齿轮传动装置设计与实例

合集下载

伞齿轮设计

伞齿轮设计

伞齿轮设计引言伞齿轮,也被称为圆柱伞齿轮或外齿伞齿轮,是一种常用的齿轮传动装置。

它由一个内齿轮和一个外齿轮组成,其齿面呈伞状。

伞齿轮具有传动平稳、噪音低、承载能力强等优点,在各种机械传动系统中被广泛应用。

本文将介绍伞齿轮的设计原理、结构特点以及设计注意事项。

设计原理齿轮传动基本原理齿轮传动是通过齿轮之间的啮合来传递动力和运动的一种机械传动方式。

在齿轮传动中,齿轮的一齿落入另一齿的间隙,形成冲击,从而实现动力的传递。

在设计伞齿轮之前,我们需要明确以下参数:1.传动比:传动比是指驱动轴和被驱动轴之间的转速比。

一般情况下,传动比等于输出轴的转速与输入轴转速之比。

2.齿数:齿数是指一个齿轮上的齿的数量。

在设计伞齿轮时,需要选择合适的齿数比例,以满足传动比要求以及提高传动效率。

3.压力角:压力角是指啮合齿轮齿廓与径向方向的夹角。

压力角的大小会影响到伞齿轮的强度和传动效率。

伞齿轮的结构特点伞齿轮的结构特点主要包括以下几点:1.齿面形状:伞齿轮的齿面呈伞状,与传统圆柱齿轮不同。

这种齿面形状使得伞齿轮具有更好的传动性能和更大的承载能力。

2.齿轮副的安装方式:伞齿轮由内齿轮和外齿轮组成,它们通过齿轮轴相互连接。

在设计伞齿轮时,需要注意齿轮轴的选材和轴承的安装,以保证齿轮副的稳定性和可靠性。

3.齿轮的材料选择:伞齿轮通常使用高强度的合金钢或硬质铸铁制成,以提高齿轮的耐磨性和强度。

设计步骤设计伞齿轮的步骤如下:1.确定传动比:根据传动要求和输入轴的转速,计算所需的输出轴转速,然后确定传动比。

2.确定齿数:根据传动比和齿数比例,计算内、外齿轮的齿数。

3.计算齿轮参数:根据齿数、压力角等参数,计算齿轮的模数、齿宽和分度圆直径等。

4.绘制齿轮剖面图:使用齿轮设计软件或CAD工具,绘制齿轮的剖面图,并进行齿轮的细化设计。

5.进行强度校核:根据齿轮材料和载荷条件,进行齿轮的强度校核,以确保齿轮的安全可靠性。

6.选择齿轮材料和热处理:根据强度校核结果,选择合适的齿轮材料并进行必要的热处理,以提高齿轮的强度和耐磨性。

机械设计 齿轮传动

机械设计  齿轮传动
[ H ]
2
2.轮齿弯曲疲劳强度的计算
斜齿圆柱齿轮传动的强度计算是在直 齿轮的基础上,考虑斜齿轮的特点进行修 正,齿根弯曲疲劳强度校核公式为:
F
1.6KT1 bmn2 z1
YFaYSa
1.6KT1 cos
bmn2 z1
YFaYSa
[ F ]
取齿宽系数 d b / d1 ,由上式可得设计 公式为:
齿根高
h f 1 h f 2 1.2m
齿高(顶隙系数 c* =0.2) h1 h2 2.2m
顶隙
c 0.2m
齿顶圆直径 齿根圆直径
da1 d1 2m cos1
d f 1 d1 2.4m cos1
二. 标准直齿锥齿轮的参数及几何尺寸计算
锥距 R 1
2
d12
d
2 2
m 2
z12
z
2 2
(1)齿廓接触线是斜线,一对齿是逐渐 进入啮合和逐渐脱离啮合的,故运转平稳, 噪声小。
(2)重合度较大,并随齿宽和螺旋角的 增大而增大,故承载能力较高,运转平稳, 适于高速传动。
(3)最少齿数小于直齿轮的。
斜齿轮的主要缺点是斜齿齿面受法向力Fn时会产生轴向分 力Fa,需要安装推力轴承,从而使结构复杂化。为了克服这一 缺点,可采用人字齿轮,但制造较困难,成本较高。
一对直齿轮啮合时,沿整个齿宽同时进入啮合,并 沿整个齿宽同时脱离啮合。因此传动平稳性差,冲击 噪声大,不适于高速传动。 一对斜齿轮啮合时,齿面上的接触线由短变长,再 由长变短,减少了传动时的冲击和噪音,提高了传动 平稳性,故斜齿轮适用于重载高速传动。
2.啮合特点
与直齿轮相比,斜齿轮具有以下优点:
列球面渐开线的集合,就组成了球面渐开面。

