吸、压力变宽等影响所致; 光谱干扰(背景干扰)引起正偏离
A = logI0/It = log 1/T = kbc
A为吸光度; k是吸收系数,与入射光波长、物质的性质和溶液 的温度等因素有关;
It/I0称为透光率,用T表示。
朗伯-比耳定律的适用条件:入射光为单色光。
原子吸收与分子吸收
KMnO4溶液的吸收曲线 分子吸收光谱--带状光谱
原子结构较分子结构简单,理 论上应产生线状光谱吸收线。
2. 标准加入法

原子吸收光谱分析ppt

原子吸收光谱分析ppt
无火焰原子化法
利用电热或激光加热将待测元素转化为原子状态,具有较低的背景干扰和较高的灵敏度。
光谱干扰及其消除方法
光谱干扰
在原子吸收光谱分析中,待测元素可能会受到其他元素的干扰,影响分析结果的准确性。
干扰消除方法
采用物理或化学方法消除干扰元素的影响,如使用分离剂、化学掩蔽等。
04 原子吸收光谱分析的仪器 与设备
原理
当特定频率的光通过待测物质时,原子中的外层电子会吸收 特定波长的光,导致原子能级发生跃迁。吸收程度与待测物 质的浓度呈正比关系,通过测量光强衰减程度可以计算出物 质的含量。
历史与发展
历史
原子吸收光谱分析起源于20世纪50年代,随着科技的不断进步,该技术经历了 从经典方法到现代方法的发展历程。
发展
浓度。
原子吸收光谱仪的主ຫໍສະໝຸດ 部件光源发射特定波长的光源,通常为 空心阴极灯或无极放电灯。
原子化器
将样品转化为可吸收光能的原 子,有火焰、石墨炉和氢化物 原子化器等类型。
单色器和检测器
单色器用于分离入射光中的不 同波长,检测器则用于检测被 吸收的光能量。
数据处理系统
用于处理和记录检测到的数据 ,并计算元素的浓度。
05 原子吸收光谱分析的应用 实例
环境样品中的重金属检测
重金属检测
原子吸收光谱法可以用于检测环境样品中的重金属元素,如铅、汞、镉等。通过测量样品 中特定元素的原子对光的吸收程度,可以确定该元素的浓度。这种方法在环境监测和污染 控制方面具有广泛应用。
准确度高
原子吸收光谱法具有较高的准确度,能够提供较为精确的元素浓度测量结果,有助于评估 环境质量状况和污染程度。
解决实际应用中的问题与挑战
复杂基体干扰

原子吸收光谱分析

原子吸收光谱分析

原子吸收光谱分析基本要点:1. 了解影响原子吸收谱线轮廓的因素;2. 理解火焰原子化和高温石墨炉原子化法的基本过程;3. 了解原子吸收分光光度计主要部件及类型;4. 了解原子吸收分光光度法干扰及其抑制方法;5. 掌握原子吸收分光光度法的定量分析方法及实验条件选择原则。

第一节原子吸收光谱分析概述一、原子吸收光谱分析定义:根据物质产生的原子蒸气中待测元素的基态原子对光源特征辐射谱线吸收程度进行定量的分析方法。

二、原子吸收光谱分析的特点:(1 )灵敏度高:其检出限可达10 -9 g /ml (某些元素可更高);2 )选择性好:分析不同元素时,选用不同元素灯,提高分析的选择性;(3 )具有较高的精密度和准确度:试样处理简单。

第二节原子吸收光谱分析基本原理一、原子吸收光谱的产生及共振线在一般情况下,原子处于能量最低状态(最稳定态),称为基态( E 0 = 0 )当原子吸收外界能量被激发时,其最外层电子可能跃迁到较高的不同能级上,原子的这种运动状态称为激发态。

处于激发态。

出于激发态的电子很不稳定,一般在极短的时间(10-8-10 -7s)便跃回基态(或能量较低的激发态),并以电磁波的形式放出能量:A E=En-EO=h=hc/ 入共振发射线:电子从基态跃迁到能量最低的激发态时要吸收一定频率的光,它再跃迁回基态时,则发射出同样频率的光(谱线),这种谱线称为共振发射线共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线。

