人教版七年级下册数学相交线练习题(含答案)
人教版数学七年级下学期相交线同步练习题含解析

5.1 相交线一.选择题(共15小题)1.平面内有三条直线,那么它们的交点个数有()A.0个或1个B.0个或2个C.0个或1个或2个D.0个或1个或2个或3个2.下列各图中,∠1=∠2一定成立的是()A.B.C.D.3.如图,直线a,b相交于点O,因为∠1+∠2=180°,∠3+∠2=180°,所以∠1=∠3,这是根据()A.同角的余角相等B.等角的余角相等C.同角的补角相等D.等角的补角相等4.下列各图中,∠1与∠2互为对顶角的是()A.B.C.D.5.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.6.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是()A.30°B.105°C.120°D.135°7.下列条件中,两个角的平分线互相垂直的是()A.互为对顶角的两个角的平分线B.互为补角的两个角的角平分线C.互为邻补角的两个角的角平分线D.相邻两个角的角平分线8.如图,O为直线AB上一点,OC⊥OD,若∠1=50°,则∠2=()A.60°B.50°C.40°D.30°9.下列关系中,互相垂直的两条直线是()A.两直线相交成的四角中相邻两角的角平分线B.互为对顶角的两角的平分线C.互为补角的两角的平分线D.相邻两角的角平分线10.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,这样做的理由是()A.两点之间,线段最短B.垂线段最短C.过一点可以作无数条直线D.两点确定一条直线11.如图,AC⊥BC于点C,点D是线段BC上任意一点.若AC=5,则AD的长不可能是()A.4 B.5 C.6 D.712.如图,点A到线段BC的距离指的是下列哪条线段的长度()A.AB B.AC C.AD D.AE13.如图,在△ABC中,AB⊥AC,AD⊥BC,垂足为D,则点B到直线AD的距离是线段()的长度.A.AB B.BD C.AC D.DC14.如图,下列说法中错误的是()A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠2和∠5是内错角15.如图,说法正确的是()A.∠A和∠1是同位角B.∠A和∠2是内错角C.∠A和∠3是同旁内角D.∠A和∠B是同旁内角二.填空题(共5小题)16.若∠1和∠2是对顶角,∠1=35°,则∠2的补角是.17.如图∠1=25°,AO⊥CO,点B,O,D在同一条直线上,则∠2的度数为.18.如图,BC⊥AC,BC=12,AC=9,AB=15,则点C到线段AB的距离是.19.如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,AB=5,则点B到直线AC的距离等于.20.如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).三.解答题(共4小题)21.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=64°,求∠AOF的度数;(2)若∠BOD:∠BOE=2:3,求∠AOF度数.22.如图,AC⊥BC,AC=9,BC=12,AB=15.(1)试说出点A到直线BC的距离;点B到直线AC的距离;(2)点C到直线AB的距离是多少?你是怎样求得的?23.根据图形填空:(1)若直线ED、BC被直线AB所截,则∠1和是同位角;(2)若直线ED、BC被直线AF所截,则∠3和是内错角;(3)∠1和∠3是直线AB、AF被直线所截构成的内错角.(4)∠2和∠4是直线AB、被直线BC所截构成的角.24.指出图中各对角的位置关系:(1)∠C和∠D是角;(2)∠B和∠GEF是角;(3)∠A和∠D是角;(4)∠AGE和∠BGE是角;(5)∠CFD和∠AFB是角.参考答案与试题解析一.选择题(共15小题)1.【解答】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,交点个数为3;所以,它们的交点个数有4种情形.故选:D.2.【解答】解:根据对顶角相等可知,C选项是正确的,故选:C.3.【解答】解:∵∠1与∠3都是∠2的补角,∴∠1=∠3(同角的补角相等).故选:C.4.【解答】解:A、C、D中∠1与∠2不是对顶角,B中∠1与∠2互为对顶角.故选:B.5.【解答】解:A、∠1与∠2不是对顶角,故A选项不符合题意;B、∠1与∠2不是对顶角,故B选项不符合题意;C、∠1与∠2是对顶角,故C选项符合题意;D、∠1与∠2不是对顶角,故D选项不符合题意.故选:C.6.【解答】解:∵∠1与∠2互余且相等,∴∠1=∠2=45°,∵∠1与∠3是邻补角,∴∠3=180°﹣45°=135°.故选:D.7.【解答】解:互为邻补角的两个角的角平分线互相垂直,故选:C.8.【解答】解:∵OC⊥OD,∴∠COD=90°,∵∠1=50°,∴∠2=180°﹣∠COD﹣∠1=180°﹣90°﹣50°=40°.故选:C.9.【解答】解:A、如图,∵OE平分∠AOD,OF平分∠BOD,∴2∠DOE=∠AOD,2∠DOF=∠BOD,∵∠AOD+∠BOD=180°,∴2∠DOE+2∠DOF=180°,∴∠DOE+∠DOF=90°,∴∠EOF=90°,即:两直线相交成的四角中相邻两角的角平分线互相垂直;B、互为对顶角的两角的平分线所成角为180°;C、若互为补角的两角不是邻补角,则它们的平分线不垂直;D、相邻两角不是邻补角,则它们的角平分线不垂直;故选:A.10.【解答】解:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.故选:B.11.【解答】解:∵AC=5,AC⊥BC于点C,∴AD≥5,故选:A.12.【解答】解:由图可得,AD⊥BC于D,点A到线段BC的距离指线段AD的长,故选:C.13.【解答】解:根据点到直线的距离概念:这一点到直线的垂线段的长度,∴点B到直线AD的距离是指过点B作直线AD的垂线段的长度,即BD⊥AD,即BD.故选:B.14.【解答】解:A、∠3和∠5是同位角,故本选项不符合题意.B、∠4和∠5是同旁内角,故本选项不符合题意.C、∠2和∠4是对顶角,故本选项不符合题意.D、∠2和∠5不是内错角,故本选项符合题意.故选:D.15.【解答】解:∵∠A和∠1是内错角,∠A和∠2不是同位角、内错角和同旁内角,∠A 和∠3是同位角,∠A和∠B是同旁内角,∴D选项正确,故选:D.二.填空题(共5小题)16.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是补角,∴∠2+∠3=180°,等角代换得∠1+∠3=180°∴∠3=180°﹣35°=145°,故答案为:145°.17.【解答】解:∵AO⊥OC,∴∠AOC=90°,∵∠1=25°,∴∠BOC=90°﹣25°=65°,∴∠2=180°﹣65°=115°.故答案为:115°.18.【解答】解:∵92+122=152,∴AC2+BC2=AB2,∴∠C=90°,设点C到AB的距离是h,AC•BC=AB•h,解得:h=7.2.故答案为:7.2.19.【解答】解:根据垂线段、点到直线距离的定义可知,点B到直线AC的距离等于BC的长度,即为4.故答案为:4.20.【解答】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1不是内错角,此结论错误;④∠1与∠3是内错角,此结论错误;故答案为:①②.三.解答题(共4小题)21.