谐波齿轮传动的设计与三维建模

谐波齿轮传动的设计与三维建模

e题目谐波齿轮减速器的设计与建模学生姓名 e 学号 e所在学院机械学院专业班级机械制造及其自动化指导教师 e __ __完成地点 ___2009 年 6 月 10 日谐波齿轮减速器的设计与建模作者:e(e)指导老师:e[摘要]:谐波齿轮传动是50年代中期,随着空间技术的发展,在薄壳弹性变形的理论基础上发展起来的一种新型的传动技术。

我国从1961年开始谐波齿轮传动方面的研制工作,并且在研究、试制和使用方面取得了较大的成绩。

但是在民用产品应用中,谐波减速器存在着传动“爬行”和“丢步的现象严重影响其谐波齿轮类产品的设计制造,也制约着其产品的不断推广,是该产品亟待解决的技术难题。

本文主要介绍了谐波齿轮传动的原理,发展历史,应用领域,发展趋势及其优缺点。

前半部分介绍了谐波齿轮减速器的设计计算,为了更好地分析谐波齿轮传动,后半部分用PRO/E建立了三维模型。

写出了主要零件的绘制过程,并展示了各个零部件,最后给出了装配图。

[关键词]:谐波齿轮,传动设计,三维模型,装配The design and modeling of harmonic gear reducerAuthor:e(e)Tutor: e[Abstract]Harmonic gear transmission is developed with the of space science and thchnology in mid 50s,on the basis of elastic thin shell theory developed a new type of drive technology.So far ,we have already had dozen of units engaged in the research ofthis aspect in our country ,and developed into a variety of types of harmonic gear transimission deviced.In this field it had research at different level on all issues, but many problems still has not yet been determined,and some regularity has not revealed .such as civilian products,There is “crawling”and”lost step”phenomenon in the harmonic gear reducer transmission .So it is impact on the design of harmonic gear product manufacturing,also restrict the further promotion of its products.and solove the problem that exist in the transmission ,it isan urgent need of a job in the current this kind of products.This artical main introducted the theory harmonic gear reducer ,and the development history of harmonic gear drive application filed,development trend,advantagesand disadvantages.The former introduce the design and calculate of harmonic gear reducer.In order to analyze the harmonic gear drive ,The later part with PRO/E to establish the three-dimensional model.Write the drawing process of the main parts .and showing all the parts .Finally ,given the assembly diagram.[ Key words]:Harmonic gear ,Transmission design,Three-disminsional model ,Assemble.目录1.绪论 (1)1.1选题的目的及研究意义 (1)1.2课题相关领域的研究现状和发展趋势 (1)1.3主要研究内容、途径及技术路线 (3)2.谐波齿轮减速器的传动方案的确定 (3)2.1确定传动方案 (3)2.2、传动方案的拟定 (6)3.谐波齿轮减速器的结构设计和设计计算 (7)3.1传动比的计算及柔轮刚轮齿数的确定 (7)3.2谐波传动主要零件的材料 (7)3.2.1 柔轮 (7)3.2.2 刚轮 (7)3.2.3抗弯环 (7)3.3柔轮、刚轮、波发生器的结构和尺寸计算 (8)3.3.1柔轮的结构和尺寸 (8)3.3.2 刚轮的结构和尺寸 (11)3.3.3波发生器的几何尺寸计算 (11)3.4验算与校核....................... 1错误!未定义书签。