共振线:共振发射线和共振吸收线都简称为共振线。

各种元素的原子结构和外层电子排布不同,不同元素的原子从基态激发至第一激发态(或由第一激发态跃迁返回基态)时,吸收(或发射)的能量不同,因而各种元素的共振线不同而各有其特征性,所以这种共振线是元素的特征谱线。

二、谱线轮廓与谱线变宽(一)吸收线轮廓若将一束不同频率,强度为10的平行光透过厚度为1cm的原子蒸汽时,一部分光被吸收,透射光的强度lv仍服从朗伯-比尔定律:式中:Kn——基态原子对频率为的光的吸收系数,它是光源辐射频率的n函数由于外界条件及本身的影响,造成对原子吸收的微扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线并不是一条严格的几何线(单色I ),而是具有一定的宽度、轮廓,即透射光的强度表现为频率分布。

原子吸收光谱分析-

原子吸收光谱分析-

谱线宽度得表示
吸收线在中心频率0 两侧具有一定得宽度 用半宽度Δ表征
I0为入射光强 I为透射光强 ν0为中心频率
I为透射光强 ν0为中心频率 Kν为吸收系数
吸收线Δ: 10-3~10-2nm 发射线Δ: 5×10-4~2×10-3nm
大家学习辛苦了, 还是要坚持 继续保持安静
吸收系数Kν将随光源得辐射频率ν而改变,这就是由
§8-2 原子吸收光谱法基本原理
一、原子吸收光谱得产生
正常情况下,原子处于基态。
当有辐射通过自由原子蒸气时,若辐射得频率等于 原子中得电子从基态跃迁到激发态所需要得能量频率 时,原子将从辐射场吸收能量,产生共振吸收,电子由基 态跃迁到激发态,同时使辐射减弱产生原子吸收光谱。
各种元素得原子结构不同,不同元素得原子从基态 激发至第一激发态时,吸收得能量也不同,所以各元素 得共振线都不相同,而具有自身得特征性。
提高原子化温度,减小化学干扰、使用高温火焰或提 高石墨炉原子化温度,可使难离解得化合物分解。
2)在同一温度下,电子跃迁得能级Ej越小,共振线波长 越长, Nj/N0值也愈大
常用得火焰温度一般低于3000K,元素激发能
一般低于10ev,大多数共振线得波长小于600nm,因
此对大多数元素来说, Nj/N0得数值均很小(<1%), 即火焰中得激发态原子数远小于基态原子数,也就
就是说火焰中99%以上得原子处于基态。
k
cxVx Vx
csVs Vs
0.670
k
cx
50 103 50 300 106 50.3103
cx 0.279mg / L
§8-5 干扰及其抑制
原子吸收光谱法得主要干扰有物理干扰、化学干 扰与光谱干扰三种类型。

(完整word版)原子吸收光谱分析解读

(完整word版)原子吸收光谱分析解读

原子吸收光谱分析4。

2.1 概述4。

2。

1。

1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。

本章重点介绍应用广泛的原子吸收光谱法。

2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法.4。

2.1。

2 仪器结构和过程图4-21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。

用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb的含量。

4。

2。

1。

3 方法特点灵敏度高,10—9g/ml-10—12g/ml。

选择性好,准确度高。

单一元素特征谱线测定,多数情况无干扰。

测量范围广.测定70多种元素。

操作简便,分析速度快。

4。

2.2 原子吸收法基本原理 4。

2。

2.1 共振线和吸收线 1) 基本概念➢ 共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线).当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。

对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。

➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。

2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率。

吸收线图4-23 吸收线轮廓图 图4—24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。

仪器分析-原子吸收光谱(PDF课件)解析

仪器分析-原子吸收光谱(PDF课件)解析

影响谱线变宽的因素1. 自然变宽2. 热变宽(多普勒变宽3. 碰撞变宽Holzmark变宽Lorentz变宽4. 自吸变宽3.1.2 原子吸收的测量1. 朗伯—比尔定律I = I 0e -Kv L 定义:A=lg(I 0 / I= 0.434 k V L2. 积分吸收仪器分辨率难以达到0νkN d νK =∫3. 峰值吸收直接测量吸收线中心频率或中心波长所对应的峰值原子吸收系数K来确定蒸气中的原子浓度A = K N0L = k C L发射线必须比吸收线要窄得多,同时发射线的中心频率或中心波长要与吸收线的中心频率或中心波长相一致锐线光源:发射线半宽度很窄的光源3.2 原子吸收分光光度计原子吸收分光光度计原理图3.2.1 原子化器原子化器的作用:提供合适的能量将试样中的被测元素转变为处于基态的原子。

