SIFT算法分析报告

合集下载

sift算法讲解 ppt课件

sift算法讲解 ppt课件

1 35 79
降采样
123 455 45 67 88
7 8 9 10 11 11
10 11 12 13 14 14 13 14 15 16 17 17 13 14 15 16 17 17
1 35 79
降采样
123 455 45 67 88 7 8 9 10 11 11 10 11 12 13 14 14 13 14 15 16 17 17 13 14 15 16 17 17
一个关键点可能会被指定具有多个方向(一个主 方向、一个以上辅方向),可以增强匹配的鲁棒 性。
每个关键点有三个信息:位置,所处尺度,方向。 由此可以确定一个SIFT特征区域。
SIFT 概述
关键点检测
1、检测尺度空间极值点
2、精确定位极值点
描述子生成
3、为每个关键点指定方向
4、关键点描述子的生成
1、首先将坐标轴旋转为关键点的方向,以确保旋转不 变性。
放大一倍
13 5 7 9 11 13 15 17
123 45
4
6
8
7 8 9 10 11
10
12
14
13 14 15 16 17
放大一倍
13 5 7 9 11 13 15 17
123 45 45 67 8 7 8 9 10 11 10 11 12 13 14 13 14 15 16 17
放大一倍
1 35 7 9 11 13 15 17
在3x3x3 邻域内选择所有的极值 中间的检测点和尺度空间共26个点比较
SIFT 概述
关键点检测
1、检测尺度空间极值点。
2、精确定位极值点。
描述子生成
3、为每个关键点指定方向。

ASIFT算法

ASIFT算法

1. 绪论目标识别是在图像或视频中寻找目标的过程。

在目标识别的应用中,特征提取和特征选择是第一个步骤,而且也是决定最后效果最重要的一个步骤之一。

如果说一个完整应用是一个系统的话,那么特征就代表着由输入数据转化而来的,传送给系统其它部分的数据。

很多时候最终能否得到一个理想的结果,在很大程度上依赖于能否找到最具代表性的特征。

好的特征将会较大地降低后续工作的难度;不好的特征则会对系统后续处理产生干扰甚至使系统产生错误的输出。

良好的特征也降低了系统后续处理的复杂度,为其广泛应用提供了可能。

SIFT(Scale-Invariant Feature Transform, 尺度不变特征转换)特征是一个检测和描述图像局部特征的算法,这种算法具有优良的特性,能较准确地用于特征匹配。

它具有广泛的用途,包括目标识别,三维重建、表情识别以及视频和运动追踪。

SIFT基于两个大的组成部分,并使用了多种改进技术以改善各项指标。

这里简要介绍经典SIFT算法和基于SIFT的目标识别应用。

为后面介绍ASIFT算法作铺垫。

SIFT是一种检测与描述图像局部特征的方法。

为了识别和描述图像中的目标,需要从图像中提取出与目标相联系的特征。

利用这些特征可以从众多背景目标中识别出所需目标。

为了确保准确无误地识别出目标,要求在各种视角、光照、距离以及噪声条件下仍然可以准确地进行匹配。

SIFT使用不同的技术解决以上问题。

对物体距离远近,大小和噪声条件的适应由高斯尺度空间来完成,而视角、光照等条件则对应于特征描述符。

SIFT并不是一开始就以解决上述问题为设计目标,而是先提出一种算法,而后发现它有诸多优良的性质。

在SIFT算法提出以前,若干技术已经趋于成熟,而SIFT则成功地把它们整合为一个整体,并包括一些创新点。

SIFT的两个主要组成部分是尺度空间检测和特征描述符。

图像的特征点一般都比周围的点显著,比如位于极值点或灰度值变化加速率大的位置。

特征的类型一般包括点、块、边缘、脊等。

SIFT研究资料

SIFT研究资料

Sift是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。

Sift特征匹配算法可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力。

在Mikolajczyk对包括Sift算子在内的十种局部描述子所做的不变性对比实验中,Sift及其扩展算法已被证实在同类描述子中具有最强的健壮性。

总体来说,Sift算子具有以下特性:(1)Sift特征是图像的局部特征,对平移、旋转、尺度缩放、亮度变化、遮挡和噪声等具有良好的不变性,对视觉变化、仿射变换也保持一定程度的稳定性。

(2)独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。

(3)多量性,即使少数的几个物体也可以产生大量Sift特征向量。

(4)速度相对较快,经优化的Sift匹配算法甚至可以达到实时的要求。

(5)可扩展性强,可以很方便的与其他形式的特征向量进行联合。

Sift特征匹配算法主要包括两个阶段,一个是Sift特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量;第二阶段是Sift特征向量的匹配。