电动助力转向系统中齿轮齿条传动设计与计算_刘庚寅

电动助力转向系统中齿轮齿条传动设计与计算_刘庚寅

收稿日期:2012-09-14作者简介:刘庚寅(1970—),男,汉,湖南邵东人,硕士研究生,研究方向:汽车电动助力转向系统。

E-mail :lgy960@ 。

电动助力转向系统中齿轮齿条传动设计与计算刘庚寅,刘晟昱,彭微君,葛阳清,康永升(株洲易力达机电有限公司,湖南株洲412002)摘要:介绍了P-EPS 电动助力转向系统的传动原理及其主要零部件。

特别是就某一车型的P-EPS 齿轮齿条的设计计算进行了详细的分析。

对不同载荷车型的齿轮齿条模数和齿数的匹配分别进行了计算,为新产品的开发提供了参考和指导。

关键词:电动助力转向系统;P-EPS ;齿轮轴;齿条轴Design and Calculation on Transmission between Pinion andRack in Electric Power Steering SystemLIU Gengyin ,LIU Shengyu ,PENG Weijun ,GE Yangqing ,KANG Yongsheng (Zhuzhou Elite Electro Mechanical Co.,Ltd.,Zhuzhu Hunan 412002,China )Abstract :The theory and main components of P-EPS electric power steering system were introduced here.Especially ,the design and calculation for rack and pinion of P-EPS about one car were analyzed in detail.Also ,matching relation between modulus and teeth number of rack and pinion were separately calculated for different car types with different weight ,so the reference and guides were provided for the devel-opment of new products.Keywords :Electric power steering system ;P-EPS ;Pinion ;Rack0前言国产电动助力转向系统(EPS )经过十几年的探索与研究,技术日趋成熟,并以其相对传统液压转向系统的突出优点而得到众多汽车厂家的认可,并在中小排量汽车上得到了广泛应用。

机械设计-齿轮传动讲解

机械设计-齿轮传动讲解
当保持齿轮传动的中心距a不变时
重合度e↑ →传动平稳
z1↑
m↓
齿高h,抗弯曲疲劳强度降低
因此,在保证弯曲疲劳强度的前提下,齿数选得多一些好!
一般情况下,闭式齿轮传动(速度高,平稳性差): z1=20~40

Ft
=
2T1 d1
及Φd=b/d1
代入
则齿面接触疲劳强度的校核式:σH =
2K T1 dd13
u±1 u
ZH
ZE
[σH ]
齿面接触疲劳强度的设计式: d1
3
2 KT1

d
u ±1 ( Z H Z E )2
u [s H ]
对于标准直齿轮,ZH=2.5
齿面接触疲劳强度的校核式:
s H
= 2.5
= KFtYFaYsa bm
[s F]
Ysa表
引入齿宽系数后 强度条件公式:
d
=
b,并将Ft=2T1/d1, d1
d1=m
z1代入,可得弯曲
s = 2KT 1 YFaYsa
F φdm3 z12
[s F]

m

3
2KT1
dZ12
×Y[FsaYFs]a
公式中各参数对弯曲强度有什么影响呢?
标准直齿圆柱齿轮强度计算
从上面推出的接触疲劳强度条件公式中可以得出以下结论:
1、分度圆直径越大,接触疲劳强度就越高,也就是说接触
疲劳强度取决于分度圆直径,不单和模数m有关还和齿
数z有关。 2、齿宽系数越大,也就是齿宽越宽,接触疲劳强度就 越高。
3、许用接触应力越大,接触疲劳强度就 越高,
问题:σH1和σH2是否是作用力和反作用力的关系 σH1=σH2 是作用力和反作用力的关系。