类型:火焰原子化、电热原子化1.火焰原子化(1火焰的类型:(2火焰的构造及其温度分布:干燥区、蒸发区、原子化区和电离化合区(3自由原子在空间中的分布:(4火焰原子化器:(预混合型、全消耗型雾化器、雾室、燃烧器和火焰(5燃气和助燃气的比例:贫燃火焰、富燃火焰、中性火焰火焰原子化器示意图2.电热原子化石墨炉原子化器示意图石墨炉升温示意图石墨炉原子化器石墨炉的升温过程:干燥、灰化、原子化和净化主要优点:(1原子化效率高(2试样用量少(3能直接测定其共振吸收线位于真空紫外光谱区域的一些元素(4比火焰法安全可靠主要缺点:准确度和精密度均较差、干扰情况较严重、操作过程复杂3.2.2 光源光源的作用:发射被测元素的特征谱线以供气态基态原子吸收。

1. 空心阴极灯2.光源的调制光源调制的目的:将光源发射的共振线与火焰发射的干扰辐射区别开来。

光源调制的方法:交流供电直流供电+ 切光器3.2.3 分光系统3.2.4 检测系统3.2.5 原子吸收分光光度计的类型1. 单光束型不能消除因光源波动造成的影响,基线漂移。

2. 双光束型可以消除光源波动造成的影响,但不能抵消因火焰波动带来的影响。

化学反应的原子吸收光谱分析

化学反应的原子吸收光谱分析

化学反应的原子吸收光谱分析原子吸收光谱分析,是一种利用原子对特定波长的光发生吸收的现象进行分析的方法。

通过测量样品溶液或气体中吸收光的强度,可准确测定其中的化学元素含量。

在化学反应中,原子吸收光谱分析是一项重要的技术,能够提供关于反应过程中元素浓度和化学物种变化的信息。

本文将详细介绍化学反应的原子吸收光谱分析的原理、应用和优势。

一、原理原子吸收光谱分析基于原子对特定波长光的吸收现象,其原理可以分为两个基本过程:光源激发和吸收现象。

1. 光源激发在原子吸收光谱分析中,常用的光源是空心阴极放电灯或恒流电源。

光源中的电极通电后,电极中的金属元素被激发形成原子或原子离子,并释放出特定波长的光。

2. 吸收现象样品溶液或气体中的化学元素原子或原子离子与光源发出的特定波长的光相互作用,产生吸收现象。

当光经过样品时,如果样品中存在与光源波长相对应的原子或原子离子,这些原子会吸收部分光的能量,使得吸收光的强度减小。

通过测量光的强度变化,可以推断样品中所含的元素及其浓度。

二、应用原子吸收光谱分析在化学反应中的应用广泛,以下是几个常见的应用领域:1. 反应动力学研究原子吸收光谱分析可用于研究化学反应的动力学过程。

通过监测反应物中某种元素的浓度随时间的变化,可以推断反应的速率常数、反应机理等信息。

2. 反应过程监测通过原子吸收光谱分析,可以实时监测反应过程中各种元素的浓度变化。

这对于了解化学反应过程中元素的转化情况、判断反应的进行程度等方面具有重要意义。

3. 催化剂研究原子吸收光谱分析可用于研究催化剂在反应过程中的作用机制。

通过测定反应物中的催化剂元素浓度变化,可以揭示催化剂对反应速率、选择性等方面的影响。

4. 有机合成原子吸收光谱分析在有机合成中的应用越来越广泛。

通过测定反应物和产物中有机元素的浓度,可评估有机合成反应的转化率和产物纯度。

三、优势原子吸收光谱分析具有以下优势:1. 灵敏度高原子吸收光谱分析的灵敏度通常为微克/升量级,可以准确测定样品中微量甚至痕量元素的含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子吸收光谱分析4。