Sift特征的生成一般包括以下几个步骤:1、构建尺度空间,检测极值点,获得尺度不变性;2、特征点过滤并进行精确定位;3、为特征点分配方向值;4、生成特征描述子。

以特征点为中心取16*16的邻域作为采样窗口,将采样点与特征点的相对方向通过高斯加权后归入包含8个bin的方向直方图,最后获得4*4*8的128维特征描述子。

示意图如下:当两幅图像的Sift特征向量生成以后,下一步就可以采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。

取图1的某个关键点,通过遍历找到图像2中的距离最近的两个关键点。

在这两个关键点中,如果次近距离除以最近距离小于某个阙值,则判定为一对匹配点。

一些Sift特征匹配的例子:SIFT算法的教程、源码及应用软件1、ubc:DAVID LOWE---SIFT算法的创始人,两篇巨经典经典的文章http://www.cs.ubc.ca/~lowe/2、cmu:YanKe---PCASIFT,总结的SIFT方面的文章SO全,巨经典/user/yke/3、ubc:MBROWN---SIFT算法用于图像拼接的经典应用autopano-sift,包括一个SIFTLIB 库http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.htmlhttp://www.cs.ubc.ca/~mbrown/panorama/panorama.html4、toronto:Jepson---Matlab SIFT tutorial, 超级超级超级经典~/~jepson5、ucla:Vedaldi---加州大学一个博士生编的SIFT,Matlab、C的都有,但没用过/~vedaldi/6、一个小的拼接软件ptasmblr/ptasmblr.htm。

SIFT、SURF、ORB

SIFT、SURF、ORB

几种局部图像特征的提取算法的研究摘要:局部图像特征描述是计算机视觉的一个基本研究问题,在寻找图像中的对应点以及物体特征描述中有着重要的作用。

本文主要研究了三种当前比较流行的具有不变性的局部图像特征提取算法,分析了SIFT、SURF和ORB特征点提取与定位方法,讨论这三种特征的特征描述子对特征点描述方法的异同。

总结了三种特征描述方法各自的优缺点。

关键字:局部图像特征;SIFT;SURF;ORBAnalysis of several feature-extract algorithms Abstract:Local image features is a basic issue of computer vision. It is important in the pratise to find corresponding point and to describe the feature of object. In the paper, we study three popular local image features which are imvariant descriptors. We analyse the way to localize the key point of the SIFT, SURF and ORB algorithm. We also discuss the different of this methoeds on extracting the feature vector of the key point. Finally ,we point the advantage and disadvantage of this methoeds.Keyword:local image feature;SIFT;SURF;ORB一、概述局部图像特征描述的核心问题是不变性(鲁棒性)和可区分性。

多种角度比较SIFT、SURF、BRISK、ORB、FREAK算法

多种角度比较SIFT、SURF、BRISK、ORB、FREAK算法

多种角度比较SIFT、SURF、BRISK、ORB、FREAK算法一、本文概述随着计算机视觉技术的飞速发展,特征点检测与描述算法在图像匹配、目标识别、三维重建等领域扮演着举足轻重的角色。

在众多特征点算法中,SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)、SURF(Speeded Up Robust Features,加速鲁棒特征)、BRISK(Binary Robust Invariant Scalable Keypoints,二进制鲁棒不变可伸缩关键点)、ORB(Oriented FAST and Rotated BRIEF,带方向性的FAST和旋转的BRIEF)以及FREAK(Fast Retina Keypoint,快速视网膜关键点)等算法因其优秀的性能而备受关注。

