第4章-自然伽马测井

合集下载

自然伽马能谱测井原理及其应用

自然伽马能谱测井原理及其应用

自然伽马能谱测井原理及其应用The Principle and Application of Natural Gamma RaySpectrometry Logging聂万岭(长江大学资工10904班)摘要:自然伽马能谱测井就是在钻出的深井中,对地层的自然(天然)伽马射线进行能谱分析,由不同的能量的伽马射线强度确定地层中铀、钍、和钾的含量及其分布情况,从而评价地层的岩性、生油能力以及解决更多的地质和油田开发中的问题。

关键词:自然伽马能谱测井;生油岩;粘土矿物;泥质含量;高自然伽马放射性储层1 自然伽马能谱测井原理1.1 自然伽马能谱测井的理论基础地层中存在的放射性核素,主要是天然放射性核素,这些核素又分放射系和非放射系的天然放射性核素。

放射系为钍系、铀系和锕铀系,但锕铀系的头一个核素235U在自然界中的丰度很低,其放射性贡献甚微,不予考虑。

非放射系的天然放射性核素如表1所列。

从表中可见,主要是87Rb和40K,但是87Rb无伽马辐射。

所以,在研究地层中的自然伽马能谱主要是238U、232Th放射系和40K 放射的伽马射线能谱。

因为地层岩石的自然伽马射线主要是由铀系和钍系中的放射性核素及40K 产生的。

而铀系和钍系所发射的伽马射线是由许多种核素共同发射的伽马射线的总和,但每种核素所发射的伽马射线的能量和强度不同,因而伽马射线的能量分布是复杂的。

而40K只能发射一种伽马射线,其能量1.46Mev的单能。

如果我们把横座标表示为伽马射线的能量,纵座标表示为相应的该能量的伽马射线的强度。

把这些粒子发射的伽马射线的能量画在座标系中,那么就得到了伽马射线的能量和强度的关系图,这个图称为自然伽马的能谱图。

铀系和钍系在放射性平衡状态下系内核素的原子核数的比例关系是确定的,因此不同能量伽马的相对强度也是确定的,因此我们可以分别在这两个系中选出某种核素的特征核素伽马射线的能量来分别识别铀和钍。

这种被选定的某种核素称为特征核素,它发射的伽射线的能量称为特征能量,在自然伽马能谱测井中,通常选用铀系中的214Bi发射的1.76MeV的伽马射线来识别铀,选用钍系中的208Tl发射的2. 62MeV的伽马射线来识别钍,用1.46MeV的伽马射线来识别钾。

自然伽马能谱测井与沉积环境

自然伽马能谱测井与沉积环境

沉积相及沉积环境的划分
利用钍/钾比划分沉积相的一般规律: (1)CTH/CK<3, ; (2)3<CTH/CK<5, (3)CTH/CK>5, 。

利用钍/铀比划分地球化学相(沉积环境)的一般规律: (1)当 CTh/ CU > 7时,为氧化环境下形成的沉积或者沉积物中含有 铝土矿,为陆相沉积,属 ; (2)当2< CTh/ CU < 7时,指示过渡性阶段沉积,为滨海海相沉积或 海陆过渡相沉积,属于 ; (3)当 CTh/ CU < 2时,为还原环境下的沉积,通常为灰色或绿色页 岩,为 作用强的沉积环境;
图4
三叠系特征参数直方图
从图4中可以看出,3<TH/K<6, 3<TH/U<7, 为滨海海相或海陆过渡相沉积为主,陆相沉积为辅, 氧化环境或氧化向还原过渡环境;
图5
石炭至二叠系特征参数直方图
从图 5中可以看出,3<TH/K<9, 3<TH/U<6, 为滨海海相沉积,还原环境或氧化到还原过渡环境;
地层中放射性元素的分布与岩石的类型及后期的分布、搬运、沉 积及成岩作用有关,虽然从理论上讲自然伽马能谱测井能反映地层的 等特征,但从以往油田实测数据看,由于直接测井 获得的铀、钍和钾的含量都较低,有些井段个别值有回零现象,应用效 果并不理想。 为了更好地应用自然伽马能谱测井反映的沉积地层的有用信息, 通过分析研究,设立如下能谱比值特征参数 PU=(γGRSL- γKTh)/γGRSL (1) PTh= CTh/ CU (2) 式中, PU为铀比值曲线, PTh为钍比值曲线;γGRSL为自然伽马能谱测井地 层总伽马,γKTh为自然伽马能谱测井地层无铀伽马, CTh为自然伽马能谱 测井钍含量, CU为自然伽马能谱测井铀含量。

