山西省2018年中考数学真题试题含答案

合集下载

山西省2018年中考数学试卷及答案解析

山西省2018年中考数学试卷及答案解析

2018 年山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. a 3 2 a6B. 2a 2 3a 2 6a2C. 2a 2 a 3 2a6D.2633 ()2b ba a -=-【答案】D【考点】整式运算【解析】A. a3 2 a6 B2a2 3a2 5a2 C. 2a2 a3 2a54. 下列一元二次方程中,没有实数根的是()A. x2 2x 0B. x2 4x 1 0C. 2x2 4x 3 0D. 3x2 5x 2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市万件 B. 万件 C. 万件 D. 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 104 立方米/时B.106 立方米/时C. 106 立方米/时D.105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6 2 D.3【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y x28x9化为y a x h2k的形式为()A. y x 4 2 7B. y x 4 2 25C.y x 4 2 7D. yx 4 2 25【答案】B【考点】二次函数的顶点式【解析】y x2 8x 9 x2 8x 16 16 9 x 4 2 2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()π-4 B. 4π-8 C. 8π-4 D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(321)(321) .【答案】17【考点】平方差公式【解析】∵(a b)(a b) a2 b2 ∴(321)(321) (32)2 1 18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则1 2 3 4 5 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴1 2 3 4 5 360.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 8x 11x 115解得x 5∴高的最大值为11 5 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG BF c o s BFA 2323∴AF 2FG 315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】12 5【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接 OF∵FG 为⊙0 的切线∴OF⊥FG∵Rt△ABC 中,D为 AB 中点∴CD=BD∴∠DCB=∠B∵OC=OF∴∠OCF=∠OFC∴∠CFO=∠B∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF BF12BC 4Rt △ ABC 中, s i n B 35Rt △ BGF 中, FGBF sin B 435 125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 ) 16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1k 1 x b (k 10) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反比例函数 y 2 (k 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 0 ;( 3)当 x 为 何 值 时 ,y 1 y 2 ,请直接写出 x的 取 值 范 围 .【考点】 反 比 例 函 数 与 一 次 函 数【解析】( 1)解: 一次函数 y 1 k 1 x b 的 图 象 经 过 点 C ( -4, -2), D ( 2, 4),( 3)解: x 4 或 0 x 2.18.(本题 9 分 ) 在 “ 优 秀 传 统 文 化 进 校 园 ” 活 动 中 , 学 校 计 划 每 周 二 下 午 第 三 节 课 时 间 开 展 此 项 活 动 ,拟 开 展 活 动 项 目 为 :剪 纸 ,武 术 ,书 法 ,器 乐 ,要 求 七 年 级 学 生 人 人 参 加 ,并 且 每 人 只 能参加其中一项活 动 .教务处在该校七年 级 学生中随机抽取了 100 名学生进行调查,并 对此进行 统计,绘制了如图 所 示的条形统计图和 扇 形统计图(均不完 整 ) .请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少【考点】条形统计图,扇形统计图【解析】(1)解:(2)解:1010+15100% 40%.答:男生所占的百分比为 40%.(3)解:500 21%=105(人).答:估计其中参加“书法”项目活动的有 105 人.(4)解:15155== 15+10+8+1548165答:正好抽到参加“器乐”活动项目的女生的概率为516.19.(本题 8 分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设 13 对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,B C 相交于点C,分别与桥面交于 A,B两点,且点 A,B,C在同一竖直平面内.测量数据∠A 的度数∠B 的度数AB 的长度38°28°234 米... ...(1 )请帮助该小组根据上tan 38,s in 28,c os 28,t an 28);(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD AB 于点 D.设 CD= x 米,在 Rt ADC 中,∠ADC=90°,∠A=38°.AD BD AB 234 .54x 2x 234.解得 x72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“复兴号”列 车时速更快 , 安 全 性车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x 83经检验, x 83是原方程的根 .答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 : 在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ 三 步 , 过 点 A 作 AZ 四 步 , 过 点 Z 作 ZY 则有 AX=BY=XY.下面是该结论的部分 证明: 证明: A Z / / A ' Z BA ' Z 'BAZ又 ∠A 'BZ'=∠A BZ. △BA ' Z △BAZZ ' A 'BZ ' .ZABZ同 理 可 得 Y ' Z 'BZ '. Z ' A 'Y ' Z ' .YZ BZ ZAYZZ ' A ' Y ' Z ' , ZA YZ ....任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面 ., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / ZA , 四边形 AXYZ 是 平 行 四 边 形 . ZA YZ ,AXYZ 是菱形 ( 2) 答 :证明: C D C B , 1 2 ZY / / AC , 1 3 . 2= 3 .YB YZ . 四边形 AXYZ 是 菱 形 , AX=XY=YZ. AX=BY=XY.(3)上述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) . A.平移 B.旋转 C.轴对称 D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E A B , AE 2 AB AD 2 AB , AD AE 四边形 ABCD 是 矩 形 , AD / / BC .EM EBDM AB=( 依 据 1 ) BE AB ,1EMDM = EM DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD AE , AM DE . (依据 2)AM 垂直平分 DE .反 思 交 流 : (1) 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 : 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,CBEABC GHC 90. 1+2=90.四边形 CEFG 为 正 方 形 ,CG CE , GCE 90.1 3 90.2= 3.△GHC ≌ △CBE .HC BE .四边形 ABCD 是 矩 形 , AD BC .AD 2 AB , BE AB , BC 2BE 2HC .HC BH .GH 垂直平分 BC.点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM BC 于点 M,过点 E 作 EN FM 于点 N.BMN ENM ENF 90.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,CBE ABC 90.四边形BENM 为矩形.BM EN,BEN 90. 1 2 90.四边形 CEFG 为正方形,EF EC, CEF 90. 2 3 90.1= 3. CBE ENF 90,△ENF≌△EBC.NE BE. BM BE.四边形 ABCD 是矩形,AD BC.AD 2AB, AB BE.BC 2BM .BM MC.FM 垂直平分 BC,点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∠CBE=∠ABC=∠N=90°. ∠1+∠3=90°.四边形 CEFG 为正方形,EC=EF,∠CEF=90°.∠1+∠2=90°. ∠2=∠3.△ENF △CBE.NF=BE,NE=BC.四边形 ABCD 是矩形,AD=BC.AD=2AB,B E=AB. 设 BE=a,则 BC=EN=2a,NF=a.BF=CF. 点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y 0 ,得2114=033x x -- 解得 x 1 3 , x 2 4 . 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x 0 ,得 y 4 . 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 4) , Q (1,3) . 2 ( 3) 过点 F 作 FG PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 . OBC QFG 45 . GQ FG 2 FQ . PE ∥ AC , 1 2 . FG ∥x 轴, 2 3 . 1 3 .FGP AOC 90 , △FGP ∽△AOC .。

山西省2018年中考数学试卷及答案解析(Word版)[2]

山西省2018年中考数学试卷及答案解析(Word版)[2]

(直打版)山西省2018年中考数学试卷及答案解析(Word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)山西省2018年中考数学试卷及答案解析(Word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)山西省2018年中考数学试卷及答案解析(Word版)(word版可编辑修改)的全部内容。