【解答】解:(1)∵OE平分∠BOC,∴∠BOC=2∠BOE=2×64°=128°,∴∠AOC=180°﹣128°=52°,∵∠COF=90°,∴∠AOF=38°;(2)∵OE平分∠BOC,∴∠BOC=2∠BOE,∵∠BOD:∠BOE=2:3,∴,∴∠AOC=∠BOD=45°,∵∠COF=90°,∴∠AOF=45°.22.【解答】解:(1)∵AC⊥BC,AC=9,BC=12,∴点A到直线BC的距离,点B到直线AC 的距离分别是:9,12.(2)设点C到直线AB的距离为h,△ABC的面积=BC•AC=AB•h,∴15h=12×9,∴h=.∴点C到直线AB的距离为.23.【解答】解:(1)如图:若ED,BC被AB所截,则∠1与∠2是同位角,(2)若ED,BC被AF所截,则∠3与∠4是内错角,(3)∠1 与∠3是AB和AF被ED所截构成的内错角,(4)∠2与∠4是AB和AF被BC所截构成的同位角.故答案是:(1)∠2.(2)∠4.(3)ED.(4)AF;同位.24.【解答】解:(1)∠C和∠D是同旁内角;(2)∠B和∠GEF是同位角;(3)∠A和∠D是内错角;(4)∠AGE和∠BGE是邻补角;(5)∠CFD和∠AFB是对顶角;故答案为:(1)同旁内角(2)同位角(3)内错角(4)邻补角(5)对顶角。
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。
【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。
人教版七年级数学下册第5章同步分层练习(含答案) :5.1.1相交线

人教版七年级数学下册第5章同步课时练习5.1.1 相交线★基础练习★【知识点1】对顶角、邻补角的认识1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,图中对顶角共有()对.A.3B.6C.8D.12 3.如图,∠1与∠2互为邻补角的是()A.B.C.D.4.如图,直线AB、CD相交于点O,作射线OE,则图中邻补角有()第1页(共8页)A.4对B.6对C.7对D.8对【知识点2】对顶角、邻补角的性质5.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°6.如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A.360°B.180°C.120°D.907.如图,直线AB与CD相交于点O,射线OE平分∠BOC,且∠BOC=70°,则∠AOE 的度数为()A.145°B.155°C.110°D.135°★提升练习★8.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是()A.30°B.105°C.120°D.135°9.如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOD=90°,若∠BOD:∠BOE=1:2,则∠AOF的度数为()A.70°B.75°C.60°D.54°10.如图,直线AB,CD相交于点O,∠COE是直角,OF平分∠AOD,若∠BOE=40°,则∠AOF的度数是()A.65°B.60°C.50°D.40°11.如图,直线AB,CD相交于点O,∠AOE=90°,∠DOF=90°,OB平分∠DOG,给出下列结论:①当∠AOF=60°时,∠DOE=60°;②OD为∠EOG的平分线;③与∠BOD相等的角有三个;④∠COG=∠AOB﹣2∠EOF.其中正确的结论为()A.①②④B.②③④C.①③④D.①②③④12.如图,直线AB、CD相交于点O,∠1=∠2,若∠AOD=68°,则∠1的度数为.第3页(共8页)13.如图,直线AB、CD交于点O,射线OM平分∠AOC,∠AOM=36°,则∠BOD =.14.如图,直线AB、CD相交于点O,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2;④∠1=∠3;⑤∠1+∠4=180°,其中正确的是.15.已知,如图,直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF =34°,求∠AOC和∠BOD的度数.16.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=64°,求∠AOF的度数;(2)若∠BOD:∠BOE=2:3,求∠AOF度数.17.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.★拓展探究突破练习★18.已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=度;∠FOD=度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.第5页(共8页)参考答案1.C.2.B.3.B.4.B.5.C.6.B.7.A.8.D.9.D.10.A.11.C.12.34°13.72°14.②④⑤.15.解:因为∠COE=90°,∠COF=34°,所以∠EOF=∠COE﹣∠COF=56°,因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=112°,所以∠AOC=112°﹣90°=22°,∠EOB=180°﹣112°=68°,因为∠EOD是直角,所以∠BOD=22°.16.解:(1)∵OE平分∠BOC,∴∠BOC=2∠BOE=2×64°=128°,∴∠AOC=180°﹣128°=52°,∵∠COF=90°,∴∠AOF=38°;(2)∵OE平分∠BOC,∴∠BOC=2∠BOE,∵∠BOD:∠BOE=2:3,∴,∴∠AOC=∠BOD=45°,∵∠COF=90°,∴∠AOF=45°.17.解:(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC=5x,∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,则2x=30°,∴∠AOE=30°;(2)OB是∠DOF的平分线;理由如下:∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°,∵OF平分∠BOE,∴∠BOF=75°,∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠COF的角平分线.18.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD=∠AOD==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,第7页(共8页)10t +8t =150,t =,答:当射线OE '与射线OF '重合时至少需要秒;(3)设射线OE '转动的时间为t 秒,由题意得:10908150t t ++=或10815090t t +=+或36010815090t t -=-+或36010360890360150t t -+-+=-,103t =或403或703或1003.答:射线OE '转动的时间为103秒或403秒或703秒或1003秒.。
人教版七年级下册数学 第五章 相交线与平行线 练习题(含答案)

人教版七年级下册数学第五章相交线与平行线练习题(含答案)一、单选题
1.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).