本文旨在对这五种算法进行多角度的比较分析,以便读者更全面地了解它们的性能特点,为实际应用提供参考。

我们将从算法原理、计算效率、特征点稳定性、抗噪声干扰能力、旋转不变性、尺度不变性等多个维度对五种算法进行深入探讨。

通过理论分析和实验验证,本文将揭示各算法在不同应用场景下的优势和不足,为算法的选择和优化提供有力依据。

本文还将结合实际应用案例,展示各算法在图像匹配、目标跟踪、全景拼接等领域的实际应用效果,以便读者更好地理解各算法在实际应用中的表现。

通过本文的阅读,读者将能够全面掌握五种主流特征点检测与描述算法的核心原理、性能特点和应用场景,为计算机视觉领域的深入研究和实践应用提供有力支持。

二、算法原理比较在深入了解SIFT、SURF、BRISK、ORB和FREAK这五种算法的原理之后,我们可以从多个角度对它们进行比较。

首先是特征点检测与描述子生成。

SIFT(尺度不变特征变换)通过DOG(差分高斯)金字塔来检测关键点,并使用128维向量进行描述。

SURF(加速鲁棒特征)则使用Hessian矩阵和积分图像进行关键点检测,并生成64维描述子。

基于SIFT图像特征匹配的多视角深度图配准算法

基于SIFT图像特征匹配的多视角深度图配准算法

基于SIFT图像特征匹配的多视角深度图配准算法一、引言介绍多视角深度图配准算法的意义及研究现状,阐述SIFT图像特征匹配在图像配准中的重要性。

二、SIFT图像特征提取介绍SIFT算法的基本原理及其实现方式,包括尺度空间构建、关键点检测、局部特征描述等。

三、基于SIFT的多视角深度图配准介绍基于SIFT图像特征匹配的多视角深度图配准算法,包括图像对齐、深度图对齐、三维点云生成等步骤。

四、实验与结果分析通过实验证明算法的有效性和准确性,采用定量和定性分析的方式比较不同方法的优劣,并讨论其应用场景。

五、结论与展望总结全文工作,归纳出本文的贡献和不足,并展望未来相关研究方向及改进措施。

随着计算机视觉和深度学习技术的快速发展,多视角深度图配准成为了一个研究热点。

多视角深度图配准是指将来自不同视角的深度图或结构光扫描等信息融合在一起,生成三维模型或场景,以便进行三维重建、机器人导航、虚拟现实等应用。

在多视角深度图配准算法中,图像配准是其中一个非常重要的环节之一。

快速准确地对于多视角的深度图进行配准就可以产生高质量的三维场景。

目前,对于多视角深度图中的配准问题,已有许多相关研究和算法。

这些算法一般采用从应用程序中收集多个图像来进行拍摄的传统摄影的方法。

然而,在图像进行配准时存在许多困难,例如光照条件的变化、图像中存在重复的物体、不同视角的误差不同等。

因此,开发一种快速准确的图像配准算法仍然是一个具有挑战性的问题。

SIFT算法是一种基于图像特征的配准方法,常常被用来进行特征提取和匹配。

它通过对图像进行尺度空间分析,检测出关键点并生成其局部特征描述符,用于图像匹配和目标识别。

由于其对于尺度和旋转不变性以及对于干扰性和噪声的抵抗能力,SIFT算法被广泛应用于图像配准的领域。

其中,SIFT算法通过关键点的检测和局部描述符的生成,将图像从二维坐标空间转化到高维向量空间中,利用向量空间的距离度量法来计算两幅图像之间的相似度,从而获得图像的配准结果。

SIFT算法原理

SIFT算法原理

SIFT算法原理SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)是一种用于图像处理和计算机视觉中的特征提取算法。

SIFT算法最初由David Lowe于1999年提出,它的核心思想是通过检测图像中的关键点,并提取这些关键点周围的局部特征描述子来进行图像匹配、物体识别、图像拼接等应用。

1.尺度空间构建首先,为了使SIFT算法对图像特征具有尺度不变性,需要构建一系列尺度空间图像。

这是通过将原始图像应用高斯模糊,然后进行下采样得到不同尺度的图像来实现的。

在每个尺度级别上,通过使用高斯差分金字塔(Difference of Gaussian,DoG)来提取图像中的关键点。

2.极值点检测在尺度空间中,通过在DoG金字塔中寻找局部极值点来检测关键点。

这些局部极值点通常表示图像中的显著特征点。

3.关键点定位对于每个检测到的极值点,需要通过拟合其周围的梯度方向来确定更加精确的位置和尺度。

这可以找到关键点的精确位置,并且作为后续步骤的输入。

4.方向分配为了使SIFT算法具有旋转不变性,需要为每个关键点分配一个主方向。

这可以通过计算关键点周围区域的梯度方向直方图来实现。

选择直方图中峰值最高的方向作为主方向。

5.特征描述在关键点的周围区域内,通过计算局部区域的梯度幅值和方向来构建特征描述子。

这些特征描述子对尺度、旋转和光照等变化都具有较强的鲁棒性,可以用来进行匹配和识别。

总的来说,SIFT算法通过构建尺度空间,检测局部极值点,定位关键点,分配主方向以及构建特征描述子等步骤,提取出图像中的稳定且具有鲁棒性的特征点。

这些特征点可以用于图像匹配、物体识别、图像拼接等计算机视觉任务,并且对尺度、旋转以及光照等变化具有一定的不变性。

SIFT算法在实际应用中具有广泛的应用价值,并成为计算机视觉领域中最经典的特征提取算法之一1.尺度空间构建2.关键点检测3.关键点定位对于检测到的关键点,SIFT算法通过拟合其周围的梯度方向来定位关键点的精确位置和尺度。