自然电位及自然伽马

自然电位及自然伽马

������������ = ������������ lg
������2 ������������������
在泥岩和泥浆接触面上,由于扩散吸附作用,产生的扩散吸附电动势为 ������������������ 1 = ������������������ lg ������1 ������������������
������ 1
������������ = ������������ lg 或 ������������ = ������������ lg
������������������ ������������
������������ ������ ������������
图 3 井内自然电位分布示意图
在砂岩和泥岩接触面上,由于扩散吸附作用,产生的扩散吸附电动势为 ������1 ������������������ 2 = ������������������ lg ������2 在井与砂岩、泥岩接触面上,自然电流回路中的总自然电动势������������ 即 ������������ = ������������ + ������������������ 1 −������������������ 2 ������2 = klg ������������������ 式中 K=Kd+Kda,称为自然电位系数。可以写成: ������������������ ������������ = −klg = ������������������ ������������ 通常把 E。写作 S5P,称为静自然电位。实际测井时以泥岩作自然电位曲线的基线(即零 线),当 Cw>Cmf 时,砂岩的自然电位异常为负值,因此上式右端取负号。把井中巨厚的纯砂 岩井段的自然电位幅度近似认为是 SSP。静自然电位的变化范围在含淡水岩层的+50mV 到含 高矿化度盐水岩层的-200mV 之间。 2.自然电位曲线特点 图 6 是一组含水纯砂岩的自然电位理论曲线,横坐标是自然电位与静自然电位之比Δ Usp/SSP,纵坐标为地层厚度 h,曲线号码为层厚与井径之比 h/d。当上、下围岩很厚且岩 性相同时,从曲线上可以看到下列特点:曲线关于地层中点对称,地层中点处异常值最大; 地层越厚,Δ Usp 越接近 SSP,地层厚度变小,△Usp 下降,且曲线顶部变尖,底部变宽, △Usp≤SSP;当 h>4d 时,△Usp 的半幅点对应地层的界面,因此较厚地层可用半幅点法确 定地层界面,地层变薄时,不能用半幅点法分层。实测曲线与理论曲线特点基本相同,由于 测井时受多方面因素的影响,实测曲线不如理论曲线规则(图 7)。使用自然电位曲线时应注 意:自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;自然电位曲线 幅度△Usp 的读数是基线到曲线极大值之间的宽度所代表的毫伏数。 在砂泥岩剖面中,以泥岩作为基线,Cw>Cmf 时,砂岩层段出现自然电位负异常;Cw<Cmf 时,砂岩层段出现自然电位正异常;Cw=Cmf 时,没有造成自然电场的电动势产生,则没有 自然电位异常出现。Cw 和 Cmf 差别越大,造成的自然电场的电动势越大。

自然电位、自然伽马测井基本原理

自然电位、自然伽马测井基本原理

⾃然电位、⾃然伽马测井基本原理⾃然电位测井⽅法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。

这个电位是⾃然产⽣的,故称为⾃然电位。

使⽤图1所⽰电路,沿井提升M电极,地⾯仪器即可同时测出⼀条⾃然电位变化曲线。

⾃然电位曲线变化与岩性有密切关系,能以明显的异常显⽰出渗透性地层,这对于确定砂岩储集层具有重要意义。

⾃然电位测井⽅法简单,实⽤价值⾼,是划分岩性和研究储集层性质的基本⽅法之⼀。

图 1⾃然电位测井原理⼀、井内⾃然电位产⽣的原因井内⾃然电位产⽣的原因是复杂的,但对于油井,主要有以下两个原因:地层⽔的含盐量(矿化度)与泥浆的含盐量不同,地层压⼒和泥浆柱压⼒不同,在井壁附近产⽣了⾃然电动势,形成了⾃然电场。