带式运输机传动装置设计-单级圆柱齿轮减速器设计(含图纸)

带式运输机传动装置设计-单级圆柱齿轮减速器设计(含图纸)

课程设计带式运输机传动装置设计——单级圆柱齿轮减速器设计课程设计任务书机械工程学院(系、部)机械设计与制造专业班级课程名称:机械设计设计题目:带式运输机传动装置设计——单级圆柱齿轮减速器设计完成期限:指导教师(签字):年月日系(教研室)主任(签字):年月日机械设计设计说明书带式运输机传动装置设计——单级圆柱齿轮减速器设计任务书起止日期:学生姓名班级学号成绩指导教师(签字)机械工程学院机械设计课程设计——带式运输机上的单级圆柱齿轮减速器的设计一、传动装置简图:带式运输机的传动装置如图1图1 带式运输机的传动装置二、原始数据如表1表1 带式输送机传动装置原始数据三、工作条件三班制,使用年限10年,每年按365天计算,连续单向,载荷平稳,小批量生产,运输链速度允许误差为链速度的5 %。

四、传动方案如图2图2 传动方案五、设计任务设计计算说明书一份,零件图3张,装配图1张。

ηηII =联齿计算与说明3计算各轴的输入转矩电动机轴:9550/9550 2.08/143013.891d d T p n N m N m ==⨯=电动Ⅰ轴:9550/9550 1.9968/635.5630.00T p n N m N m I I I ==⨯=Ⅱ轴:9550/9550 1.918/158.89115.28T p n N m N m II II II ==⨯=Ⅲ轴:9550/9550 1.823/158.89106.586T p n N m N m III III III ==⨯=4将以上结果记入表3表3 运动和动力参数I 轴 II 轴 III 轴 转速(r/min ) 635.56 158.89 158.89 输入功率P (kw ) 1.9968 1.918 1.823 输入扭矩T(N m ) 30.00 115.28 106.586传动比(i ) 4 1 效率(η)0.960.95三:传动零件设计计算1皮带轮传动的设计计算(外传动)(1)选择普通V 带因为每天24 h >16 h ,且选用带式输送机,所以查参考文献[2]表8-11,选取工作系数 1.3A k = 所以 1.3 2.08 2.704ca A d p k P kw ==⨯=。

机械设计第11章斜齿与圆锥齿轮传动

机械设计第11章斜齿与圆锥齿轮传动

(8-44)
4. 公式应用中的参数选择和注意事项
(1) 软齿面闭式齿轮传动在满足弯曲强度的条件下,为提 高传动的平稳性,小齿轮齿数一般取z1=20~40,速度较高时 取较大值;硬齿面的弯曲强度是薄弱环节,宜取较少的齿数, 以便增大模数,通常取z1 =17~20。
(2)为保证减小加工量,也为了装配和调整方便,大齿轮 齿宽应小于小齿轮齿宽。取b2=φdd1,则b1=b2+(5~10)。
图8-43表示一斜齿圆柱齿轮传动,取主动小齿轮作为研究对 象,设法向力Fn集中作用在分度圆柱上的齿宽中点P处。在法向 平面内的Fn可分解为径向力Fr、切向力Ft和轴向力Fa,F′是Ft和Fa 的合力,是Fn在P点分度圆柱切平面上的分力。
图8-43 斜齿圆柱齿轮传动的受力分析
切向力 径向力
轴向力 法向力
许用弯曲应力[σ]F:由表8-9得 σFlim1=330+0.45HBS1=(330+0.45×236)MPa=436.2 MPa σFlim2=184+0.74×HBS2=(184+0.74×190)MPa=324.6 MPa
由表8-10得,SFmin=1。所以
F1
Flim
SFmin
436.2MPa436.2MPa 1
法向力Fn分解为切于平均分度圆的切向力Ft和垂直分度圆锥母
线的分力F′,再将F′分解为径向力Fr和轴向力F(8-45)
Fr1=F′cosδ1=Ft1tanα cosδ1
(8-46)
Fa1=F′sinδ1 =Ft1tanαsinδ1
(8-47)
式中:dm1——小齿轮平均分度圆直径, dm1=d1(1-0.5b/R)。
由表8-10得SHmin=1,所以