2。

1 概述4。

2.1。

1 基本概念1)原子光谱根据原子外层电子跃迁所产生的光谱进行分析的方法,称为原子光谱法,包括原子发射光谱法、原子吸收光谱法和原子荧光光谱法。

本章重点介绍应用广泛的原子吸收光谱法。

2)原子吸收光谱原子吸收光谱法,又称原子吸收分光光度法或简称原子吸收法,它是基于测量试样所产生的原子蒸气中基态原子对其特征谱线的吸收,从而定量测定化学元素的方法。

4。

2.1.2 仪器结构和过程图4—21 原子吸收示意图如上图,含Pb溶液将经过预处理-喷射成雾状进人燃烧火焰中,Pb化合物雾滴在火焰温度下,挥发并离解成Pb原子蒸气。

用Pb空心阴极灯作光源,产生Pb的特征谱线,通过Pb原子蒸气时,由于蒸气中基态Pb原子的吸收,Pb的特征谱线强度减弱,通过单色器和检测器测得其减弱程度,即可计算出溶液中Pb 的含量.4.2。

1。

3 方法特点灵敏度高,10—9g/ml-10—12g/ml。

选择性好,准确度高。

单一元素特征谱线测定,多数情况无干扰.测量范围广。

测定70多种元素。

操作简便,分析速度快.4。

2.2 原子吸收法基本原理4。

2。

2。

1 共振线和吸收线1) 基本概念➢共振线电子从基态跃迁到能量最低的激发态(称为第一激发态),为共振跃迁,所产生的谱线称为共振吸收线(简称共振线)。

当电子从第一激发态跃回基态时,则发射出同样频率的谱线,称为共振发射线(也简称共振线)。

对大多数元素来说,共振线是指元素所有谱线中最灵敏的线。

➢ 特征谱线各种元素的原子结构和外层电子排布不同.不同元素的原子从基态激发至第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线不同而有其特征性,这种共振线称为元素的特征谱线。

2) 朗伯原理图4-22 原子吸收法的朗伯定律示意图原理公式:b K e I I νν-=0νK :吸收系数;ν:频率.吸收线图4-23 吸收线轮廓图 图4-24 吸收线半宽度比较上述两个图,注意图的纵坐标参量的不同。

由于物质的原子对不同频率人射光的吸收具有选择性,因而透过光强度νI 和吸收系数νK 将随着人射光的频率而变化。

在入射频率为0ν处,透过光强度最小,即吸收最大,即原子蒸气在频率0ν处有吸收线.原子吸收线具有一定宽度,即吸收线轮廓。

表征吸收线轮廓的值是吸收线的半宽度,它是指最大吸收系数一半即处2K 所对应的频率差或波长差。

4.2。

2。

2 基态原子和激发态原子的分配原子吸收法是利用待测元素的原子蒸气中基态原子对该元索的共振线的吸收来进行测定的。

但在原子化过程中,待测元素由分子离解成的原子,不可能全部都是基态原子,其中必有一部分为激发态原子。

在一定温度下,当处于热力学平衡时,激发态原子数与基态原子数之比服从玻耳兹曼分布定律:kTE E j j j eg g N N 00--=j N :激发态原子数;0N :基态原子数;j g :激发态统计权重;0g :基态统计权重;k 为玻耳兹曼常数。

对大多数元素来说,0N N j值都小于百分之一,即热激发中的激发态原子数远小于基态原子数,也就是说热激发中基态原子占绝对多数,可以认为基态原子数实际代表待测元素的原子总数。