2018 年 山西省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1。

下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< —2B. —5< 3 C 。

-2< —3 D 。

1< —4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》 C 。

《 海 岛 算 经 》 D 。

《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( ) A 。

18年山西省中考数学真题

18年山西省中考数学真题

2018年山西省中考数学真题2018 年山西省中考数学试卷(解析版) 第I 卷选择题一、选择题 1.下面有理数比较大小,正确的 A. 0<-2 B. -5<3 C. -2<-3 D. 1<-4 【答案】 B 【考点】有理数比较大小 2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是 A.《九章算术》B. 《几何原本》C. 《海岛算经》 D. 《周髀算经》【答案】B 【考点】数学文化【解析】《几何原本》的作者是欧几里得 3. 下列运算正确 2 2 2 ? ?a6? 3a? 6ab23b6(?)??3 ?a3 ? 2a6 A. ? a?3 2 ?【答案】D 【考点】整式运算【解析】A. ? a3 ??2 ? a6 B2a2 ? 3a2 ? 5a2 C. 2a2 ? a3 ? 2a5 4. 下列一元二次方程中,没有实数根的是 A. x2 ? 2x ? 0 B. x2 ? 4x ?1 ? 0 ? 4x ? 3 ? 0? 5x ? 2 【答案】C 【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△ =4B.△ =20C. △ =-8D. △ =1 5. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果 1 / 15 太原市大同市长治市晋中市运城市临汾市吕梁市1-3 月份我省这七个地市邮政快递业务量的中位数是万件 B. 万件 C. 万件 D. 万件【答案】C 【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即万件. 6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45 千米处,是黄河上最具气势的自然景观,其落差约30 米,年平均流量1010 立方米/秒. 若以小时作时间单位,则其年平均流量可用科学计数法表示为 A. ?104 立方米/时B. ?106 立方米/时 C. ?106 立方米/时D. ?105 立方米/时【答案】C 【考点】科学计数法【解析】一秒为1010 立方米,则一小时为1010×60×60=3636000 立方米,3636000 用科 6 学计数法表示为×10. 7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是A. 【答案】A 【考点】树状图或列表法求概率【解析】4121 B. C. D.9 3 99 表格可知,共有9 种等可能结果,其中两次都摸到黄球的结果有4 种,4∴P = 9 8. 如图,在Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ ABC 绕点 C 按逆时针方向旋转得到△ A’B’C,此时点A’恰好在AB 边上,则点B’与点 B 之间的距离是 A. 12 B. 6 D.63 2 / 15 【答案】D 【考点】旋转,等边三角形性质【解析】连接BB’,旋转可知AC=A’C,BC=B’C,∵∠A=60°,∴△ ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 . 2 2 2 2 9. 用配方法将二次函数y ? x2 ? 8x ? 9 化为y ? a?x ? h?? k 的形式为 A. y ? ?x ? 4?? 7 B. y ? ?x ?4?? 25 C. y ? ?x ? 4?? 7 D. y ? ?x ? 4?? 25 【答案】B 【考点】二次函数的顶点式 2 【解析】y ? x2 ? 8x ? 9 ? x2 ? 8x ?16 ?16 ?9 ? ?x ? 4?? 25 2 10. 如图,正方形ABCD 内接于⊙O,⊙O 的半径为2,以点 A 为圆心,以AC 为半径画弧交AB 的延长线于点E,交AD 的延长线于点F,则图中阴影部分的面积是π -4 B. 4π -8 C. 8π -4 D. 8π -8 【答案】A 【考点】扇形面积,正方形性质【解析】∵四边形ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I 卷非选择题二、填空题. 11.计算:(32?1)(32?1) ??【答案】17 【考点】平方差公式【解析】∵(a ?b)(a ? b) ? a2 ? b2 ∴(32?1)(32?1) ?(32)?1 ?18-1=17 12. 图1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的五条线段组成的图2形,则?1? ?2 ? ?3 ? ?4 ? ?5 ? ? 度.3 / 15 【答案】360 【考点】多边形外角和【解析】∵任意n 边形的外角和为360°,图中五条线段组成五边形∴?1? ?2 ? ?3 ? ?4 ? ?5 ? 360? . 13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55 【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为8xcm,宽为11xcm 20 ? 8x ?11x ? 115 解得x ? 5 ∴高的最大值为11? 5 ?55 cm 14.如图,直线MN∥PQ,直线AB 分别与MN,PQ 相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交AN 于点C,交AB 于点D;②分别以C,D 为圆心,以大于 1 CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,2则线段AF 的长为______. 【答案】23 【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作BG⊥AF 交AF 于点G 尺规作图可知,AF 平分∠NAB ∴∠NAF=∠BAF ∵MN∥PQ ∴∠NAF=∠BFA ∴∠BAF=∠BFA ∴BA=BF=2 ∵BG⊥AF ∴AG=FG 0∵∠ABP=60 0∴∠BAF=∠BFA=30 Rt△ BFG 中,FG ? BF ? c o s?BFA ? 2? 3 ? 3 2∴AF ? 2FG ? 23 15.如图,在Rt△ABC 中,∠ACB=90,AC=6,BC=8,点 D 是AB 的中点,以CD 为直径作⊙O,⊙O 分别与AC,BC 交于点E,F,过点F 作⊙O 的切线FG,交AB 于点G,则FG 的长为_____. 0 4 / 15 【答案】125 【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接OF ∵FG 为⊙0 的切线∴OF⊥FG ∵Rt△ABC 中,D 为AB 中点∴CD=BD ∴∠DCB=∠ B ∵OC=OF ∴∠OCF=∠OFC ∴∠CFO=∠ B ∴OF∥BD ∵O 为CD 中点∴ F 为BC 中点∴CF ? BF? 1 2BC ? 4 Rt△ ABC中,s i n?B ? 35 Rt△BGF 中,FG ? BF sin ?B ? 4 ?3125 ?5三、解答题16. 计算:(22)2??4?3?1?6?20 【考点】实数的计算【解析】解:原式=8-4+2+1=7x?2x2 x?1??1x2?4x?4?1x?2 【考点】分式化简【解析】解:原式=x?2x2?11x+11xx?1?x2?4x?4?x?2=x?2?x ?2=x?2 17.如图,一次函数y1 ? k1 x ? b(k1 ? 0) 的图象分别与x 轴,y 轴相交于点A,B,比例函数y2? (k? 0) 的图象相交于点C,D . 求一次函数和反比例函数的表达式;当x 为何值时,y1 ? 0 ;当x 为何值时,y1 ? y2 ,请直接写出x 的取值范围. 5 / 15 与反【考点】反比例函数与一次函数【解析】解:一次函数y1 ? k1 x ? b 的图象经过点C,D,解:x ? ?4 或0 ? x ? 2. 18. 在“ 优秀传统文化进校园” 活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图. 请解答下列问题: 请补全条形统计图和扇形统计图;在参加“ 剪纸” 活动项目的学生中,男生所占的百分比是多少?6 / 15 若该校七年级学生共有500 人,请估计其中参加“ 书法” 项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“ 器乐”活动项目的女生的概率是多少?【考点】条形统计图,扇形统计图【解析】解:解:10?100% ? 40%. 10+15 答:男生所占的百分比为40%. 解:500 ? 21%=105 . 