A.35°B.70°
C.110°D.145°
2.如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是( )
A.PA B.PB C.PC D.PD
3.如图,与∠1是同旁内角的是()
A.∠2B.∠3C.∠4D.∠5
4.在同一平面内,下列说法:∠过两点有且只有一条直线;∠两条不相同的直线有且只有一个公共点;∠经过直线外一点有且只有一条直线与已知直线垂直;∠经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()
A.1个B.2个C.3个D.4个
5.如图,下列条件不能判断直线a∠b的是()
A .∠1=∠4
B .∠3=∠5
C .∠2+∠5=180°
D .∠2+∠4=180° 6.如图,下列能判定AB ∠CD 的条件有几个( )
(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.
A .4
B .3
C .2
D .1 7.如图,12∠∠=,340∠=o ,则4∠等于( )
A .120o
B .130o
C .140o
D .40o 8.如图,若AB∠CD ,CD∠EF ,那么∠BC
E =( )
A .∠1+∠2
B .∠2-∠1。
人教版七年级下册数学第五章相交线练习题(有答案)

相交线练习题一、 选择题1、如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A第2题3、如图所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段DCBA第3题4、下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个5、如图所示,AD ⊥BD,BC ⊥CD,AB=acm,BC=bcm,则BD 的范围是( )A.大于acmB.小于bcmC.大于acm 或小于bcmD.大于bcm 且小于acmDCBA第5题 6、如图所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( )A.62°B.118°C.72°D.59°O DCBA第6题7、到直线L 的距离等于2cm 的点有( )A.0个B.1个;C.无数个D.无法确定8、点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm 二、填空题1、如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A第1题 第2题2、如图所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______. 3、过一点有且只有________直线与已知直线垂直.4、画一条线段或射线的垂线,就是画它们________的垂线.5、直线外一点到这条直线的_________,叫做点到直线6、如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA第6题 第7题 第8题7.如图所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.8.如图所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________.三、解答题1、如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA2、如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.OE CBA3、如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.ODCBA4、如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba3412四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.lA五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA六、中考题1、如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.NBA2、如图16所示,直线AB,CD 相交于O,若∠1=40°,则∠2•的度数为____ODCBA 12相交线练习题答案一、选择题A B C B D A C D二、填空题1.∠2和∠4 ∠32. ∠COB ∠COB和∠AOD 50° 130° 3、一条 4、所在直线5、垂线段的长度 6、125° 55° 7、147.5° 8、42°三、解答题1、∠DOG=55°2、∠BOD=120°,∠AOE=30°3、∠BOD=72°4、∠4=32.5°四、提高训练:解:如图3所示.l五、探索发现:解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°,∴43∠BOC=•180°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.六、中考题1、解:如图4所示.QNPM A2、140°。
人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案