4。

2。

2.3 原子吸收法的定量基础 1) 积分吸收原子蒸气吸收的能量,成为积分吸收,即图4中吸收线下整个面积,用下式表示。

Nf mce d K ⎰=2πννm :电子质量;c :光速;N :单位体积吸收辐射的原子数;f :振子强度,表示能被光辐射激发的每个原子的平均电子数。

而K 0有关系式: 峰值吸收νπννπνd K Nf mce D D K ⎰∆=∆=2ln 22ln 220一般情况下,吸收线的半宽度较小,0K 近似等于νK ,峰值吸收近似等于积分吸收。

b K I I A 004343.0lg==ν导出:KC kNb A == k 和K :比例常数;C :待测元素浓度.4。

2。

3 原子吸收光谱仪4.2。

3。

1 原子吸收光谱仪结构示意图图4—25 原子吸收光谱仪结构示意图4.2。

3.2 光源-空心阴极灯1)构造图4—26 空心阴极灯示意图2)空心阴极灯的要求①能发射待测元素的共振线。

②能发射锐线,即发射线的半宽度比吸收线的半宽度窄得多③发射光强度要足够大,稳定性要好,寿命长。

3) 空心阴极灯原理普通空心阴极灯是一种气体放电管,如图4—26所示。

当正负两极间施加适当电压时,电子将从空心阴极内壁流向阳极,在电子通路上与惰性气体原子碰撞而使之电离,带正电荷的惰性气体离子在电场作用下,向阴极内壁猛烈轰击,使阴极表面金属原子溅射出来.溅射出来的金属原子再与电子、惰性气体原子及离子发生碰撞而被激发,从而发射出阴极物质的共振线。

用不同的待测元素作阴极材料,可制成各相应待测元素的空心阴极灯;若阴极物质只含一种元素,则可制成单元素灯;阴极物质含多种元素,则可制成多元素灯.为了避免发生光谱干扰,在制灯时,必须用纯度较高的阴极材料和选择适当的内充气体,以使阴极元素的共振线附近没有杂质元素或内充气体的强谱线.空心阴极灯发射的光谱强度与灯的工作电流有关。

增大灯的工作电流,可以增加光谱线强度.缺点:每测一个元素均需要更换相应的待测元素的空心阴极灯,使用不太方便.4。

2.3.3原子化系统1) 原子化过程示意2)火焰原子化系统火焰原子化系统包括雾化和燃烧两个部分图4-27 同心雾化器示意图图4—28 燃烧器示意图过程:试液――雾化――进入火焰――蒸发、干燥――热解离(或还原)――基态原子常用火焰种类及参数见下表:火焰的三种状态:化学计量火焰(中性火焰):燃烧气和助燃气比例按化学反应计量关系,最常用的火焰,分析碱金属除外的元素。

富燃火焰(还原性火焰):燃烧气和助燃气比例大于化学反应计量关系,火焰中大量的半分解产物,有较强的还原性。

分析易形成难熔氧化物的元素,如Mo、W、稀土元素。

贫燃火焰(氧化性火焰):燃烧气和助燃气比例小于化学反应计量关系,火焰温度较低。

分析碱金属元素。

3) 非火焰原子化装置石墨炉原子化装置图4-29 石墨炉原子化器示意图过程:①干燥阶段:蒸发除去试样的溶剂,如水分、各种酸溶剂等。

②灰化阶段:破坏和蒸发除去试样中的基体,在原子化阶段前尽可能多的将共存组分与待测元素分离开,以减少共存物和背景吸收的干扰.③原子化阶段:使待测元素转变为基态原子,供吸收测定.④烧净阶段:净化除去残渣,消除石墨管记忆效应。

特点:原子化效率和测定灵敏度都比火焰高得多,其检出极限可达10 —12g 数量级;试样用量仅1-100uL;可测定粘稠和固体试样;石墨炉测定精密度不如火焰法;测定速度也较火焰法慢,此外装置较复杂、费用较高。

4。

2.3.4 分光系统1)功能原子吸收光谱仪的分光系统主要由色散元件、凹面镜和狭缝组成,也称为单色器。

它的作用是将待测元素的共振线与邻近谱线分开。

单色器的色散元件可用棱镜或衍射光栅。

现在仪器多用衍射光栅做色散元件。

衍射光栅是在金属(或镀有铝层)平面或凹面镜上刻有许多平行线条(一般每米刻有600—2 880条)。

光栅分辨率与其面上单位距离中刻线的数量有关,刻线数量越多,分辨率越高.2)通带概念所谓通带,系指通过单色器出射狭缝的光束波长间的范围。

通带的大小是仪器的工作条件之一:通带增大,使单色器的分辨率降低,靠近分析线的其他非吸收线的干扰和光源背景干扰一也增大,使工作曲线弯曲,产生误差.反之,通带窄,虽能使分辨率得到改善,但进人单色器的光强度减小,使测定灵敏度降低.4。