答:估计其中参加“ 书法”项目活动的有105 人. 4)解:;(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目. 7 / 15 【考点】三角函数的应用【解析】解:过点 C 作CD ? AB 于点 D. 设CD= x 米,在Rt ? ADC 中,∠ADC=90°,∠A=38°.5 AD ? BD ? AB ? 234 . ? x ? 2x ? 234. 4解得x ? 72 . 答:斜拉索顶端点 C 到AB 的距离为72 米. 解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 20.(本题7 分)2018 年 1 月20 日,山西迎来了“ 复兴号”列车,与“和谐号” 相比,“ 复兴号” 列车时速更快,安全性更好.已知“ 太原南-北京西” 全程大约500 千米,“ 复兴号”G92 次列车平均每小时比某列“ 和谐号”列车多行驶40 千米,其行驶时间是该列“ 和谐号” 列车行驶时间的 4 .经查询,“ 复兴号” G92 次列车从太原南到北京西,中途只有石家庄一站,列车中途停留时间停留10 分钟.求乘坐“复兴号” G92 次列车从太原南到北京西需要多长时间. 【考点】分式方程应用【解析】解:设乘坐“ 复兴号” G92 次列车从太原南到北京西需要x 小时,8500500解得x ? =+401513x?(x?)6468经检验,x ?是原方程的根. 3题意,得8答:乘坐“ 复兴号” G92 次列车从太原南到北京西需要小时. 38 / 15 21. 请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y,使得AX=BY=XY. 解决这个问题的操作步骤如下:第一步,在CA 上作出一点D,使得CD=CB,连接BD.第二步,在CB 上取一点Y’,作Y’Z’//CA, 交BD 于点Z’,并在AB 上取一点A’,使Z’A’=Y’Z’.第三步,过点 A 作AZ//A’Z’,交BD 于点Z.第四步,过点Z 作ZY//AC,交BC 于点Y,再过Y 作YX//ZA,交AC 于点X. 则有AX=BY=XY. 下面是该结论的部分证明:证明:A Z / / A \’ Z??BA\’ Z\’ ? ?BAZ 又∠A\’BZ\’=∠ABZ. ?△BA\’ Z △BAZ ? Z \’ A \’ BZ \’ ? .ZA BZ Y \’ Z \’ ?BZ \’ Z \’ A \’ ?Y \’ Z \’ 同理可得?. ? ?.YZ BZ ZA YZ Z \’ A\’ ? Y \’ Z \’ , ?ZA ? YZ. ...任务:请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;请再仔细阅读上面的操作步骤,在的基础上完成AX=BY=XY 的证明过程;....上述解决问题的过程中,通过作平行线把四边形BA’Z’Y’放大得到四边形BAZY,从而确定了点Z,Y 的位置,这里运用了下面一种图形的变化是. A.平移 B.旋转 C.轴对称 D.位似【考点】菱形的性质与判定,图形的位似【解析】答:四边形AXYZ 是菱形. 证明:ZY / / A C, Y X/ / Z?A, 四边形AXYZ 是平行四边形. ZA ? YZ ,?? AXYZ 是菱形答:证明:C D? C B, ??1 ? ?2 ZY / / AC , ??1 ? ?3 . ??2=?3 .??YB ? YZ . 四边形AXYZ 是菱形,? AX=XY=YZ. ?AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形BA’Z’Y’放大得到四边形BAZY,从而确定了点Z,Y 的位置,这里运用了下面一种图形的变化是 D . A.平移 B.旋转 C.轴对称 D.位似9 / 15 22. (本题12 分)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB,E 是AB 延长线上一点,且BE=AB,连接DE,交BC 于点M,以DE 为一边在DE 的左下方作正方形DEFG,连接AM.试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE,并展示了如下的证明方法:证明: B E ? A B, ?? AE ? 2 AB AD ? 2 AB,?? AD ? AE 四边形ABCD 是矩形,? AD / / BC. EMEB? ?DMABEM?1? EM ? DM . BE ? AB ,??DM即AM 是△ADE 的DE 边上的中线,又AD ? AE, ? AM ? DE. ?AM 垂直平分DE.反思交流:(1)? 上述证明过程中的“ 依据1”“ 依据2”分别是指什么?? 试判断图1中的点 A 是否在线段GF 的垂直平分上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE 为一边在CE 的左下方作正方形CEFG,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE 为一边在CE 的右上方作正方形CEFG,可以发现点C,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明. 【考点】平行线分线段成比例,三线合一,正方形、矩形性质,全等【解析】(1) 答:? 依据1:两条直线被一组平行线所截,所得的对应线段成比例. 依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合. ? 答:点 A 在线段GF 的垂直平分线上. (2) 证明:过点G 作GH ? BC 于点H,四边形ABCD 是矩形,点 E 在AB 的延长线上,??CBE ? ?ABC ? ?GHC ? 90?. ??1+?2=90?. 四边形CEFG 为正方形,?CG ? CE, ?GCE ? 90?.?1? ?3 ?90?. ??2=?3. ?△GHC ≌△CBE.?? HC ? BE. 四边形ABCD 是矩形,? AD ? BC.AD ? 2 AB, BE ? AB, ? BC ? 2BE ? 2HC.?? HC ? BH. ?GH 垂直平分BC.?点G 在BC 的垂直平分线上10 / 15 答:点F 在BC 边的垂直平分线上. 证法一:过点 F 作FM ? BC 于点M,过点 E 作EN ? FM 于点N. ??BMN ? ?ENM ? ?ENF ? 90?. 四边形ABCD 是矩形,点 E 在AB 的延长线上,? ?CBE ? ?ABC ? 90?.?四边形BENM 为矩形. ? BM ? EN , ?BEN ? 90?. ??1? ?2 ? 90?. 四边形CEFG 为正方形,? EF ? EC, ?CEF ? 90?. ??2 ? ?3 ? 90?. ??1=?3. ?CBE ? ?ENF ? 90?, ?△ENF≌△EBC. ? NE ? BE. ? BM ? BE.四边形ABCD 是矩形,? AD ? BC. AD ? 2 AB, AB ? BE.?? BC ? 2BM .?? BM ? MC. ?FM 垂直平分BC,?点 F 在BC 边的垂直平分线上. 证法二:过F 作FN ? BE 交BE 的延长线于点N,连接FB,FC. 四边形ABCD 是矩形,点 E 在AB 的延长线上,?∠CBE=∠ABC=∠N=90°. ?∠1+∠3=90°. 四边形CEFG 为正方形,? EC=EF,∠CEF=90°. ?∠1+∠2=90°. ?∠2=∠ 3. ?△ENF ? △CBE. ?NF=BE,NE=BC. 四边形ABCD 是矩形,? AD=BC. AD=2AB,BE=AB. ?设BE=a,则BC=EN=2a,NF=a.?BF=CF. ?点F 在BC 边的垂直平分线上.11 / 15 23. (本题13 分)综合与探究121 y?x?x?4与x 轴交于 A , B 两点,与y 轴交于点C ,连接33AC , BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ? x 轴,垂足为点M ,PM 交BC 于点Q ,过点P 作PE∥AC 交x 轴于点E ,交BC 于点F . 求 A , B , C 三点的坐标;试探究在点P 的运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理;..请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值. 【考点】几何与二次函数综合【解析】121解:y ? 0 ,得x?x?4=0 33解得x1 ? ?3 ,x2 ? 4 . ? 点A ,B 的坐标分别为A(-3,0),B x ?0 ,得y ? ?4 .? 点C 的坐标为C . 52 5 2 , ? 4) ,Q 2 (1,?3) . 答:Q 1 ( 2 2 过点F 作FG ? PQ 于点G . 则FG∥x 轴. B,C,得△O B C为等腰直角三================精选公文范文,管理类,工作总结类,工作计划类文档,欢迎阅读下载==============角形. ? ?OBC ? ?QFG ? 45? .?? GQ ? FG ?PE∥AC ,?? ?1 ? ?2 . FG ∥x 轴,? ?2 ? ?3 .?? ?1 ? ?3 . 2 FQ . 2?FGP ? ?AOC ? 90? ,?? △FGP∽△AOC .12 / 15--------------------精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载---------------------~ 21 ~。