1.扩散电动势(Ed)的产⽣如图2所⽰,在⼀个玻璃容器中,⽤⼀个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放⼈⼀只电极,此时表头指针发⽣偏转。

此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的⾃然趋势,即⾼浓度溶液中的离⼦受渗透压的作⽤要穿过渗透性隔膜迁移到低浓度溶液中去,这⼀现象称为离⼦扩散。

在扩散过程中,由于Cl-的迁移率⼤于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,⾼浓度溶图2扩散电动势产⽣⽰意图液中Na+相对增多,形成正电荷聚集。

这就在两种不同浓度的溶液间产⽣了电动势,所以可测到电位差。

离⼦在继续扩散,⾼浓度溶液中的Cl-,由于受⾼浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;⽽⾼浓度溶液中的Na+,由于受⾼浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。

当接触⾯附近的电荷聚集使正、负离⼦的迁移速度相等时,电荷聚集就停⽌了,但离⼦还在继续扩散,溶液达到了动平衡,此时电动势将保持⼀定值:这个电动势是由离⼦扩散作⽤产⽣的,故称为扩散电位(Ed),也称扩散电动势,可⽤下式表⽰:EE dd=KK dd lg cc1cc2式中EE dd为扩散电位系数,mv;cc1,cc2为溶液盐类的浓度,g/L。

第4章4 储层参数测井解释模型讲解

第4章4 储层参数测井解释模型讲解
如渗透率与粒度中值的相关系数为0.839,说明相关性很好,束缚水饱 和度与粒度中值的相关系数为-0.602,说明两者关系较好但为负相关的关系。
5.4 储层参数测井解释模型
储集层物性相互之间的关系:
储集层的孔隙度与渗透率是密切相关的,但又不是简单的关系,它受颗粒 大小、分选程度、胶结程度等因素的制约。一般中粗颗粒的砂岩孔隙度大,渗 透率也大,而微细颗粒砂岩孔隙度低,渗透率也小。在孔隙度与渗透率的关系 图上,资料点的分布与粒度大小有关,粒度中值Md≤0.2mm,资料点分布在左 下方,也就是孔隙度低,渗透率也小;MD≥0.4mm的资料点分布在右上方,也 就是孔隙度大渗透率也高;0.2<Md<0.4mm的资料点基本上分布在上述两者之间。
5.4 储层参数测井解释模型
自然伽马确定泥质含量
在沉积岩石中,除钾盐层外,其放射性的强弱与岩石中含泥 质的多少有密切的关系。岩石含泥质越多,自然放射性就越强。 这是因为构成泥质的粘土颗粒较细,有较大的比表面积,在沉 积过程中能够吸附较多的溶液中放射性元素的离子。另外,泥 质颗粒沉积时间较长(特别是深海沉积),有充分的时间同放 射性元素接触和离子交换,所以,泥质岩石就具有较强的自然 放射性。这就是我们利用自然伽马测井曲线定量计算地层泥质 含量的地质依据。
三种不同的角度上提供了地层的孔隙度信息。 经验表明,如果形成三孔隙度的测井系列,无论对于高-中
-低孔隙度的地层剖面,以及不同的储层类型,一般都具有较强 的求解能力,并能较好地提供满足于地质分析要求的地层孔隙 度数据。
5.4 储层参数测井解释模型
从前面的分析可知,残余油气特别是气层对声波、 密度以及中子测井计算的孔隙度影响是不同的。
1
Shr
Nhr Nmf