人教版七年级数学下册《相交线与平行线中的四种几何模型》专项练习题-附含答案类型一、猪脚模型例.问题情境:如图① 直线AB CD ∥ 点E F 分别在直线AB CD 上.(1)猜想:若1130∠=︒ 2150∠=︒ 试猜想P ∠=______°;(2)探究:在图①中探究1∠ 2∠ P ∠之间的数量关系 并证明你的结论;(3)拓展:将图①变为图② 若12325∠+∠=︒ 75EPG ∠=︒ 求PGF ∠的度数. 【答案】(1)80︒(2)36012P ∠=︒-∠-∠;证明见详解(3)140︒【详解】(1)解:如图过点P 作MN AB ∥∵AB CD ∥∵AB MN CD ∥∥.∵1180EPN ∠+∠=︒2180FPN ∠+∠=︒.∵1130∠=︒ 2150∠=︒∵12360EPN FPN ∠+∠+∠+∠=︒∵36013015080EPN FPN ∠+=︒-︒-︒=︒.∵P EPN FPN ∠=∠+∠∵∵P =80°.故答案为:80︒;(2)解:36012P ∠=︒-∠-∠ 理由如下:如图过点P 作MN AB ∥∵AB CD ∥∵AB MN CD ∥∥.∵1180EPN ∠+∠=︒2180FPN ∠+∠=︒.∵12360EPN FPN ∠+∠+∠+∠=︒∵EPN FPN P ∠+∠=∠36012P ∠=︒-∠-∠.(3)如图分别过点P 、点G 作MN AB ∥、KR AB ∥∵AB CD ∥∵AB MN KR CD ∥∥∥.∵1180EPN ∠+∠=︒180NPG PGR ∠+∠=︒2180RGF ∠+∠=︒.∵12540EPN NPG PGR RGF ∠+∠+∠+∠++∠=︒∵75EPG EPN NPG ∠=∠+∠=︒PGR RGF PGF ∠+∠=∠12325∠+∠=︒∵12540PGF EPG ∠+∠+∠+∠=︒∵54032575140PGF ∠=︒-︒-︒=︒故答案为:140︒.【变式训练1】已知直线a b ∥ 直线EF 分别与直线a b 相交于点E F 点A B 分别在直线a b 上 且在直线EF 的左侧 点P 是直线EF 上一动点(不与点E F 重合)设∵P AE =∵1 ∵APB =∵2 ∵PBF =∵3.(1)如图1 当点P 在线段EF 上运动时 试说明∵1+∵3=∵2;(2)当点P 在线段EF 外运动时有两种情况.①如图2写出∵1 ∵2 ∵3之间的关系并给出证明;②如图3所示 猜想∵1 ∵2 ∵3之间的关系(不要求证明).【答案】(1)证明见详解(2)①312∠=∠+∠;证明见详解;②123∠=∠+∠;证明见详解【详解】(1)解:如图4所示:过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵1APC ∠=∠ 3BPC ∠=∠∵2APC BPC ∠=∠+∠∵213∠=∠+∠;(2)解:①如图5过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵3BPC ∠=∠ 1APC ∠=∠∵2BPC APC ∠=∠+∠∵312;②如图6过点P 作PC a ∥∵a b ∥∵PC a b ∥∥∵1APC ∠=∠ 3BPC ∠=∠∵2APC BPC ∠=∠+∠∵123∠=∠+∠.【变式训练2】阅读下面内容 并解答问题.已知:如图1 AB CD 直线EF 分别交AB CD 于点E F .BEF ∠的平分线与DFE ∠的平分线交于点G .(1)求证:EG FG ⊥;(2)填空 并从下列①、②两题中任选一题说明理由.我选择 题.①在图1的基础上 分别作BEG ∠的平分线与DFG ∠的平分线交于点M 得到图2 则EMF ∠的度数为 .②如图3 AB CD 直线EF 分别交AB CD 于点E F .点O 在直线AB CD 之间 且在直线EF 右侧 BEO ∠的平分线与DFO ∠的平分线交于点P 则EOF ∠与EPF ∠满足的数量关系为 . GH ABAB CD AB GH CD ∴BEG EGH DFG FGH ∠∠∠∠∴==,180BEF DFE ∴∠+∠=︒EG 平分GEB ∴∠=GEB ∴∠+在EFG ∆中EGF ∴∠=EM 平分BEM ∴∠45EMF BEM MFD ∴∠=∠+∠=︒故答案为:45︒;②结论:2EOF EPF ∠=∠.理由:如图3中 由题意 EOF BEO DFO ∠=∠+∠ EPF BEP DFP ∠=∠+∠PE 平分BEO ∠ PF 平分DFO ∠2BEO BEP ∴∠=∠ 2DFO DFP ∠=∠2EOF EPF ∴∠=∠故答案为:2EOF EPF ∠=∠.【变式训练3】如图:(1)如图1 AB CD ∥ =45ABE ∠︒ 21CDE ∠=︒ 直接写出BED ∠的度数.(2)如图2 AB CD ∥ 点E 为直线AB CD 间的一点 BF 平分ABE ∠ DF 平分CDE ∠ 写出BED ∠与F ∠之间的关系并说明理由.(3)如图3 AB 与CD 相交于点G 点E 为BGD ∠内一点 BF 平分ABE ∠ DF 平分CDE ∠ 若60BGD ∠=︒ 95BFD ∠=︒ 直接写出BED ∠的度数. 【答案】(1)∵BED =66°;(2)∵BED =2∵F 见解析;(3)∵BED 的度数为130°.【详解】(1)解:(1)如图 作EF ∵AB∵直线AB ∵CD∵EF ∵CD∵∵ABE =∵1=45° ∵CDE =∵2=21°∵∵BED =∵1+∵2=66°;(2)解:∵BED =2∵F理由是:过点E作EG∥AB延长DE交BF于点H∵AB∥CD∵AB∥CD∥EG∵∵5=∵1+∵2∵6=∵3+∵4又∵BF平分∵ABE DF平分∵CDE∵∵2=∵1∵3=∵4则∵5=2∵2∵6=2∵3∵∵BED=2(∵2+∵3)又∵F+∵3=∵BHD∵BHD+∵2=∵BED∵∵3+∵2+∵F=∵BED综上∵BED=∵F+12∵BED即∵BED=2∵F;(3)解:延长DF交AB于点H延长GE到I∵∵BGD=60°∵∵3=∵1+∵BGD=∵1+60° ∵BFD=∵2+∵3=∵2+∵1+60°=95°∵∵2+∵1=35° 即2(∵2+∵1) =70°∵BF平分∵ABE DF平分∵CDE∵∵ABE=2∵2∵CDE=2∵1∵∵BEI=∵ABE +∵BGE=2∵2+∵BGE∵DEI=∵CDE+∵DGE=2∵1+∵DGE ∵∵BED=∵BEI+∵DEI=2(∵2+∵1)+( ∵BGE+∵DGE)=70°+60°=130°∵∵BED的度数为130°.