图像拼接实验报告

图像拼接实验报告

图像拼接一、实验原理及实验结果图像拼接就是将一系列针对同一场景的有重叠部分的图片拼接成整幅图像,使拼接后的图像最大程度地与原始场景接近,图像失真尽可能小。

基于SIFT算法则能够对图像旋转、尺度缩放、亮度变化保持不变性,对视角变化,仿射变换,噪声也能保持一定程度的稳定性。

本次实验运用SIFT匹配算法来提取图像的特征点,采用随机抽样一致性算法求解单应性矩阵并剔除错误的匹配对。

最后用加权平均融合法将两帧图像进行拼接。

具体过程为:首先选取具有重叠区域的两帧图像分别作为参考图像和待拼接图像,然后使用特征提取算法提取特征点,并计算特征点描述子,根据描述子的相似程度确定互相匹配的特征点对。

再根据特征点对计算出待拼接图像相对于参考图像的单应性矩阵,并运用该矩阵对待拼接图像进行变换,最后将两帧图像进行融合,得到拼接后的图像。

1.特征点检测与匹配特征点检测与匹配中的尺度空间理论的主要思想就是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,再对这些序列就行尺度空间的特征提取。

二维的高斯核定义为:G(x,y,σ)=12πσ2e−(x2+y2)2σ2⁄对于二维图像I(x,y),在不同尺度σ下的尺度空间表示I(x,y,σ)可由图像I(x,y)与高斯核的卷积得到:L(x,y,σ)=G(x,y,σ)∗I(x,y)其中,*表示在x 和 y方向上的卷积,L表示尺度空间,(x,y)代表图像I上的点。

为了提高在尺度空间检测稳定特征点的效率,可以利用高斯差值方程同原图像进行卷积来求取尺度空间极值:D(x,y,σ)=(G(x,y,kσ)−G(x,y,σ))∗I(x,y)= L(x,y,kσ)−L(x,y,σ)其中k为常数,一般取k=√2。

SIFT算法将图像金字塔引入了尺度空间,首先采用不同尺度因子的高斯核对图像进行卷积以得到图像的不同尺度空间,将这一组图像作为金字塔图像的第一阶。

接着对其中的2倍尺度图像(相对于该阶第一幅图像的2倍尺度)以2倍像素距离进行下采样来得到金字塔图像第二阶的第一幅图像,对该图像采用不同尺度因子的高斯核进行卷积,以获得金字塔图像第二阶的一组图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. . 页脚 SIFT算法分析

1 SIFT主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。

2 SIFT算法的主要特点: a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。 b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。 c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。 d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。 e) 可扩展性,可以很方便的与其他形式的特征向量进行联合。

3 SIFT算法流程图: . .

页脚 4 SIFT算法详细

1)尺度空间的生成 尺度空间理论目的是模拟图像数据的多尺度特征。 高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为:

),(),,(),,(yxIyxGyxL

其中 ),,(yxG是尺度可变高斯函数,2)(22/21),,(22yxeyxG (x,y)是空间坐标,是尺度坐标。大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。 为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。

),,(),,(),()),,(),,((),,(yxLkyxLyxIyxGkyxGyxD DOG算子计算简单,是尺度归一化的LoG算子的近似。 图像金字塔的构建:图像金字塔共O组,每组有S层,下一组的图像由上一组图像降采样得到。 图1由两组高斯尺度空间图像示例金字塔的构建, 第二组的第一副图像由第一组的第一副到最后一副图像由一个因子2降采样得到。图2 DoG算子的构建:

图1 Two octaves of a Gaussian scale-space image pyramid with s =2 intervals. The first image in the second octave is created by down sampling to last image in the previous . . 页脚 图2 The difference of two adjacent intervals in the Gaussian scale-space pyramid create an interval in the difference-of-Gaussian pyramid (shown in green).