自然伽玛测井

自然伽玛测井



天津分公司勘探部
5
注意事项
1.
天津分公司勘探部
6
注意事项
2
天津分公司勘探部
7
注意事项 3.
天津分公司勘探部
8
ቤተ መጻሕፍቲ ባይዱ
注意事项 4.
天津分公司勘探部
9
天津分公司勘探部
1
用途
· 储层划分,确定泥质类型和含量; · 井间对比; · 火山岩识别; · 放射性矿物识别,钾、铀含量评价。
天津分公司勘探部
2
GR
天津分公司勘探部
3
性能指标
天津分公司勘探部
4
质量控制
• • •
自然伽玛仪器可居中或偏心,能谱仪器需偏心; 在目的层段应重复测60m,重复误差应在允许范围内; 钻井液添加剂如KCL、重晶石会影响读数。能谱测井曲线必须经过处理以 消除这些影响; 由于钻井液对测井质量的影响,图头上必须记录有井筒流体的类型和比重 ;裸眼井和套管井的影响是非线性的;仪器记录的是统计值(计数率),在 对曲线标准化时,不同次的测井是不能绝对比较的; 自然伽玛测井因受地层中运移流体所携带的铀元素沉淀或者岩盐的影响, 而会作出地层不正确含泥质的指示。应将测量结果与岩屑样品作比较,若 有异,则建议增加自然伽玛能谱测井(测量钍、铀和钾元素)。
原理
自然伽玛(GR)和自然伽玛能谱测井是测量地层中天然放射性原 素的含量。由于放射性元素通常聚集在页岩和粘土中,故可间接测 量沉积地层中的泥质含量。伽玛能谱(GST—碳氧比型仪器)和自然伽 玛能谱(NGT)测井所测量的是伽玛射线的特定谱域。自然伽玛能谱是 测量地层中的钾、钍和铀的含量,钾与云母和长石有关,钍和铀与 放射性盐类有关,铀还与有机质有关。