类型二、铅笔模型例.问题情景:如图1 AB ∵CD ∵P AB =140° ∵PCD =135° 求∵APC 的度数.(1)丽丽同学看过图形后立即口答出:∵APC =85° 请补全她的推理依据.如图2 过点P 作PE ∵AB因为AB ∵CD 所以PE ∵CD .( )所以∵A +∵APE =180° ∵C +∵CPE =180°.( )因为∵P AB =140° ∵PCD =135° 所以∵APE =40° ∵CPE =45°∵APC =∵APE +∵CPE =85°.问题迁移:(2)如图3 AD ∵BC 当点P 在A 、B 两点之间运动时 ∵ADP =∵α ∵BCP =∵β 求∵CPD 与∵α、∵β之间有什么数量关系?请说明理由.(3)在(2)的条件下 如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合) 请直接写出∵CPD 与∵α、∵β之间的数量关系.【答案】(1)平行于同一条直线的两条直线平行(或平行公理推论) 两直线平行 同旁内角互补;(2)CPD αβ∠=∠+∠ 理由见解析;(3)CPD βα∠=∠-∠或CPD αβ∠=∠-∠【详解】解:(1)如图2 过点P 作PE ∵AB因为AB ∵CD 所以PE ∵CD .(平行于同一条直线的两条直线平行)所以∵A +∵APE =180° ∵C +∵CPE =180°.(两直线平行同旁内角互补)因为∵P AB=140° ∵PCD=135°所以∵APE=40° ∵CPE=45°∵APC=∵APE+∵CPE=85°.故答案为:平行于同一条直线的两条直线平行;两直线平行同旁内角互补;(2)∵CPD=∵α+∵β理由如下:如图3所示过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵DPE+∵CPE=∵α+∵β;(3)当P在BA延长线时如图4所示:过P作PE∵AD交CD于E同(2)可知:∵α=∵DPE∵β=∵CPE∵∵CPD=∵β-∵α;当P在AB延长线时如图5所示:同(2)可知:∵α=∵DPE∵β=∵CPE∵∵CPD=∵α-∵β.综上所述∵CPD与∵α、∵β之间的数量关系为:∵CPD=∵β-∵α或∵CPD=∵α-∵β.【变式训练1】已知直线AB∥CD(1)如图(1)点G为AB、CD间的一点联结AG、CG.若∵A=140° ∵C=150° 则∵AGC 的度数是多少?(2)如图(2)点G为AB、CD间的一点联结AG、CG.∵A=x° ∵C=y° 则∵AGC的度数是多少?(3)如图(3)写出∵BAE、∵AEF、∵EFG、∵FGC、∵GCD之间有何关系?直接写出结论.【答案】(1)70°;(2)∵AGC=(x+y)°;(3)∵BAE+∵EFG+∵GCD=∵AEF+∵FGC.【详解】解:(1)如图过点G作GE∥AB∵AB∥GE∵∵A+∵AGE=180°(两直线平行同旁内角互补).∵∵A=140°∵∵AGE=40°.∵AB∥GE AB∥CD∵GE∥CD.∵∵C+∵CGE=180°(两直线平行同旁内角互补).∵∵C=150°∵∵CGE=30°.∵∵AGC=∵AGE+∵CGE=40°+30°=70°.(2)如图过点G作GF∥AB∵AB∥GF∵∵A=AGF(两直线平行内错角相等).∵AB∥GF AB∥CD∵GF∥CD.∵∵C=∵CGF.∵∵AGC=∵AGF+∵CGF=∵A+∵C.∵∵A=x° ∵C=y°∵∵AGC=(x+y)°.(3)如图所示过点E作EM∥AB过点F作FN∥AB过点G作GQ∥CD∵AB∥CD∵AB∥EM∥FN∥GQ∥CD.∵∵BAE=∵AEM∵MEF=∵EFN∵NFG=∵FGQ∵QGC=∵GCD(两直线平行内错角相等).∵∵AEF=∵BAE+∵EFN∵FGC=∵NFG+GCD.∵∵EFN+∵NFG=∵EFG∵∵BAE+∵EFG+∵GCD=∵AEF+∵FGC.【变式训练2】问题情境:如图1 AB∵CD∵P AB=130° ∵PCD=120° 求∵APC度数.思路点拨:小明的思路是:如图2 过P作PE∵AB通过平行线性质可分别求出∵APE、∵CPE的度数从而可求出∵APC的度数;小丽的思路是:如图3 连接AC通过平行线性质以及三角形内角和的知识可求出∵APC的度数;小芳的思路是:如图4 延长AP交DC的延长线于E通过平行线性质以及三角形外角的相关知识可求出∵APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算你求得的∵APC的度数为°;问题迁移:(1)如图5 AD∵BC点P在射线OM上运动当点P在A、B两点之间运动时∵ADP=∵α ∵BCP=∵β.∵CPD、∵α、∵β之间有何数量关系?请说明理由;(2)在(1)的条件下如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合)请你直接写出∵CPD、∵α、∵β间的数量关系.【答案】问题解决:110°;问题迁移:(1)∵CPD=∵α+∵β 理由见解析;(2)∵CPD=∵β﹣∵α 理由见解析【详解】解:小明的思路:如图2 过P作PE∵AB∵AB∵CD∵PE∵AB∵CD∵∵APE=180°﹣∵A=50° ∵CPE=180°﹣∵C=60°∵∵APC=50°+60°=110°故答案为:110;(1)∵CPD=∵α+∵β 理由如下:如图5 过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵DPE+∵CPE=∵α+∵β;(2)当P在BA延长线时∵CPD=∵β﹣∵α;理由:如图6 过P作PE∵AD交CD于E∵AD∵BC∵AD∵PE∵BC∵∵α=∵DPE∵β=∵CPE∵∵CPD=∵CPE﹣∵DPE=∵β﹣∵α;当P在BO 之间时 ∵CPD =∵α﹣∵β.