2018年山西省中考数学试卷

2018年山西省中考数学试卷

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣42.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣25.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市大同市长治市晋中市运城市临汾市吕梁市3 3 0 3 . 7 8332.6832.34319.79725.86416.1338.871~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C. D.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25 10.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB 于点G,则FG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内容课题测量斜拉索顶端到桥面的距离测量示意图 说明:两侧最长拉索A C ,B C 相交于点C ,分别与桥面交于A ,B 两点,且点AB,C在同一竖直平面内.测量数据 ∠A 的度数 ∠B 的度数 AB的长度38° 28° 234米… …(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴.同理可得.∴.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3.00分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.2.(3.00分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.3.(3.00分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.4.(3.00分)下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2【解答】解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;故选:C.5.(3.00分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市大同市长治市晋中市运城市临汾市吕梁市3 3 0 3 . 7 8332.6832.34319.79725.86416.1338.871~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【解答】解:首先按从小到大排列数据:319.79,302.34,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.6.(3.00分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时【解答】解:1010×360×24=3.636×106立方米/时,故选:C.7.(3.00分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.8.(3.00分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C. D.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°=60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C',∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.9.(3.00分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.10.(3.00分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=﹣×4×2=4π﹣4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3.00分)计算:(3+1)(3﹣1)=17.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.12.(3.00分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=360度.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.13.(3.00分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5514.(3.00分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为2.【解答】解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.15.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB 于点G,则FG的长为.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,=DF×BF=BD×FG,∴S△BDF∴FG===,故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.17.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式为.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%. (3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4).答:正好抽到参加“器乐”活动项目的女生的概率为.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题 测量斜拉索顶端到桥面的离测量示意图说明:两侧最长斜拉索A C ,B C 相交于点C ,分别与桥面交于,B 两点,且点A ,B ,C 在同一竖直平面内. 测量数据 ∠A 的度数 ∠B 的度数 A B 的长度 38° 28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【解答】解:(1)过点C作CD⊥AB于点D.设CD=x米,在Rt△ADC中,∠ADC=90°,∠A=38°.∵,∴.在Rt△BDC中,∠BDC=90°,∠B=28°.∵,∴.∵AD+BD=AB=234,∴.解得x=72.答:斜拉索顶端点C到AB的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴.同理可得.∴.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【解答】解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC.∴NE=BE.∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE.∴BC=2BM.∴BM=MC.∴FM垂直平分BC.∴点F在BC边的垂直平分线上.23.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.【解答】解:(1)当y=0,x﹣4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),当x=0,y=x﹣4=﹣4,∴C(0,﹣4);(2)AC==5,易得直线BC的解析式为y=x﹣4,设Q(m,m﹣4)(0<m<4),当CQ=CA时,m2+(m﹣4+4)2=52,解得m1=,m2=﹣(舍去),此时Q点坐标为(,﹣4);当AQ=AC时,(m+3)2+(m﹣4)2=52,解得m1=1,m2=﹣0(舍去),此时Q点坐标为(1,﹣3);当QA=QC时,(m+3)2+(m﹣4)2=52,解得m=(舍去),综上所述,满足条件的Q点坐标为(,﹣4)或(1,﹣3);(3)解:过点F作FG⊥PQ于点G,如图,则FG∥x轴.由B(4,0),C(0,﹣4)得△OBC为等腰直角三角形∴∠OBC=∠QFG=45∴△FQG为等腰直角三角形,∴FG=QG=FQ,∵PE∥AC,PG∥CO,∴∠FPG=∠ACO,∵∠FGP=∠AOC=90°,∴△FGP~△AOC.∴=,即=,∴PG=FG=•FQ=FQ,∴PQ=PG+GQ=FQ+FQ=FQ,∴FQ=PQ,设P(m,m2﹣m﹣4)(0<m<4),则Q(m,m﹣4),∴PQ=m﹣4﹣(m2﹣m﹣4)=﹣m2+m,∴FQ=(﹣m2+m)=﹣(m﹣2)2+∵﹣<0,∴QF有最大值.∴当m=2时,QF有最大值.。

山西省2018年中考数学试卷及答案解析(Word版)汇编

山西省2018年中考数学试卷及答案解析(Word版)汇编

学习-----好资料2018 年山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. (-a3 )2 =-a6B. 2a2 + 3a2 =6a2C. 2a2 ⋅a3 =2a6D.2633()2b ba a-=-【答案】D【考点】整式运算【解析】A. (-a3 )2 =a6 B2a2 + 3a2 = 5a2 C. 2a2 ⋅a3 =2a54. 下列一元二次方程中,没有实数根的是()A. x2 - 2x =0B. x2 + 4x -1 =0C. 2x2 - 4x + 3 =0D. 3x2 = 5x -2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87 万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 ⨯104 立方米/时B. 3.136 ⨯106 立方米/时C. 3.636 ⨯106 立方米/时D. 36.36 ⨯105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A. 49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6C.62D. 63【答案】D【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(32+1)(32-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴(32+1)(32-1) =(32)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【答案】360【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯32=3∴AF = 2FG = 2315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;(3)当 x 为何值时,y1 <y2 ,请直接写出 x 的取值范围.【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ? ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , B C 相 交 于 点 C , 分 别与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平 面 内 .测量数据∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D.设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约 500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92 次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.21. (本题 8 分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形 ABC 的 AC 和 BC 两边上分别取一点 X 和 Y,使得 AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在 CA 上作出一点 D,使得 CD=CB,连接 BD.第二步,在 CB 上取一点 Y’,作 Y’Z’//CA, 交 BD 于点 Z’,并在 AB 上取一点 A’,使 Z’A’=Y’Z’.第三步,过点 A 作 AZ//A’Z’,交BD 于点 Z.第四步,过点 Z 作 ZY//AC,交 BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部分证明:证明: A Z/ / A'Z∴∠BA' Z ' =∠BAZ又∠A'BZ'=∠ABZ. ∴△BA' Z △BAZ∴Z ' A '=BZ '. ZA BZ同理可得Y ' Z '=BZ '. ∴Z ' A '=Y ' Z '. YZ BZ ZA YZZ'A' =Y 'Z ' , ∴ZA =YZ....任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ是菱形(2)答:证明: C D= C B,∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似学习-----好资料更多精品文档22. (本题 12 分 )综 合 与 实 践问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 .探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法:证明: B E = A B , ∴ AE = 2 A BAD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C . ∴EM EB DM AB=( 依 据 1 ) BE = AB , ∴ 1EM DM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 :(1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ;探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等【解析】(1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角形的“三线合一 ”) .② 答:点 A 在 线 段 GF 的垂直平分线上 .(2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3.∴△GHC ≌ △CBE . ∴ H C = BE .四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上学习-----好资料更多精品文档(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a. ∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.学习-----好资料更多精品文档 1 223. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG =22FQ . PE ∥ AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 . ∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