自然伽马能谱测井在油田的应用分析

自然伽马能谱测井在油田的应用分析

技术与检测Һ㊀自然伽马能谱测井在油田的应用分析赵金宝摘㊀要:自然伽马能谱测井是根据铀㊁钍㊁钾放射性核素在衰变时放出的Υ射线的能谱特征不同从而确定铀㊁钍㊁钾在地层中的含量ꎮ自然伽马能谱测井与自然伽马测井都是测量地层的自然伽马ꎮ不同之处是将入射的伽马射线的能量以幅度大小输出到多道脉冲幅度分析器ꎬ所测是地层伽马能谱ꎬ地面仪器将接受的伽马能谱进行解谱ꎬ得到地层中铀㊁钍钾的含量ꎬ仪器最终输出伽马射线的总强度和地层中铀㊁钍㊁钾的含量ꎮ关键词:自然伽马能谱测井ꎻ储层评价ꎻ泥质含量ꎻ岩性分析一㊁自然伽马能谱测井原理油田勘探开发中ꎬ储层评价㊁解释是测井解释重要工作ꎬ其中黏土矿物识别和岩性识别是这项工作的重要内容ꎮ自然伽马能谱测井是根据铀㊁钍㊁钾放射性核素在衰变时放出的Υ射线的能谱特征不同从而确定铀㊁钍㊁钾在地层中的含量ꎮ自然伽马能谱测井是放射性测井中一种最基本的测井方法ꎬ与自然伽马不同之处是它采用能谱分析的方法ꎬ可定量测量地层中铀㊁钍㊁钾的含量ꎬ并给出地层总的伽马放射性强度ꎮ所以自然伽马能谱测井可以解决更多的地质问题ꎮ二㊁自然伽马能谱测井的应用自然伽马能谱测井可以研究地层特性ꎬ包括泥质含量准确计算㊁识别高放射性储层㊁识别钾盐㊁识别黏土类型㊁沉积环境分析以及变质岩岩性识别等ꎮ下面主要介绍自然伽马能谱测井资料在测井解释中的应用ꎮ(一)计算泥质含量在自然伽马能谱测井资料中ꎬ地层的泥质含量与钍或钾的含量有较好的线性关系ꎬ而与地层的铀含量关系较复杂ꎮ因此ꎬ可以同时利用钍㊁钾及无铀伽马曲线或根据地质情况选其中一条曲线ꎬ计算地层泥质含量ꎮ(二)识别高放射性储集层利用自然伽马能谱测井可以有效识别和划分具有高自然伽马放射性的储集层ꎮ在人们传统的概念ꎬ储集层是低放射性㊁泥质含量较少㊁比较纯的岩石ꎬ因而忽视了高放射性储集层的生产价值ꎮ在纯砂岩和碳酸盐岩的放射性元素含量都较低ꎬ但对于某些渗透性砂岩和碳酸盐岩地层ꎬ由于水中含有易溶的铀元素ꎬ并随水运移ꎬ在某些适宜条件下沉淀ꎬ形成具有高放射性渗透层ꎬ即高伽马储层ꎬ此时可用自然伽马能谱测井进行储层划分ꎮ高自然伽马的地层一方面可以作为标志层与邻井进行对比ꎬ另一方面又可以帮助识别流体性质ꎮ另外ꎬ硬地层中高铀会指示具有渗流能力的储集层ꎮ(三)黏土矿物类型识别一般来讲ꎬ在绝大多数黏土矿物中ꎬ钾和钍的含量高ꎬ而铀的含量相对较低ꎬ因此ꎬ根据Th/Kꎬ可大致确定黏土类型ꎮTh/K比值在28以上为重钍矿ꎬ在12~28之间为高岭石ꎬ在3.5~12之间为蒙脱石ꎬ在2~3.5之间为伊利石ꎬ在1.5~2之间为云母ꎬ在0.8~1.5之间为海绿石ꎬ在0.5~0.8之间为长石ꎬ小于0.5为钾蒸发岩ꎮˑ井ˑˑ组Th测量值主要在7~20ppmꎬK测量值主要在2.4~4.0%之间ꎬTh/K比值在2~5之间ꎬ黏土类型为伊利石和蒙脱石为主的混合黏土层ꎬ见图1ꎮ(四)沉积环境分析由钾㊁铀㊁钍的性质可知ꎬ高能环境钍含量比低能环境高ꎬ铀和钾含量在低能环境比高能环境高ꎮ另外ꎬ铀含量与氧化还原条件有关ꎬ还原环境有机质含量高ꎬ铀含量高ꎻ钾含量与黏土关系密切ꎮTh/U值可判断沉积环境的氧化还原条件ꎬ据经验统计:Th/U值大于7时ꎬ属风化完全㊁有氧化和淋滤作用的陆相沉积ꎻTh/U值2~7ꎬ岩性为灰色和绿色泥岩夹砂岩ꎬ属还原环境沉积ꎻ小于2时ꎬ属强还原环境ꎮˑ井ˑˑ组Th/K比值主要在2~6.3之间ꎬTh/U比值在2~7之间ꎬ沉积环境主要属低能还原沉积ꎮ(五)变质岩岩性分析利用自然伽马能谱测井曲线制作的测井数据交会图是识别含油气盆地内变质岩岩性的简单而有效的方法ꎮ它是图1㊀ˑ井ˑˑ组黏土类型分析图把两种测井数据在平面图上交会ꎬ根据交会点的坐标定出所求参数的数值和范围的一种方法ꎮ在交会图上能直观地看出各种岩性的分界和分布的区域ꎬ能比较直观的识别变质岩ꎮ通过对变质岩物理特性进行分析ꎬ发现作为变质岩分类指标的二氧化硅(SiO2)含量与钾(K)含量有很强的相关性ꎬSiO2含量高则钾含量高ꎬ钍含量从酸性岩石向超基性岩石减少ꎬ而自然伽马测井测量的是地层中放射性元素的总含量ꎬ一般从基性到酸性变质岩逐渐升高ꎬ另一个指示岩性的光电吸收截面指数ꎬ一般从基性到酸性变质岩逐渐降低ꎮ自然伽马㊁光电吸收截面指数㊁钍三条测井曲线的交会图可以区分之ꎮˑ井发育的变质岩为玄武质安山岩㊁火山角砾岩㊁花岗岩ꎮ研究发现:利用GR-ThꎬPe-Th交会图可以有效识别变质岩岩性ꎬGR-Th交会图版可以分成四个区:基性岩性区㊁中性岩性区㊁中性向酸性过渡岩性区㊁酸性岩性区ꎮˑ井中玄武质安山岩落在基性岩为主以及部分中性区域ꎬ显示低GR㊁低Th特征ꎮ火山角砾岩和花岗岩落在酸性岩性区ꎬ显示高GR㊁高Th特征ꎮPe-Th交会图中玄武质安山岩显示高Pe值ꎬ火山角砾岩和花岗岩显示低Pe值ꎮ即ˑ井中玄武质安山岩显示低GR㊁低Th㊁高Pe特征ꎻ火山角砾岩和花岗岩显示高GR㊁高Th㊁低Pe特征ꎮ三㊁结论自然伽马能谱测井是放射性测井中一种最基本的测井方法ꎬ它可以定量测定地层中铀㊁钍㊁钾的含量ꎬ并给出地层总的伽马放射性强度ꎮ随着勘探和开发难度的加大ꎬ自然伽马能谱测井将发挥越来越重要的作用ꎮ参考文献:[1]胡挺ꎬ潘秀萍.自然伽马能谱测井在杭锦旗地区的应用[J].工程地球物理学报ꎬ2017(1).作者简介:赵金宝ꎬ胜利油田油藏动态监测中心ꎮ102。