齿轮、皮带传动设计计算

齿轮、皮带传动设计计算

齿轮、皮带传动设计计算仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。

(2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。

运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。

2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95=0.86(2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86=2.76KW3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×1.4/π×220=121.5r/min根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~2 0,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2 430r/min符合这一范围的同步转速有960 r/min和1420r/min。

由【2】表8.1查出有三种适用的电动机型号、如下表方案电动机型号额定功率电动机转速(r/min)传动装置的传动比KW 同转满转总传动比带齿轮1 Y132s-6 3 1000 960 7.9 3 2.632 Y100l2-43 1500 1420 11.68 3 3.89综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿轮传动装置设计与实例
齿轮传动装置是机械传动中常用的一种传动方式,它通过齿轮的啮合来实现动力传递。

在机械制造中,齿轮传动装置的设计非常重要,它的结构和性能直接影响着机械设备的运行效果和寿命。

本文将介绍齿轮传动装置的设计原理和实例。

一、齿轮传动装置的设计原理
齿轮传动装置是一种通过齿轮的啮合来实现动力传递的机械传动方式。

齿轮传动装置由驱动轴、从动轴、齿轮以及支承齿轮的轴承等部件组成。

当驱动轴旋转时,通过齿轮的啮合,将动力传递到从动轴上。

齿轮传动装置的设计需要考虑以下几个因素:
1.传动比
传动比是指驱动轴转速与从动轴转速之比。

在齿轮传动装置中,传动比由齿轮的模数、齿数和啮合方式等因素决定。

传动比的选择应根据机械设备的工作要求和转速范围来确定。

2.齿轮参数
齿轮参数包括模数、齿数、压力角、啮合角等。

这些参数的选择应根据传动比、负载、转速等因素来确定。

在设计过程中,需要进行齿轮强度计算和齿面接触强度计算,以确保齿轮的强度和接触强度满足要求。

3.轴承选择
齿轮传动装置中的支承齿轮的轴承选择应根据负载、转速和使用环境等因素来确定。

常用的轴承有滚子轴承、滑动轴承和球轴承等。

二、齿轮传动装置设计实例
下面以一个简单的齿轮传动装置为例,介绍其设计过程。

假设需要设计一个传动比为2:1的齿轮传动装置,其驱动轴转速为1000r/min,从动轴转速为500r/min。

1.确定齿轮参数
根据传动比和转速,可以计算出驱动轴和从动轴上的齿轮模数和齿数。

假设驱动轴上的齿轮模数为3,齿数为30,从动轴上的齿轮模数为6,齿数为60。

2.计算齿面接触强度
根据齿面接触强度计算公式,可以计算出两个齿轮之间的接触强度。

假设压力角为20度,则两个齿轮之间的接触强度为1.2。

3.计算齿轮强度
根据齿轮强度计算公式,可以计算出两个齿轮的强度。

假设材料为45钢,模数为3,则驱动轴上的齿轮强度为1.8kw,从动轴上的齿轮强度为3.6kw。

4.选择轴承
根据负载和转速等因素,选择适当的滚子轴承作为支承齿轮的轴承。

5.绘制图纸
根据上述计算结果,绘制出齿轮传动装置的图纸,并进行加工制造。

以上就是一个简单的齿轮传动装置设计实例。

在实际设计过程中,需要根据具体情况进行综合考虑和优化设计,以确保齿轮传动装置的性能和可靠性。

相关文档
最新文档