山西省2018年中考数学试题(原卷版)

山西省2018年中考数学试题(原卷版)

2018 年山西省中考数学试卷一、选择题(本大题共 10 个小题,每题 3 分,共 30 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请选出并在答题卡大将该项涂黑)1. 下边有理数比较大小,正确的选项是()A. 0<﹣ 2B. ﹣5< 3C. ﹣2<﹣ 3D. 1<﹣ 42.“算经十书”是指汉唐一千多年间的十部有名数学著作,它们以前是隋唐期间国子监算学科的教科书,这些流传下来的古算书中凝集着历代数学家的劳动成就.以下四部著作中,不属于我国古代数学著作的是()A. B. C. D.学,科,网 ...学 ,科,网 ...学 ,科,网 ...《周髀算经》3. 以下运算正确的选项是()A.(﹣ a3)2=﹣a6B. 2a2+3a2=6a22 3 6C. 2a ?a =2aD.4. 以下一元二次方程中,没有实数根的是()A. x 2﹣ 2x=0B. x 2 +4x﹣ 1=0C. 2x 2﹣ 4x+3=0D. 3x 2=5x ﹣25. 最近几年来快递业发展快速,下表是 2018 年 1~3 月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市大同市长治市晋中市运城市临汾市吕梁市3303.78 332.68 302.34 319.79 725.86 416.01 338.871~ 3 月份我省这七个地市邮政快递业务量的中位数是()A. 319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45 千米处,是黄河上最具气概的自然景观.其落差约30 米,年均匀流量1010 立方米 /秒.若以小时作时间单位,则其年均匀流量可用科学记数法表示为()A. 6.06 ×104立方米 /时B. 3.136 ×106立方米 /时C. 3.636 ×106立方米 /时D.36.36 ×105立方米 / 时7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都同样,随机从中摸出一个球,记下颜色后放回袋子中,充足摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.8.如图,在 Rt△ABC 中,∠ACB=90°,∠ A=60°, AC=6 ,将△ ABC 绕点 C 按逆时针方向旋转得到△ A'B'C' ,此时点A' 恰幸亏 AB 边上,则点B'与点 B 之间的距离为()A.12B.6C. 6D.9. 用配方法将二次函数y=x2﹣8x﹣ 9 化为 y=a( x﹣ h)2+k 的形式为()A. y= ( x﹣ 4)2+7B. y= ( x﹣ 4)2﹣ 25C. y= ( x+4)2+7D. y= ( x+4 )2﹣ 2510. 如图,正方形 ABCD 内接于⊙ O,⊙ O 的半径为 2,以点 A 为圆心,以 AC 长为半径画弧交 AB 的延伸线于点E,交 AD 的延伸线于点 F,则图中暗影部分的面积为()A. 4 π﹣ 4B. 4 π﹣ 8C. 8 π﹣ 4D. 8 π﹣ 8二、填空题(本大题共 5 个小题,每题 3 分,共 15 分)11. 计算:( 3 +1 )( 3﹣1)=.12.图 1 是我国古代建筑中的一种窗格,此中冰裂纹图案象征着坚冰出现裂纹并开始溶化,形状无必定规则,代表一种自然和睦美.图2 是从图 1 冰裂纹窗格图案中提取的由五条线段构成的图形,则∠ 1+∠ 2+∠ 3+∠ 4+∠ 5=度.13.2018 年国内航空企业规定:游客趁机时,免费携带行李箱的长,宽,高三者之和不超出 115cm .某厂家生产切合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8: 11,则切合此规定的行李箱的高的最大值为cm.14.如图,直线 MN ∥ PQ,直线 AB 分别与 MN , PQ 订交于点 A , B .小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以随意长为半径作弧交AN 于点 C,交 AB 于点 D;② 分别以 C,D 为圆心,以大于CD 长为半径作弧,两弧在∠ NAB内交于点E;③ 作射线 AE 交 PQ 于点 F.若AB=2 ,∠ ABP=60°,则线段AF 的长为 _____.15.如图,在 Rt△ ABC 中,∠ ACB=90°, AC=6 ,BC=8 ,点 D 是 AB 的中点,以 CD 为直径作⊙ O,⊙ O 分别与 AC , BC 交于点 E, F,过点 F 作⊙ O 的切线 FG,交 AB 于点 G,则 FG 的长为 _____.三、解答题(本大题共8 个小题,共 75 分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)( 2 )2﹣ |﹣ 4|+3﹣1×6+2 0.(2).17.如图,一次函数 y1=k 1x+b ( k1≠0)的图象分别与 x 轴, y 轴订交于点 A , B,与反比率函数y2=的图象订交于点C(﹣ 4,﹣ 2), D( 2, 4).(1)求一次函数和反比率函数的表达式;(2)当 x 为什么值时, y1> 0;(3)当 x 为什么值时, y1< y2,请直接写出 x 的取值范围.18.在“优异传统文化进校园”活动中,学校计划每周二下午第三节课时间展开此项活动,拟展开活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,而且每人只好参加此中一项活动.教务处在该校七年级学生中随机抽取了100 名学生进行检查,并对此进行统计,绘制了以下图的条形统计图和扇形统计图(均不完好).请解答以下问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3)若该校七年级学生共有500 人,请预计此中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被检查的女生中,随机抽取一人认识详细状况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19. 祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13 对直线型斜拉索,造型新奇,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“丈量斜拉索顶端到桥面的距离”作为一项课题活动,他们制定了丈量方案,并利用课余时间借助该桥斜拉索达成了实地丈量.丈量结果以下表.项目内容课题丈量斜拉索顶端到桥面的距离说明:双侧最长斜拉索AC , BC 订交于点C,分别与丈量表示图桥面交于 A ,B 两点,且点 A , B, C 在同一竖直平面内.∠A 的度数∠B的度数AB 的长度丈量数据38°28°234 米( 1)请帮助该小组依据上表中的丈量数据,求斜拉索顶端点 C 到 AB 的距离(参照数据:sin38 °≈,0.cos386 °≈,0.tan38 °≈,0.sin28 °≈,0.cos285°≈ 0,.9tan28 °≈)0.5(2)该小组要写出一份完好的课题活动报告,除上表的项目外,你以为还需要增补哪些项目(写出一个即可).20.2018 年 1 月 20 日,山西迎来了“中兴号”列车,与“和睦号”对比,“中兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大概500 千米,“中兴号”G92次列车均匀每小时比某列“和睦号”列车多行驶 40 千米,其行驶时间是该列“和睦号”列车行驶时间的(两列车半途逗留时间均除外).经查问,“中兴号”G92次列车从太原南到北京西,半途只有石家庄一站,逗留10 分钟.求乘坐“中兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读以下资料,并达成相应的任务:在数学中,利用图形在变化过程中的不变性质,经常能够找到解决问题的办消去.有名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问怎样在一个三角形ABC 的AC 和BC 两边上分别取一点X 和 Y,使得AX=BY=XY .(如图)解决这个问题的操作步骤以下:第一步,在 CA 上作出一点 D ,使得CD=CB ,连结BD .第二步,在 CB 上取一点Y' ,作Y'Z ∥CA ,交 BD 于点 Z' ,并在 AB 上取一点 A' ,使 Z'A'=Y'Z' .第三步,过点 A 作 AZ ∥ A'Z' ,交 BD 于点 Z.第四步,过点 Z 作 ZY ∥ AC,交 BC 于点 Y,再过点 Y 作 YX ∥ZA ,交 AC 于点 X.则有 AX=BY=XY.下边是该结论的部分证明:证明:∵AZ ∥A'Z' ,∴∠ BA'Z'= ∠ BAZ ,又∵∠ A'BZ'= ∠ ABZ .∴△ BA'Z' ~△ BAZ .∴.同理可得.∴.∵Z'A'=Y'Z' ,∴ ZA=YZ .任务:( 1)请依据上边的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;( 2)请再认真阅读上边的操作步骤,在(1)的基础上达成AX=BY=XY的证明过程;( 3)上述解决问题的过程中,经过作平行线把四边形BA'Z'Y' 放大获得四边形BAZY ,进而确立了点 Z,Y 的地点,这里运用了下边一种图形的变化是.A .平移B.旋转C.轴对称 D .位似22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形 ABCD 中, AD=2AB , E 是 AB 延伸线上一点,且BE=AB ,连结 DE,交 BC 于点 M ,以 DE 为一边在 DE 的左下方作正方形 DEFG ,连结 AM .试判断线段 AM 与 DE 的地点关系.研究展现:勤劳小组发现, AM 垂直均分 DE ,并展现了以下的证明方法:证明:∵ BE=AB ,∴ AE=2AB .∵ AD=2AB ,∴ AD=AE .∵四边形 ABCD 是矩形,∴ AD ∥BC .∴.(依照1)∵ BE=AB ,∴.∴ EM=DM.即 AM 是△ ADE 的 DE 边上的中线,又∵ AD=AE ,∴ AM ⊥ DE.(依照 2)∴AM 垂直均分 DE.反省沟通:( 1)① 上述证明过程中的“依照 1”“依照 2”分别是指什么?②试判断图 1 中的点 A 能否在线段 GF 的垂直均分线上,请直接回答,不用证明;( 2)创新小组遇到勤劳小组的启迪,持续进行研究,如图2,连结 CE,以 CE 为一边在下方作正方形CEFG,发现点G 在线段 BC 的垂直均分线上,请你给出证明;研究发现:( 3)如图 3,连结 CE,以 CE 为一边在CE 的右上方作正方形CEFG,能够发现点C,点CE 的左B 都在线段 AE 的垂直均分线上,除此以外,请察看矩形 ABCD 和正方形 CEFG 的极点与边,你还可以发现哪个极点在哪条边的垂直均分线上,请写出一个你发现的结论,并加以证明.23. 综合与研究如图,抛物线y= 与 x 轴交于 A ,B 两点(点 A 在点 B 的左边),与y 轴交于点C,连结AC,BC.点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m,过点P 作PM ⊥x 轴,垂足为点 M , PM 交 BC 于点 Q,过点 P 作 PE∥ AC 交 x 轴于点 E,交 BC 于点 F.(1)求 A ,B , C 三点的坐标;(2)尝试究在点 P 运动的过程中,能否存在这样的点 Q,使得以 A , C, Q 为极点的三角形是等腰三角形.若存在,请直接写出此时点( 3)请用含 m 的代数式表示线段Q 的坐标;若不存在,请说明原因;QF 的长,并求出m 为什么值时QF 有最大值.。