自然伽马

自然伽马

• GR、U、Th、K、SGR曲线 • 粘土矿物与K、Th/K之间的关系及图版
四、自然伽玛能谱测井(NGS)
• 自然伽玛测井虽是确定泥质含量有效方法,但自然伽玛读数只能提供岩石自 然放射性的总概念,当岩石放射性是由于某些非泥质因素引起时,则由此求 得的泥质含量用于其做地质评价时,将造成错误解释。如:把高放射性的火 成岩冲积成当成泥岩层,含高铀U的碳酸盐岩储层当成非储层等。为此,在自 然伽玛测井的基础上,又引进了自然伽玛能谱测井。自然伽玛能谱是测定一 自然伽玛能谱是测定一 定能量范围内自然伽玛射线的强度以区分岩石中放射性元素类型及其实际含 量的测井方法。 量的测井方法。自然界常见三种放射性元素为铀(U)系、钍(Th)系、钾 (K)系,且他们地层中放射出射线具有不同的能量并各自具有特征的能谱 (K 1.46MEV U、TH、0.5MEV)因此利用能级窗口,可以分别记录地层中这 三种放射性元素各自的强度,在实际测量过程中,提供五条测井参数曲线: • 以百分含量表示的钾含量K% • 以浓度表示的铀(UPPM) 以浓度表示的钍(ThPPM) • 合成的总自然伽玛GR 无铀自然伽玛(钍、钾含量)SGR • 利用这些参数,可以了解产生自然放射性的来源物质,分析它们的类型和数 量等,进而确定泥质含量,确定粘土类型、分析沉积环境
• 3.确定岩石的泥质含 量
• △GR= (GR-GRmin)/(GRmaxGRmin)
• Vsh=(2c· △GR-1)/(2c-1) • C:老地层:C=2; • 新地层C=3.7—4
• 4.确定岩石的粒度中值,作沉积环境分析
• C0、C1为经验常数。 • (GR=GRmin) (GR=GRmax) • Md1取GRmax相应层段的平均粒度中小值。
• A.高岭石:不含放射性元素,且对离子吸附能力差,放射性强度低。 • B.蒙脱石:不含放射性元素,但对阳离子吸附能力强,可吸附很多放射性强 物质,如氧化铀。因此,其天然放射性强度最大,对粘土岩放射性贡献最大。 • C.伊利石:含放射性同位素K40,且有较强阳离子吸附能力,也可吸附较多 U2O氧化铀,有较强放射性。 • D.绿泥石:同高岭石相似,天然放射性弱。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档