理由:如图7 过P 作PE ∵AD 交CD 于E∵AD ∵BC∵AD ∵PE ∵BC∵∵α=∵DPE ∵β=∵CPE∵∵CPD =∵DPE ﹣∵CPE =∵α﹣∵β.类型三、锄头模型例.已知 AB ∵CD .点M 在AB 上 点N 在CD 上.(1)如图1中 ∵BME 、∵E 、∵END 的数量关系为: ;(不需要证明) 如图2中 ∵BMF 、∵F 、∵FND 的数量关系为: ;(不需要证明)(2)如图3中 NE 平分∵FND MB 平分∵FME 且2∵E +∵F =180° 求∵FME 的度数;(3)如图4中 ∵BME =60° EF 平分∵MEN NP 平分∵END 且EQ ∵NP 则∵FEQ 的大小A BC D P123是否发生变化若变化请说明理由若不变化求出∵FEQ的度数.【答案】(1)∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND;(2)120°;(3)不变30°【详解】解:(1)过E作EH∵AB如图1∵∵BME=∵MEH∵AB∵CD∵HE∵CD∵∵END=∵HEN∵∵MEN=∵MEH+∵HEN=∵BME+∵END即∵BME=∵MEN﹣∵END.如图2 过F作FH∵AB∵∵BMF=∵MFK∵AB∵CD∵FH∵CD∵∵FND=∵KFN∵∵MFN=∵MFK﹣∵KFN=∵BMF﹣∵FND即:∵BMF=∵MFN+∵FND.故答案为∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND.(2)由(1)得∵BME=∵MEN﹣∵END;∵BMF=∵MFN+∵FND.(2)观察图(2)已知AB∵CD猜想图中的∵BPD与∵B、∵D的关系并说明理由.(3)观察图(3)和(4)已知AB∵CD猜想图中的∵BPD与∵B、∵D的关系不需要说明理由.【答案】(1)∵B+∵BPD+∵D=360° 理由见解析;(2)∵BPD=∵B+∵D理由见解析;(3)∵BPD=∵D-∵B或∵BPD=∵B-∵D理由见解析【详解】解:(1)如图(1)过点P作EF∵AB∵∵B+∵BPE=180°∵AB∵CD EF∵AB∵EF∵CD∵∵EPD+∵D=180°∵∵B+∵BPE+∵EPD+∵D=360°∵∵B+∵BPD+∵D=360°.(2)∵BPD=∵B+∵D.理由:如图2 过点P作PE∵AB∵AB∵CD∵PE∵AB∵CD∵∵1=∵B∵2=∵D∵∵BPD=∵1+∵2=∵B+∵D.(3)如图(3)∵BPD=∵D-∵B.理由:∵AB∵CD∵∵1=∵D∵∵1=∵B+∵BPD∵∵D=∵B+∵BPD即∵BPD=∵D-∵B;如图(4)∵BPD=∵B-∵D.理由:∵AB ∵CD∵∵1=∵B∵∵1=∵D +∵BPD∵∵B =∵D +∵BPD即∵BPD =∵B -∵D .【变式训练2】已知//AM CN 点B 为平面内一点 AB BC ⊥于B .(1)如图1 点B 在两条平行线外 则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间 过点B 作BD AM ⊥于点D . ①如图2 说明ABD C ∠=∠成立的理由;②如图3 BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒= 求EBC ∠的度数.【答案】(1)∵A +∵C =90°;(2)①见解析;②105°【详解】解:(1)如图1 AM 与BC 的交点记作点O∵AM ∵CN∵∵C =∵AOB∵AB ∵BC∵∵A +∵AOB =90°∵∵A +∵C =90°;(2)①如图2 过点B作BG∵DM∵BD∵AM∵DB∵BG∵∵DBG=90°∵∵ABD+∵ABG=90°∵AB∵BC∵∵CBG+∵ABG=90°∵∵ABD=∵CBG∵AM∵CN BG∵DMBG CN//,∵∵C=∵CBG∵ABD=∵C;②如图3 过点B作BG∵DM∵BF平分∵DBC BE平分∵ABD∵∵DBF=∵CBF∵DBE=∵ABE由(2)知∵ABD=∵CBG∵∵ABF=∵GBF设∵DBE=α∵ABF=β则∵ABE=α∵ABD=2α=∵CBG∵GBF=∵AFB=β∵BFC=3∵DBE=3α∵∵AFC=3α+β∵∵AFC+∵NCF=180° ∵FCB+∵NCF=180° ∵∵FCB=∵AFC=3α+β∵BCF中由∵CBF+∵BFC+∵BCF=180°得:2α+β+3α+3α+β=180°∵AB∵BC∵β+β+2α=90°∵α=15° ∵∵ABE=15°∵∵EBC=∵ABE+∵ABC=15°+90°=105°.类型四、齿距模型例.如图AB∵EF设∵C=90° 那么x y z的关系式为______.【答案】y=90°-x+z.【详解】解:作CG//AB DH//EF∵AB//EF∵AB//CG//HD//EF∵∵x=∵1 ∵CDH=∵2 ∵HDE=∵z∵∵BCD=90°∵∵1+∵2=90°∵y=∵CDH+∵HDE=∵z+∵2∵∵2=90°-∵1=90°-∵x∵∵y=∵z+90°-∵x.即y=90°-x+z.【变式训练1】如图1 已知AB ∵CD ∵B =30° ∵D =120°;(1)若∵E =60° 则∵F = ;(2)请探索∵E 与∵F 之间满足的数量关系?说明理由;(3)如图2 已知EP 平分∵BEF FG 平分∵EFD 反向延长FG 交EP 于点P 求∵P 的度数.