2018年山西省中考数学试卷试题及答案

2018年山西省中考数学试卷试题及答案

2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)(2018•山西)下面有理数比较大小, 正确的是( )A .02<-B .53-<C .23-<-D .14<-2.(3分)(2018•山西)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》3.(3分)(2018•山西)下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .23622a a a =D .2633()28b b a a-=- 4.(3分)(2018•山西)下列一元二次方程中,没有实数根的是( )A .220x x -=B .2410x x +-=C .22430x x -+=D .2352x x =-5.(3分)(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3分)(2018•山西)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .46.0610⨯立方米/时B .63.13610⨯立方米/时C .63.63610⨯立方米/时D .536.3610⨯立方米/时7.(3分)(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .198.(3分)(2018•山西)如图,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,6AC =,将ABC∆绕点C 按逆时针方向旋转得到△A B C '',此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( )A .12B .6C .D .9.(3分)(2018•山西)用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为()A .2(4)7y x =-+B .2(4)25y x =--C .2(4)7y x =++D .2(4)25y x =+-10.(3分)(2018•山西)如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( )A .44π-B .48π-C .84π-D .88π-二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)(2018•山西)计算:1)-= .12.(3分)(2018•山西)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= 度.13.(3分)(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .14.(3分)(2018•山西)如图,直线//MN PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在NAB ∠内交于点E ;③作射线AE 交PQ 于点F .若2AB =,60ABP ∠=︒,则线段AF 的长为 .15.(3分)(2018•山西)如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,点D 是AB的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2018•山西)计算:(1)210|4|362---+⨯+.(2)222111442x x x x x x -----+-. 17.(2018•山西)如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)k y k x=≠的图象相交于点(4,2)C --,(2,4)D . (1)求一次函数和反比例函数的表达式;(2)当x 为何值时,10y >;(3)当x 为何值时,12y y <,请直接写出x 的取值范围.18.(2018•山西)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.(2018•山西)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin380.6︒≈,cos380.8︒≈,tan380.8︒≈,sin280.5︒≈,cos280.9︒≈,tan 280.5)︒≈(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西”全程大约500千米,“复兴号” 92G 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号” 92G 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号” 92G 次列车从太原南到北京西需要多长时间.21.(2018•山西)请阅读下列材料,并完成相应的任务:A BZ ABZ ''=∠∴Z 任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX BY XY ==的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA Z Y '''放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 .A .平移B .旋转C .轴对称D .位似22.(2018•山西)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,2AD AB =,E 是AB 延长线上一点,且BE AB =,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:BE AB =,2AE AB ∴=.2AD AB =,AD AE ∴=.四边形ABCD 是矩形,//AD BC ∴. ∴EM EB DM AB=.(依据1) BE AB =,∴1EM DM=.EM DM ∴=. 即AM 是ADE ∆的DE 边上的中线,又AD AE =,AM DE ∴⊥.(依据2) AM ∴垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.23.(2018•山西)综合与探究 如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小, 正确的是( ) A .02<-B .53-<C .23-<-D .14<-【解答】解:A 、02>-,故此选项错误;B 、53-<,正确;C 、23->-,故此选项错误;D 、14>-,故此选项错误;故选:B .2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .《九章算术》B .《几何原本》C .《海岛算经》D .《周髀算经》【解答】解:A 、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B 、《几何原本》是古希腊数学家欧几里得所著的一部数学著作; C 、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰; D 、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作; 故选:B .3.(3分)下列运算正确的是( )A .326()a a -=-B .222236a a a +=C .23622a a a =D .2633()28b b a a-=-【解答】解:A 、326()a a -=,此选项错误;B 、222235a a a +=,此选项错误;C 、23522a a a =,此选项错误;D 、2633()28b b a a-=-,此选项正确;故选:D .4.(3分)下列一元二次方程中,没有实数根的是( ) A .220x x -=B .2410x x +-=C .22430x x -+=D .2352x x =-【解答】解:A 、△40=>,有两个不相等的实数根,故此选项不合题意;B 、△164200=+=>,有两个不相等的实数根,故此选项不合题意;C 、△164230=-⨯⨯<,没有实数根,故此选项符合题意;D 、△25432252410=-⨯⨯=-=>,有两个不相等的实数根,故此选项不合题意;故选:C .5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87 故选:C .6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A.46.0610⨯立方米/时B.63.13610⨯立方米/时C.63.63610⨯立方米/时D.536.3610⨯立方米/时【解答】解:610103600 3.63610⨯=⨯立方米/时,故选:C.7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选:A.8.(3分)如图,在Rt ABC∆中,90ACB∠=︒,60A∠=︒,6AC=,将ABC∆绕点C按逆时针方向旋转得到△A B C'',此时点A'恰好在AB边上,则点B'与点B之间的距离为( )A .12B .6C .D .【解答】解:连接B B ',将ABC ∆绕点C 按逆时针方向旋转得到△A B C '', AC A C '∴=,AB A B '=,60A CA B ''∠=∠=︒,∴△AA C '是等边三角形,60AA C '∴∠=︒,180606060B A B ''∴∠=︒-︒-︒=︒,将ABC ∆绕点C 按逆时针方向旋转得到△A B C '',60ACA BAB ''∴∠=∠=︒,BC B C '=,906030CB A CBA ''∠=∠=︒-︒=︒, BCB '∴∆是等边三角形, 60CB B '∴∠=︒, 30CB A ''∠=︒, 30A B B ''∴∠=︒,180603090B BA ''∴∠=︒-︒-︒=︒, 90ACB ∠=︒,60A ∠=︒,6AC =,12AB ∴=,6A B AB AA AB AC ''∴=-=-=,B B '∴=故选:D .9.(3分)用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( ) A .2(4)7y x =-+B .2(4)25y x =--C .2(4)7y x =++D .2(4)25y x =+-【解答】解:289y x x =-- 281625x x =-+-2(4)25x =--.故选:B .10.(3分)如图,正方形ABCD 内接于O ,O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为()A .44π-B .48π-C .84π-D .88π-【解答】解:利用对称性可知:阴影部分的面积=扇形AEF 的面积ABD -∆的面积2904142443602ππ=-⨯⨯=-,故选:A .二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:1)= 17 .【解答】解:原式221=- 181=- 17=故答案为:17.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= 360 度.【解答】解:由多边形的外角和等于360︒可知, 12345360∠+∠+∠+∠+∠=︒,故答案为:360︒.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.【解答】解:设长为8x,高为11x,由题意,得:1920115x+…,解得:5x…,故行李箱的高的最大值为:1155x=,答:行李箱的高的最大值为55厘米.故答案为:5514.(3分)如图,直线//MN PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在NAB∠内交于点E;③作射线AE交PQ于点F.若2AB=,60ABP∠=︒,则线段AF的长为【解答】解://MN PQ,60NAB ABP∴∠=∠=︒,由题意得:AF平分NAB∠,1230∴∠=∠=︒,13ABP ∠=∠+∠, 330∴∠=︒, 1330∴∠=∠=︒,AB BF ∴=,AG GF =, 2AB =,112BG AB ∴==,AG ∴2AF AG ∴==,故答案为:15.(3分)如图,在Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,点D 是AB 的中点,以CD 为直径作O ,O 分别与AC ,BC 交于点E ,F ,过点F 作O 的切线FG ,交AB 于点G ,则FG 的长为125.【解答】解:如图,在Rt ABC ∆中,根据勾股定理得,10AB =,∴点D 是AB 中点,152CD BD AB ∴===, 连接DF ,CD 是O 的直径, 90CFD ∴∠=︒, 142BF CF BC ∴===,3DF ∴==, 连接OF ,OC OD =,CF BF =, //OF AB ∴, OFC B ∴∠=∠, FG 是O 的切线, 90OFG ∴∠=︒, 90OFC BFG ∴∠+∠=︒, 90BFG B ∴∠+∠=︒, FG AB ∴⊥, 1122BDF S DF BF BD FG ∆∴=⨯=⨯, 341255DF BF FG BD ⨯⨯∴===, 故答案为125.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)210|4|362---+⨯+.(2)222111442x x x x x x -----+-. 【解答】解:(1)原式184613=-+⨯+8421=-++7=.(2)原式22(1)(1)11(2)2x x x x x x --+=---- 1122x x x +=--- 2xx =-. 17.如图,一次函数111(0)y k x b k =+≠的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数222(0)k y k x=≠的图象相交于点(4,2)C --,(2,4)D . (1)求一次函数和反比例函数的表达式;(2)当x 为何值时,10y >;(3)当x 为何值时,12y y <,请直接写出x 的取值范围.【解答】解:(1)一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D , ∴114224k b k b -+=-⎧⎨+=⎩,解得112k b =⎧⎨=⎩.∴一次函数的表达式为12y x =+.反比例函数22k y x=的图象经过点(2,4)D , ∴242k =. 28k ∴=.∴反比例函数的表达式为28y x=. (2)由10y >,得20x +>. 2x ∴>-.∴当2x >-时,10y >.(3)4x <-或02x <<.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人? (4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【解答】解:(1)由条形图知,男生共有:102013952+++=人,∴女生人数为1005248-=人,∴参加武术的女生为481581510---=人,∴参加武术的人数为201030+=人,3010030%∴÷=,参加器乐的人数为91524+=人,2410024%∴÷=,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是10100%40% 1015⨯=+.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)50021%105⨯=(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151********==+++.答:正好抽到参加“器乐”活动项目的女生的概率为516.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin380.6︒≈,cos380.8︒≈,tan380.8︒≈,sin280.5︒≈,cos280.9︒≈,tan 280.5)︒≈(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【解答】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC ∆中,90ADC ∠=︒,38A ∠=︒. tan38CD AD ︒=,∴5tan380.84CD x AD x ===︒. 在Rt BDC ∆中,90BDC ∠=︒,28B ∠=︒. tan 28CD BD ︒=,∴2tan 280.5CD xBD x ===︒. 234AD BD AB +==,∴522344x x +=. 解得72x =.答:斜拉索顶端点C 到AB 的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西”全程大约500千米,“复兴号” 92G 次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号” 92G 次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号” 92G 次列车从太原南到北京西需要多长时间.【解答】解:设“复兴号” 92G 次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据题意得:5005004054x x =+, 解得:52x =, 经检验,52x =是原分式方程的解, 1863x ∴+=. 答:乘坐“复兴号” 92G 次列车从太原南到北京西需要83小时.21.请阅读下列材料,并完成相应的任务:A BZ ABZ ''=∠∴Z任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX BY XY==的证明过程;'''放大得到四边形BAZY,从而(3)上述解决问题的过程中,通过作平行线把四边形BA Z Y确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似【解答】解:(1)四边形AXYZ是菱形.证明://YX ZA,ZY AC,//∴四边形AXYZ是平行四边形.ZA YZ=,∴平行四边形AXYZ是菱形.(2)证明:CD CB=,13∴∠=∠.ZY AC,//∴∠=∠.1223∴∠=∠.∴=.YB YZ四边形AXYZ是菱形,∴==.AX XY YZ∴==.AX BY XY'''放大得到四边形BAZY,从而确定了点Z,Y的位置,(3)通过作平行线把四边形BA Z Y此时四边形BA Z Y '''∽四边形BAZY ,所以该变换形式是位似变换. 故答案是:D (或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,2AD AB =,E 是AB 延长线上一点,且BE AB =,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系. 探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法: 证明:BE AB =,2AE AB ∴=.2AD AB =,AD AE ∴=.四边形ABCD 是矩形,//AD BC ∴.∴EM EBDM AB=.(依据1) BE AB =,∴1EMDM=.EM DM ∴=. 即AM 是ADE ∆的DE 边上的中线, 又AD AE =,AM DE ∴⊥.(依据2) AM ∴垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明; 探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM DE⊥,四边形DEFG是正方形,DE FG∴,//∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH BC⊥于点H,四边形ABCD是矩形,点E在AB的延长线上,CBE ABC GHC∴∠=∠=∠=︒,90∴∠+∠=︒.90BCE BEC四边形CEFG为正方形,CG CEGCE∠=︒,∴=,90∴∠+∠=︒.90BCE BCG2BEC BCG∴∠=∠.∴∆≅∆.GHC CBE∴=,HC BE四边形ABCD是矩形,AD BC∴=.=,BE AB=,AD AB2BC BE HC∴==,22∴=.HC BH∴垂直平分BC.GH∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM BC⊥于点N.⊥于点M,过点E作EN FM∴∠=∠=∠=︒.BMN ENM ENF90四边形ABCD是矩形,点E在AB的延长线上,∴∠=∠=︒,CBE ABC90∴四边形BENM为矩形.BM EN∠=︒.BEN∴=,90∴∠+∠=︒.1290四边形CEFG为正方形,∠=︒.CEFEF EC∴=,90∴∠+∠=︒.2390∴∠=∠.13∠=∠=︒,CBE ENF90∴∆≅∆.ENF EBC∴=.NE BE∴=.BM BE四边形ABCD是矩形,∴=.AD BC2=,AB BE=.AD AB∴=.2BC BMBM MC ∴=.FM ∴垂直平分BC .∴点F 在BC 边的垂直平分线上.23.综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由; (3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.【解答】解:(1)当0y =,2114033x x --=,解得13x =-,24x =,(3,0)A ∴-,(4,0)B ,当0x =,2114433y x x =--=-,(0,4)C ∴-;(2)5AC ==,易得直线BC 的解析式为4y x =-, 设(Q m ,4)(04)m m -<<,当CQ CA =时,222(44)5m m +-+=,解得1m =,2m =,此时Q 点坐标为4)-;当AQ AC =时,222(3)(4)5m m ++-=,解得11m =,20m =(舍去),此时Q 点坐标为(1,3)-; 当QA QC =时,2222(3)(4)(44)m m m m ++-=+-+,解得252m =(舍去),综上所述,满足条件的Q 点坐标为4)或(1,3)-; (3)解:过点F 作FG PQ ⊥于点G ,如图,则//FG x 轴.由(4,0)B ,(0,4)C -得OBC ∆为等腰直角三角形45OBC QFG ∴∠=∠= FQG ∴∆为等腰直角三角形,FG QG ∴==, //PE AC ,//PG CO , FPG ACO ∴∠=∠, 90FGP AOC ∠=∠=︒, ~FGP AOC ∴∆∆.∴FG PG OA CO =,即34FG PG=,44233PG FG FQ ∴===,PQ PG GQ ∴=+=,7FQ PQ ∴=, 设(P m ,2114)(04)33m m m --<<,则(,4)Q m m -,2211144(4)3333PQ m m m m m ∴=----=-+,2214)2)33FQ m m m ∴=-+=-20-<, QF ∴有最大值.∴当2m =时,QF 有最大值.第31页(共31页)。