2。

3。

5 检测系统检测系统主要由检测器(光电倍增管)、放大器、读数和记录系统等组成.原子吸收光谱仪中,常用光电倍增管作检测器,其作用是将经过原子蒸气吸收和单色器分光后的微弱光信号转换为电信号,再经过放大器放大后,便可在读数装置上显示出来。

现代原子吸收光谱仪通常设有自动调零,自动校准、标尺扩展、浓度直读、自动取样及自动处理数据等装置.4。

2。

3。

6 仪器类型1)单光束型图4-30 单光束原子吸收光谱仪结构单光束仪器结构简单,灵敏度较高,能满足日常分析需要。

缺点是不能消除光源波动造成的影响,致使基线漂移。

使用时需预热光源,并在测量时经常校正零点.2)双光束型图4—31 双光束原子吸收光谱仪结构双光束仪器可以消除光源波动性造成的影响,仪器灵敏度和准确度皆优于单光束型。

空心阴极灯不需预热便可进行测定。

但参比光束不通过火焰,因此不能消除火焰背景的影响。

4.2.4 定量分析方法4.2.4.1 标准曲线法1)原理图4—32 标准曲线法原理示意图2) 方法设定条件,测定一系列已知浓度的样品的吸光度数值,并作图。

在相同条件下,测定样品的吸光度,由标准曲线求得样品待测元素浓度。

4。

2。

4.2 标准加入法1) 原理图4—33 标准加入法原理示意图2) 方法若试样基体组成复杂,且基体成分对测定又有明显干扰,此时可采用标准加入法。

取若干份等量的试样溶液,分别加入浓度不等的标准溶液,测定吸光度,由吸收曲线外推得到原始样品浓度。

注意:①此法可消除基体效应带来的影响,但不能消除分子吸收、背景吸收的影响。

②应保一证标准曲线的线性,否则曲线外推易造成较大的误差.4。

2.5 原子吸收法的干扰及其抑制原子吸收法的干扰有:电离干扰、化学干扰、物理干扰和光谱干扰等。

4。

2。

5。

1 电离干扰由于基态原子电离而造成的一干扰称为电离干扰:这种干扰造成火焰中待测元素的基态原子数量减少,使测定结果偏低.火焰温度越高,元素电离电位越低,元素越易电离。

碱金属和碱土金属由于电离电位较低,容易发生电离干扰。

消除方法一是降低火焰温度,二是加入比待测元素更易电离的物质.4.2。

5。

2 化学干扰待测元素与试样中共存组分或火焰成分发生化学反应,引起原子化程度改变所造成的干扰称为化学干扰.化学干扰是原子吸收光谱分析中主要干扰来源,典型的化学于扰是待测元素与共存元素之间形成更加稳定的化合物,使基态原子数目减少.常用的消除方法有:加入释放剂、加入保护剂、加入基体改进剂。

此外还可采用提高火焰温度、化学预分离等方法来消除化学干扰。

4.2。

5。

3物理干扰物理干扰系指试样一种或多种物理性质(如粘度、密度、表面张力)改变所引起的干扰。

主要来源于雾化、去溶剂及伴随固体转化为蒸气过程中物理化学现象的干扰。

物理干扰可用配制与待测试样组成尽量一致的标准溶液的力、法来消除,也可采用蠕动泵、标准加人法或稀释法来减小和消除物理干扰.4.2。

5.4光谱干扰光谱干扰是指与光谱发射和吸收有关的干扰,主要来自光源和原子化装置,包括谱线干扰和背景干扰。

谱线干扰:当光源产生的共振线附近存在有非待测元素的谱线,或试样中待测元素共振线与另一元素吸收线一十分接近时,均会产生谱线干扰:可用减小狭缝,另选分析线的方法来抑制这种干扰。

相关文档
最新文档