【答案】(1)90︒;(2)30F E ∠=∠+︒ 理由见解析;(3)15︒【详解】(1)解:如图1 分别过点E F 作//EM AB //FN AB////EM AB FN ∴30B BEM ∴∠=∠=︒ MEF EFN ∠=∠又//AB CD //AB FN//CD FN ∴180D DFN ∴∠+∠=︒又120D ∠=︒60DFN ∴∠=︒30BEF MEF ∴∠=∠+︒ 60EFD EFN ∠=∠+︒60EFD MEF ∴∠=∠+︒3090EFD BEF ∴∠=∠+︒=︒;故答案为:90︒;(2)解:如图1 分别过点E F 作//EM AB //FN AB////EM AB FN ∴30B BEM ∴∠=∠=︒ MEF EFN ∠=∠又//AB CD //AB FN//CD FN ∴又120D ∠=60DFN ∴∠=BEF MEF ∴∠=∠EFD MEF ∴∠=∠(3)解:如图设2BEF ∠=EP 平分PEF ∴∠=//FH EP HFG ∠=【变式训练2】如图1 点A 、B 分别在直线GH 、MN 上 GAC NBD ∠=∠ C D ∠=∠.(1)求证://GH MN ;(提示:可延长AC 交MN 于点P 进行证明) (2)如图2 AE 平分GAC ∠ DE 平分BDC ∠ 若AED GAC ∠=∠ 求GAC ∠与ACD ∠之间的数量关系;(3)在(2)的条件下 如图3 BF 平分DBM ∠ 点K 在射线BF 上 13KAG GAC ∠=∠ 若AKB ACD ∠=∠ 直接写出GAC ∠的度数.∵ACD C ∠=∠∵//AP BD∵NBD NPA ∠=∠∵GAC NBD ∠=∠∵GAC NPA ∠=∠∵//GH MN ;(2)延长AC 交MN 于点P 交DE 于点Q∵180E EAQ AQE ∠+∠+∠=° 180AQE AQD ∠+∠=° ∵AQD E EAQ ∠=∠+∠∵//AP BD∵AQD BDQ ∠=∠∵BDQ E EAQ ∠=∠+∠∵AE 平分GAC ∠ DE 平分BDC ∠∵2GAC EAQ ∠=∠ 2CDB BDQ ∠=∠∵2CDB E GAC ∠=∠+∠∵AED GAC ∠=∠ ACD CDB ∠=∠∵23ACD GAC GAC GAC ∠=∠+∠=∠;(3)当K 在直线GH 下方时 如图 设射线BF 交GH 于I⎫.⎪⎭上方时如图-∠(180GAC⎫.⎪⎭°︒。
人教版初一数学7年级下册 第5章(相交线与平行线)同位角、内错角、同旁内角 练习卷(含解析)

同位角、内错角、同旁内角练习一、选择题1.如图,下列各组角中,互为内错角的是( )A. ∠1和∠2B. ∠2和∠3C. ∠1和∠3D. ∠2和∠52.如图,直线a,b被c所截,则∠1与∠2是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角3.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角4.如下图,∠1和∠2为同旁内角的是( )A. B.C. D.5.如图,下列结论中错误的是( )A. ∠1与∠2是同旁内角B. ∠1与∠4是内错角C. ∠5与∠6是内错角D. ∠3与∠5是同位角6.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 邻补角7.如图,在图中∠BAO和∠AOC是一对()A. 内错角B. 同旁内角C. 同位角D. 对顶角8.如图,直线l1,l2被直线13所截,则( )A. ∠1和∠2是同位角B. ∠1和∠2是内错角C. ∠1和∠3是同位角D. ∠1和∠3是内错角9.如图,∠1的内错角是( )A. ∠1B. ∠2C. ∠3D. ∠410.如图,下列说法错误的是( )A. ∠1与∠3是对顶角B. ∠3与∠4是内错角C. ∠2与∠6是同位角D. ∠3与∠5是同旁内角11.如图,直线AB,CD分别与直线EF交于点G,M,GH,MN分别与AB,CD交于点G,M,有下列结论:①∠1与∠4是同位角;②∠2与∠5是同位角;③∠EGB与∠GMD是同位角;④∠3与∠4是同旁内角.其中正确的结论有()A. 4个B. 3个C. 2个D. 1个二、填空题12.如下图,如果∠2=100°,那么∠1的同位角等于______度,∠1的内错角等于______度,∠1的同旁内角等于_____度.13.如下图,标有数字的四个角中,属于内错角的是________.14.已知直线a、b被直线c所截,则与∠1是内错角关系的是____.15.如图,∠1的同位角是,∠2的内错角,∠A的同旁内角是.16.如图所示,把一根筷子的一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.若不再添加新的标注,则图中与∠1是同旁内角的有________;与∠2是内错角的有________.三、解答题17.两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出大致示意图;(2)若∠1=2∠2,∠2=2∠3,求∠1和∠2的度数.18.如图,∠1与∠2,∠3与∠4各是哪两条直线被哪一条直线所截而形成的什么角?19.两条直线都与第三条直线相交,∠1与∠2是内错角,∠1和∠3是同旁内角.(1)根据上述条件,画出符合题意的图形;(2)若∠1:∠2:∠3=1:2:3,求∠1,∠2,∠3的度数.答案和解析1.【答案】B【解析】解:A、∠1和∠2是对顶角,不是内错角,故本选项不符合题意;B、∠2和∠3是内错角,故本选项符合题意;C、∠1和∠3是同位角,不是内错角,故本选项不符合题意;D、∠2和∠5是同旁内角,不是内错角,故本选项不符合题意;2.【答案】B【解答】解:两条直线a、b被直线c所截形成的角中,∠1与∠2都在a、b直线的之间,并且在直线c的两旁,所以∠1与∠2是内错角.3.【答案】A【解答】解:直线a,b被直线c所截,∠1与∠2是同位角.4.【答案】C【解析】本题考查同旁内角的判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下册数学5.1相交线练习题(含答案)
一、单选题
1.如图,直线AB⊥CD于点O,直线EF经过点O,若⊥1=25°,则⊥2的度数是()
A.25°B.65°C.55°D.64°
2.下列图形中,⊥1与⊥2是对顶角的是()
A.B.