数学2018年山西省中考真题

数学2018年山西省中考真题

//^。

一、选择题(本大题共 10 个小题,每 小 题 3 分 ,共 30 分 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它 13. 2018 年国内航空公司规定 :旅客乘机时,免费 携带行 李 箱的 长 ,宽 ,高之和不超过 115 cm 某 厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm, 长与高的比为 8:11, 则符合此规定的行李箱 的高的最大值为cm.( 1)求一次函数和反比例函数的表达式; ( 2 )当 x 为何值时,Y >O;( 3 )当 x 为何值时,Y 1<y 2, 请直 接写出 x 的取值范 围.在每小题给出的四个选项中 ,只有一项符合题目要求) 1. 下面有理数比较大小,正确的是 ()A. 0<-2B. -5<3C. -2<-3D. 1<-4们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次 都摸到黄球的概率是()14. 如图 ,直 线 MN //PQ, 直线 M义IA B 分 别 与 MN, PQ 相 交 于点A ,B. 小 宇 同 学 利 用 尺规 p,LN"Q2. "算经十书”是 指 汉 唐 一 千多年间的十部著名数学著A. —4B. —1C. —2D. —1作,它们曾经是隋唐时期国子监算学科的教科书,这些 9 399按以 下 步 骤作 图 :心 以点 A 为圆心,以 任意长为半径 流传下来的古算书中凝聚着历代数学家的劳动成果. 8. 如图 ,在 Rt !'::.A B C 中 ,L A C B=90° , L A =60° ,A C =6 , 将 作弧交 A N 千点 C, 交 A B 于点 D; (2)分 别 以 C, D 为 18. ( 本题 9 分)在“优秀传统 下列四部著作中,不属于我国古代数学著作的是()!'::.AB C 绕 点 C 按逆时针 方向旋转得 到!'::.A' B' C, 此时点 A' 恰好 在 A B 边上,则 点 B' 与点 B 之间的距离为圆 心,以大 于 —12CD 长为半径作弧,两弧 在 L NA B 内文化进校园”活动中,学校 计划 每周二下午第三节课A. 12B. 6C. 6 V 了D.6V3B' ()AA'B交 于点 E ; @ 作射线 AE 交 P Q 千点 F . 若 A B =2 ,LABP=60°, 则线段 AF 的长 为 .15. 如图,在 Rt L.ABC 中 ,C时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能 参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此 进行统计,绘制了C. 《海岛算经》3. 下列运算正确的是 A. ( - a 平=- a6 C. 2a2·矿=2a6D. 《周牌算经》()B. 2a 2+3a 2=6a 2b2 3 b6 D. -( 2a ) =- 8a39. 用 配方 法将二次函数 y=x2- 8 x - 9 化为 y=a (x- h )2+k 的 形式为()A. y=(x-4)2+7B. y =(x- 4 )2- 25C. y =(x+4 )2+7D . y =(x+4 )2- 2510. 如图,正方形 AB CD 内接 于0 0 ,0 0 的半径为 2 ,以点 A 为圆心,以 A C 长为半径画弧交 A B 的延长线于 /算为/:/如图所示的条形统计图和扇形统计图(均不完整). 请解答下列 问题 :( 1 )请补全条形统计图和扇形统计图;人数(人)□男生25卜D 女生204. 下列一元二次方程中,没有实数根的是 ()A. x2- 2x =0B. x2+4x-1=0C. 2x2-4x+3=0D. 3x2=5x-25. 近年来快递业发展迅速,下 表是 2018 年 1- 3 月份我省部分地市邮政快递业务 量的统计结果(单位:万件 ):太原市1 大同市1 长治市 1 晋中市 1 运城市1 临 汾市1 吕梁市3303.78 I 332.68 I 302.34 I 319.79 I 725.86 I 416.01 I 338.871- 3 月份我省这 七个地市邮政快递业务量的中位数是()A. 319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万 件6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观.其落差约 30 米,年平均 流量 1010 立方米庉}若 以小时作时间单位,则 其 年 平均 流量可用科学记数法表示为()A. 6.06x l0 4 立方米 /时B. 3.136xl0 6 立方米/时点 E , 交 A D 的延长线千点 F , 则图中阴影部分的面积为A ( )A. 41r-4B. 4,r-8C. 8'IT-4D. 8TI-8c二、填空题(本大题共 5 个小题,每 小 题 3 分 ,共 1 5 分)11. 计算 ( 3 \12 +1)(3\12-1)= .12. 图 1 是我国古代建筑中的一种窗格,其 中 冰裂 纹 图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代 表 一 种 自然和谐美.图2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则 L l+L2+L 3+ L 4+ L 5= 度.(l) x-2 •x2-l 1x - 1 x2- 4x +4- x-2·17 . ( 本题 8 分 )如图,一次 函数 Yi= k1x+b (k 吊 0 ) 的图象分别与 x轴 ,y 轴相交于点 A , B, 与反比例函数 y 产妇 ( k 尹 0) 的图象相X5剪纸武术书法器乐项目( 2 )在参加“剪纸”活动项目的学生中,男生 所 占 的百分比是多少?( 3 )若该校七年级学生共有 500 人,请 估计 其 中 参 加 “书法”项目活动的有多少人?( 4 )学校教务处要从这些被调查 的女生中,随机抽 取一人了解具体情况,那么正好抽到参加"器乐”活动项目的女生的概率是多少?C. 3.636x l0 6 立方米/时D. 36.36x l0 5 立方米/时 图 1图 2交于点 C( - 4 , - 2) ,D(2,4).2018 年山西省高中阶段教育学校招生统一考试数学\i xFEI幻卢A在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法 .著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有 这样一个例子 :试问如何在一个三角形 A B C 的 A C 和 BC 两边上分别取一点X 和 Y, 使 得 A X =BY =XY.( 如图)解. . =同理可得 == 19. ( 本题 8 分)祥云桥位千省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设 13 对直线型斜拉索,造型新颖 ,是“ 三晋大地”的 一 种象 征 某 数 学 ” 综 合 与实践“小组的同学把`测量斜拉索顶端到桥面的距离” 作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量测量结果如 下表:行驶时间的 —4(两列车中途停留时间均除外)经查询,5 “复兴号 "G92 次列车从太原南到北京西,中途只有石 家庄 一 站 ,停留 10 分钟求 乘坐“复兴号"G92 次列车从太原南到北京西需要多长时间( 3 )上述解决问题的过程中,通过作平行线把四边形BA'Z' Y' 放大得到四边形BAzy , 从 而 确定了点Z, Y 的位 置 这 里 运用了下面一种图形的变化是A. 平 移B. 旋 转C. 轴 对 称D. 位 似探索发现( 3 )如图 3 连 接 CE , 以 CE 为一边在 CE 的右上方作正 方形 CEFG, 可以发现点 C, 点 B 都在线段 AE 的垂 直平 分线上 ,除此之外 ,请 观察 矩 形 A BCD 和正方 G形 CEFG 的 顶点 与 边,你 还 能发现哪个顶点在哪条边 D C的垂直平分线上,请写出一个你发现的结论,并加 以证明.ABE 图 322. (本题 12 分)综合与实践问题情境在数学活动课上,老师 出示 了这 样一 个问 题 :如图1 ,在 矩 形 A BCD 中 ,A D =2AB, E 是 A B 延长线上一点, I 23. c 本题 13 分)综合与探究( 1) 请 帮 助该小组根据上表中的测量数据,求斜 拉 索顶 端 点 C 到 A B 的距离(参考数据 :sin38°= 0 . 6 ,cos38°= 0.8, tan38°= 0.8,sin28°= 0.5, cos28°= 0.9, tan28°= 0.5);( 2 )该小组要写出一份完整的课题活动报告 ,除上表的 项目外 ,你认 为还需要补充哪些项目(写出一个即可.)21. (本题 8 分)请阅读下列 材料,并完成 相应的 任务:决这个问题的操作步骤如下: 笫一步, 在 CA 上作出一点 D, 使得 CD =CB, 连接BD. 笫二步,在 CB 上取一 点 Y' , 作 Y' Z' II CA , 交 _且 BE =A B, 连接 DE , 交 BC 于点 M, 以 DE 为一边在 DE 的左下方作正方形 DEFG, 连 接 A M.试判断线段A M 与 DE 的位置关系. 探究展示勤奋小组发现,A M 垂直平分 D E , 并展示了如下的证· .-A D =2AB,: A D =A E .·: 四 边形 A BCD 是矩形 ,: .A D// BC.图 1. EMEB··nM AB.· .-BE =A B ,: .盓=l. : .EM =DM.如图,抛 物线 y=L x2- L x - 4 与 x 轴交 于 A , B 两点3 3(点 A 在点 B 的左侧 ),与 y 轴交于点 C, 连接 A C,BC.点 P 是第 四象 限内抛物线上的一个动点 ,点 P 的 横坐标为 m , 过点 P 作 PM ..lx 轴 ,垂 足为 点 M, PM 交BC 千点 Q , 过点 P 作 PE // A C 交 x 轴 于点 E , 交 BC 于点 F.yBD 于点 Z' , 并在 A B 上取 C X D20. (本题 7 分)2018 年 1 月 20 日,山西 迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性 更 好 已 知“太原 南— 北 京 西“全程 大 约 500 千米 , “复 兴 号 " G92 次列车平均每小时比某列”和谐 号 ”列车多行驶 40 千米,其行 驶时间是该列”和谐 号 ”列 车一点 A' , 使 Z'A' =Y'Z' . 笫三步, 过点A 作 AZ II A'Z' , 交 BD 于点z, 第四步,过点 Z 作 zr ll Ac , 交 BC 于点 Y, 再过点 Y 作 YXIIZA, 交 A C 于点 X.则有 A X =BY =XY.下面是该结论的部分证明:证明:·: AZII A'Z' ,: . L BA'Z' = L BAZ,又 ·: L A' BZ'= L A BZ. :.b.BA'Z'""'b.BAZ.. Z'A'BZ'Z4 BZ.Y'Z' BZ' . Z'A'Y'Z' YZB Z . . . ZA YZ . ·: Z'A' =Y'Z' ,: .ZA =YZ. ···任务: ( 1 ) 请根据上 面的操作步骤及部分证明过程,判断四边形A X YZ 的形状 ,并 加以 证明 ;( 2 )请再仔细阅读上面的操作步骤,在( 1 )的基础上完成 A X =BY =XY 的证 明 过 程;即 A M 是 6. A DE 的 DE 边上的中线, 又 ·: A D =AE , :AM _l_DE.( 依 据 2 ): A M 垂直平分 DE . 反思交流( 1 )心上述证明过程中的“依据 1""依据 2"分别是指什么?@ 试 判 断图 l 中 的 点 A 是 否 在 线 段 GF 的垂 直 平 分 线上,请直接回答,不必证明; D C( 2 )创新小组受到勤奋小组的 启发,继 续 进 行 探究 ,如 图 2 , G连 接 CE , 以 CE 为一边在 CE 的 左 下 方 作 正 方 形 CEFG, 发现 点 G 在线段 BC 的垂 直平 分线上 ,请你 给出证明;( 1 )求 A , B, C 三点的坐标;( 2) 试探究 在点 P 运动的过程中,是否 存 在 这 样的 点Q,使得以 A, C, Q 为顶点的三角形是等腰三角形 若存在,请 直 接写出此时点 Q 的 坐标;若 不 存 在 ,请 说 明理由;( 3 )请用含 m 的代数式表示线段 QF 的长,并求 出 m 为何值时 QF 有最大值BFE2F 图1(依 据 1 )项目 内容课题测量斜拉索顶端到桥面的距离测量示意图C二说明:两侧最长斜拉索 A C,BC 相交于点C, 分别与桥面交于 A, B 两点,且点 A, B, C 在同一 AB 竖直平面内测量数据 L A 的度数L B 的度数A B 的长度3go zgo234 米......。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省2018年中考数学真题试题第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()0??2?5?3?2??31??4. D B. C.A.2.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》 B.《几何原本》 C.《海岛算经》 D.《周髀算经》3.下列运算正确的是()362??bb632222623???aa?a?2a2a?3a?62a??(?a)... B D. CA??3a28a??)下列一元二次方程中,没有实数根的是( 4.22222x03?5x?x?x?0?4x?102x?4?3?2x?xB. D.A. C.320181月份我省部分地市邮政快递业务量的统计结果(单位:万5.近年来快递业发展迅速,下表是年件):13月份我省这七个地市邮政快递业务量的中位数是()319.79332.68338.87416.01万件.万件 D.A.万件 B.万件 C45千米处,是黄河上最具气势黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西6.301010立方米/秒.若以小时作时间单位,则其年平均流量可用科学其落差约的自然景观.米,年平均流量记数法表示为()16410?6.06?103.136.时立方米立方米/时 B./A5610?1036.363.636?立方米/时 D.时C.立方米/在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜7. ).色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸到黄球的概率是(1124D. B. C.A.9399C?ABCAC?690??A?60?Rt?ABC?ACB?按逆时针方向旋转得到,将8.如图,在,绕点中,,B''ABBAA'B'C'?恰好在)边上,则点之间的距离为(,此时点与点2636612.A.. B. DC22k?(x?h)?x?8x?9y?ay化为)的形式为(9.用配方法将二次函数2222254)?(x?yy(7y?x?4)?25?(x?4)?7??y?(x4)? D CA. B...OOABAACABCD2的延,以点的半径为如图,正方形10.为圆心,以内接于,长为半径画弧交FEAD,交的延长线于点)长线于点,则图中阴影部分的面积为(????88?4?884?44?....A C D B90分)第Ⅱ卷非选择题(共分)3分,共15个小题,每小题二、填空题(本大题共5?1)1)(32??(32.11.计算:212.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则?1??2??3??4??5?度.2018115cm.免费携带行李箱的长,宽,高之和不超过13.某厂家生产年国内航空公司规定:旅客乘机时,20cm8:11,则符合此规定的行李箱的高的最大符合该规定的行李箱,已知行李箱的宽为,长与宽的比为cm.值为ABMNABPQPQ//MN.,,,直线如图,直线相交于点分别与小宇同学利用尺规按以下步骤作14.AANCABDCD为圆心,以大为圆心,以任意长为半径作弧交于点于点,,交;②分别以图:①以点1CDEAEFAB?2NAB?PQ,于交.长为半径作弧,两弧在于点若内交于点;③作射线2AF?60ABP??的长为.,则线段OABDCD?8?ACB?90?AC6BC?Rt?ABC,的中点,以,点,如图,在15.是为直径作中,,OOABFFEGFGBCACFG的长为.则的切线分别与,交于点,,过点作,交于点,3解答应写出文字说明、证明过程或演算步骤)分.75三、解答题(本大题共8个小题,共012?236??(22)??4?.16.计算:()121?xx?21??. 2)(22x?x?4?x1x?4x0)(k?ky?x?b BAy,与反比例函数的图象分别与轴相交于点轴,17.如图,一次函数,111k20)?y?(k4)D(2,?4,?2)(C. 的图象相交于点,22x1)求一次函数和反比例函数的表达式;(x0?y(2)当;为何值时,1xxy?y.的取值范围,请直接写出(3)当为何值时,21在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目18.教务处在该校.为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动100绘制了如图所示的条形统计图和扇形统计名学生进行调查,并对此进行统计,七年级学生中随机抽取了. 图(均不完整)请解答下列问题:)请补全条形统计图和扇形统计图;(1 4(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?500人,请估计其中参加“书法”项目活动的有多少人?(3)若该校七年级学生共有(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?13对直线型斜拉索,造型新祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设19.颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.ACBCCA,,,分别与桥面交于相交于点说明:两侧最长斜拉索测量示意图BABC在同一竖直平面内两点,且点,,.?A?BAB的长度的度数的度数测量数据38?28?234米……CABsin38??0.6,)请帮助该小组根据上表中的测量数据,求斜拉索顶端点的距离(参考数据:到(1cos38??0.8tan38??0.8sin28??0.5cos28??0.9tan28??0.5),,,,(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可). 2018201日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性20.月年500G92次列车平均每小时比某列“和谐号”列.已知“太原南—北京西”全程大约“复兴号”千米,更好440(两列车中途停留时间均除外).千米,其行驶时间是该列“和谐号”列车行驶时间的经查车多行驶5G9210G92求乘坐“复兴号”.询,“复兴号”次列车从太原南到北京西,中途只有石家庄一站,停留分钟次列车从太原南到北京西需要多长时间.521.请阅读下列材料,并完成相应的任务:'CBYCD?CBBDCAD,在上取一点,连接第一步,在.上作出一点第二步,,使得'Z/A''Z'AAZ/YBD//CAZ'ABA'Z'A'?Y'Z,,使,交作上取一点于点第三步,过点作,并在.XAC/ZAYACBCYYX/BDZZZY//.,交作于点于点交,再过点于点,交.第四步,过点作XY??BYAX. 则有下面是该结论的部分证明:BAZ??'?BAZ'AZ//A'Z',证明:∵,∴BAZ'?BA'ZABZA'BZ'????.∴又∵.''BZZ'A?. ∴BZZA'Z'Y'BZ'Z'AZY''??. ∴同理可得.YZZAYZBZYZZA?Y'Z''ZA'?.,∴∵AXYZ1()请根据上面的操作步骤及部分证明过程,判断四边形的形状,并加以证明;任务:XY??BYAX 1)请再仔细阅读上面的操作步骤,在()的基础上完成的证明过程;(2ZBAZY'Y'ZBA',通过作平行线把四边形,放大得到四边形从而确定了点上述解决问题的过程中,3()Y________.的位置,这里运用了下面一种图形的变化是.位似.轴对称.旋转.平移A BC D 622.综合与实践ABCDAD?2ABEAB是在矩形,中,,问题情境:在数学活动课上,老师出示了这样一个问题:如图1BE?ABDEBCMDEDEDEFG,于点延长线上一点,且为一边在,,连接以,交的左下方作正方形AMAMDE的位置关系.连接与.试判断线段AMDE,并展示了如下的证明方法:垂直平分探究展示:勤奋小组发现,BE?ABAE?2AB. 证明:∵,∴AD?2ABAD?AE.∵,∴ABCDAD//BC.是矩形,∴∵四边形EMEB?.(依据1)∴ABDMEM1?AB??DMBEEM,∴∴.∵.DMAM?ADEDE边上的中线,即是的AD?AEAM?DE.(依据又∵2),∴AMDE.∴垂直平分反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?AGF的垂直平分线上,请直接回答,不必证明;是否在线段②试判断图1中的点CECECE的左下方作正,以,连接(2)创新小组受到勤奋小组的启发,继续进行探究,如图2为一边在CEFGGBC的垂直平分线上,请你给出证明;,发现点在线段方形探索发现:7CECECECEFGCBAE都在线段的右上方作正方形,如图)3,连接,,以可以发现点为一边在点(3ABCDCEFG的顶点与边,你还能发现哪个顶点在哪条的垂直平分线上,除此之外,请观察矩形和正方形边的垂直平分线上,请写出一个你发现的结论,并加以证明.综合与探究23.112x4x?y?x?ABABCACy,连接(点轴交于点在点,的左侧)与轴交于,,与两点如图,抛物线33m PPM?xMBCPP,,过点的横坐标为点.作是第四象限内抛物线上的一个动点,点轴,垂足为点x EBCF/PPE/ACBCPMQ.作轴于点于点于点,过点,交交交ABC三点的坐标;,)求(1,PACQQ为顶点的三角形是等腰三角运动的过程中,是否存在这样的点,,使得以,(2)试探究在点Q的坐标;若不存在,请说明理由;若存在,请直接写出此时点形.mm QFQF有最大值)请用含为何值时的代数式表示线段的长,并求出. 3(试卷答案一、选择题81-5: BBDCC 6-10: CADBA二、填空题12325536017 11. 14. 12. 15. 13. 5三、解答题 ?8?4?2?1?7. 16.()解:原式1x?2(x?1)(x?1)1???2)解:原式(22?x(x?1x?2)x?11??2?xx?2x?. 2?x y?kx?b C(?4,?2)D(2,4),)∵一次函数的图象经过点,17. 解:(1112??4?k?b?1,∴?4kb??2?11k??1. 解得?2?b?2??yx.∴一次函数的表达式为1kk22?y?48?k4)D(2,. .∵反比例函数的图象经过点,∴∴222x8?y.∴反比例函数的表达式为2x0y?0?x?2. 2)由,得(10y?2?2x??x?. .∴当时,∴12x?0?x?4?. )(3或 1)(18.解:910?100%?40%.)(21510?40%. 答:男生所占的百分比为500?21%?105(人)).(3105人答:估计其中参加“书法”项目活动的有.15155??.4)(164815?10?8?155. 答:正好抽到参加“器乐”活动项目的女生的概率为16CCD?ABD.作19.解:(1)过点于点CD?xRt?ADC?ADC?90??A?38?. ,设米,在中,CDCDx5x????AD?tan38. ∵,∴4AD38?0.8tanRt?BDC?BDC?90??B?28?.中,在,CDCDx?2xBD?tan28???. ∵,∴0.5tanBD28?5x?2x?234234AB??BD?AD.,∴∵4x?72.解得CAB72米.答:斜拉索顶端点的距离为到(2)答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.x92G小时,20.解法一:设乘坐“复兴号”次列车从太原南到北京西需要500500??40. 由题意,得151(x??)x6648?x. 解得38?x是原方程的根经检验,. 3892G小时次列车从太原南到北京西需要答:乘坐“复兴号”.3x92G小时,解法二:设“复兴号”次列车从太原南到北京西的行驶时间需要10 500500??40. 由题意,得5xx45?x. 解得25?x经检验,. 是原方程的根2851??. (小时)326892G. 答:乘坐“复兴号”次列车从太原南到北京西需要小时3AXYZ.是菱形(1)四边形21.解:AXYZZAYX//ZY//AC. ,∴四边形证明:∵是平行四边形,AXYZZA?YZ. ,∴∵是菱形2???CD?CB1. (2)证明:∵,∴3??ZY//AC?1. ∵,∴YZ??2??3YB..∴∴YZAXAXYZ?XY?. 是菱形,∴∵四边形XYAX?BY?.∴D.)(或位似)(3. )①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例)22.(1. :等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”)依据2AGF. ②答:点的垂直平分线上在线段HBCGHG?于点,(2)证明:过点作ABEABCD在是矩形,点∵四边形的延长线上,??90??90??1?2GHC??CBE?ABC??. ,∴∴CEFG为正方形,∵四边形32?3?90????1?90GCE??CGCE???. ,∴∴.∴,CBE??GHC?.∴11HC?BEABCDAD?BC.∴是矩形,∴,∵四边形AD?2ABBE?ABBC?2BE?2HCHC?BH. ,∴∵,,∴GHBCGBC的垂直平分线上在.∴∴点垂直平分.FBCFAD边的垂直平分线上)在边的垂直平分线上(或点(3)答:点. 在FFM?BCMEEN?FMN. ,过点于点证法一:过点于点作作?BMN??ENM??ENF?90?。

相关文档
最新文档