C.D.
3.如图,下列各角与⊥A是同位角的是()
A.⊥1B.⊥2C.⊥3D.⊥4
4.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,其中AC=6,BC=8,AB=10,CD=4.8,那么点B到AC的距离是()
A.6B.8C.10D.4.8
5.如图,直线AB、CD相交于点O,下列描述:①⊥1和⊥2互为对顶角;②⊥1和⊥2互为邻补角;③⊥1=⊥2,④∠1=∠3,其中正确的是()
A .①③
B .②④
C .②③
D .①④
6.如图,要把河中的水引到村庄A ,小凡先作AB ⊥CD ,垂足为点B ,然后沿AB 开挖水渠,就能使所开挖的水渠最短,其依据是( )
A .两点确定一条直线
B .两点之间线段最短
C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线
D .连结直线外一点与直线上各点的所有线段中,垂线段最短
7.如图,射线OC 的端点O 在直线AB 上,设⊥1的度数为x ,⊥2的度数为y ,且x 比y 的2倍多10°,则列出的方程组正确的是( )
A .{x +y =180x =y +10
B .{x +y =180x =2y +10
C .{x +y =180x =10−2y
D .{x +y =90y =2x −10
8.如图,若⊥1+⊥2=220°,则⊥3的度数为( )
A .70°
B .60°
C .65°
D .50°
9.如图,直线 AB 、直线 CD 交于点 E , EF ⊥AB ,则 ∠CEF 与 ∠BED 的关系是( )
A .互余
B .相等
C .对顶角
D .互补
10.如图所示,下列判断正确的是( )
A.图(1)中∠1和∠2是一组对顶角B.图(2)中∠1和∠2是一组对顶角
C.图(4)中∠1和∠2互为邻补角D.图(3)中∠1和∠2是一对邻补角
11.如图,直线a,b被c所截,则∠1与∠2是()
A.同位角B.内错角C.同旁内角D.邻补角
12.两直线被第三条直线所截,⊥1与⊥2是同旁内角,且⊥1=30° ,则⊥2的度数为()A.150°B.30°
C.30° 或150°D.无法确定
二、填空题
13.如果⊥A=135°,那么⊥A的邻补角的度数为°.
14.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若⊥EOC=55°,则⊥AOD
=°.
15.如图,直线AB,CD,EF相交于点O,若∠AOE:∠COE=1:2,AB⊥CD,则∠COF=度.
16.如图,已知直线AB、CD相交于点O,EO⊥AB,若∠1=32°,则∠2=,
∠4=.
17.如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:
画法:如图,
⊥连接AB;
⊥过点A画线段AC⊥直线l于点C,所以线段AB和线段AC即为所求.
请回答:工人师傅的画图依据是.
18.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若
∠BOD=40∘,则∠COF=度.
19.如图,点A,B,C是直线l上的三点,点P在直线l外,PA⊥l,垂足为A,PA=5cm,PB=
7cm,PC=6cm,则点P到直线l的距离是cm.
20.已知A 、O、B 三点共线,⊥BOC=35°,作OD⊥OC,则⊥DOB=.
三、作图题
21.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)
理由是:.
四、解答题
22.如图,直线AB、CD相交于点O,∠AOC=70°,过点O画EO⊥CD,O为垂足,求∠BOE 的度数.
23.如图,直线AB和CD相交于点O,若∠BOD=40°,OA平分∠EOC,求∠EOD的度数.
24.如图,直线AB,CD,EF相交于点O.如果⊥BOD=60°,EF垂直于AB于点O,求⊥AOD和⊥FOC的度数.
25.如图,直线AB,CD相交于点O,∠BOC=125°,∠AOE=∠BOD,求∠DOE的度
数.
答案
1.B 2.C 3.C 4.B 5.B 6.D 7.B 8.A 9.A 10.C 11.A 12.D 13.45 14.35 15.120 16.58°;122°
17.两点之间,线段最短;垂线段最短18.25 19.5 20.125°或55°21.解:理由是:垂线段最短.作图如下:
22.解:如图:
∵⊥AOC=70°,∴⊥BOC=180°-70°=110°,
∵EO⊥CD,
∴⊥BOE=⊥BOC-⊥COE=20°;
如图,
∵⊥AOC=70°,∴⊥BOD=70°,
∵EO⊥CD,∴⊥BOE=⊥BOD+⊥DOE=160°;
综上:⊥BOE的度数为20°或160°.
23.解:∵⊥BOD=40°,
∴⊥AOC=⊥BOD=40°.
∵OA平分⊥EOC,
∴⊥AOE=⊥AOC=40°,
∴∠EOD=180°−∠AOE−∠BOD=180°−40°−40°=100°.
24.解:∵⊥BOD =60°
∴⊥AOD =120°,⊥AOC =60°,
∵EF垂直于AB于点O∴⊥AOF =90°,
∴⊥FOC=⊥AOF+⊥AOC=90°+60°=150°.
25.解:∵直线AB,CD相交于点O,∠BOC=125°,
∴∠BOD=180°−∠BOC=180°−125°=55.
又∵∠AOE=∠BOD,
∴∠AOE=55°,
∴∠DOE=180°−∠AOE−∠BOD=180°−55°−55°=70°.。