2) 空间极值点检测 为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图3所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点,如图1所示。

3) 构建尺度空间需确定的参数 -尺度空间坐标 O-octave坐标 S- sub-level 坐标

和O、S的关系Ssoso/02),(,],1,...,0[minOoo]1,...,0[Ss

图3 DoG尺度空间局部极值检测 . . 页脚 其中0是基准层尺度。o-octave坐标,s- sub-level 坐标。注:octaves 的索引可能是负的。第一组索引常常设为0或者-1,当设为-1的时候,图像在计算高斯尺度空间前先扩大一倍。

空间坐标x是组octave的函数,设0x是0组的空间坐标,则

1,...,01,...,0,,20000MNxoxxo

如果00,MN是基础组o=0的分辨率,则其他组的分辨率由下式获得:

0000,22ooNMNM





注:在Lowe的文章中,Lowe使用了如下的参数: 1/0min0.5,1.62,1,3SnoS

在组o=-1,图像用双线性插值扩大一倍(对于扩大的图像1n)。

4)精确确定极值点位置 通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度),同时去除低对比度的关键点和不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应),以增强匹配稳定性、提高抗噪声能力。

①空间尺度函数),,(yxD

XXDXXXDyxDyxDTT20200021,,),,()泰勒展开式如下:

xxDxxxDyxDyxDTT2221,,),,(

对上式求导,并令其为0,得到精确的位置xˆ,xDxDx

212

ˆ

②在已经检测到的特征点中,要去掉低对比度的特征点和不稳定的边缘响应点。去除低对比度的点:把公式(4)代入公式(3),只取前两项可得:

xxDyxDxDTˆ21,,)ˆ(

若03.0ˆxD,该特征点就保留下来,否则丢弃。 ③边缘响应的去除 一个定义不好的高斯差分算子的极值在横跨边缘的地方有较大的主曲率,而. . 页脚 在垂直边缘的方向有较小的主曲率。主曲率通过一个2x2 的Hessian矩阵H求出: xxxyxyyy

DD

HDD



导数由采样点相邻差估计得到。 D的主曲率和H的特征值成正比,令为最大特征值,为最小的特征值,则

令,则: (r + 1)2/r的值在两个特征值相等的时候最小,随着r的增大而增大,因此,为了检测主曲率是否在某域值r下,只需检测

在Lowe的文章中,取r=10。 5)关键点方向分配 利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备旋转不变性。

式(5)为(x,y)处梯度的模值和方向公式。其中L所用的尺度为每个关键点各自所在的尺度。 在实际计算时,我们在以关键点为中心的邻域窗口采样,并用直方图统计邻域像素的梯度方向。梯度直方图的围是0~360度,其中每10度一个柱,总共36个柱。直方图的峰值则代表了该关键点处邻域梯度的主方向,即作为该关键点的方向。图4是采用7个柱时使用梯度直方图为关键点确定主方向的示例。( 窗口尺寸采用Lowe推荐的1.5σ×1.5σ)

图4 由梯度方向直方图确定主梯度方向 在梯度方向直方图中,当存在另一个相当于主峰值80%能量的峰值时,则将这个方向认为是该关键点的辅方向。一个关键点可能会被指定具有多个方向(一个主方向,一个以上辅方向),这可以增强匹配的鲁棒性[53]。 至此,图像的关键点已检测完毕,每个关键点有三个信息:位置、所处尺度、. . 页脚 方向。由此可以确定一个SIFT特征区域(在实验章节用椭圆或箭头表示)。 6)特征点描述子生成 首先将坐标轴旋转为关键点的方向,以确保旋转不变性。

图5 由关键点邻域梯度信息生成特征向量

接下来以关键点为中心取8×8的窗口。图5-4左部分的中央黑点为当前关键点的位置,每个小格代表关键点邻域所在尺度空间(和关键点是否为一个尺度空

间)的一个像素,利用公式(5)求得每个像素ji,的梯度幅值jim,与梯度方向ji,,箭头方向代表该像素的梯度方向,箭头长度代表梯度模值,然后用高斯窗口对其进行加权运算,每个像素对应一个向量,长度为jimjiG,',,,jiG,,'为该像

素点的高斯权值,方向为ji,, 图中蓝色的圈代表高斯加权的围(越靠近关键点的像素梯度方向信息贡献越大)。高斯参数σ′取3倍特征点所在的尺度。然后在每4×4的小块上计算8个方向的梯度方向直方图,绘制每个梯度方向的累加值,即可形成一个种子点,如图5右部分所示。此图中一个关键点由2×2共4个种子点组成,每个种子点有8个方向向量信息。这种邻域方向性信息联合的思想增强了算法抗噪声的能力,同时对于含有定位误差的特征匹配也提供了较好的容错性。 实际计算过程中,为了增强匹配的稳健性,对每个关键点使用4×4共16个种子点来描述,这样对于一个关键点就可以产生128个数据,即最终形成128维的SIFT特征向量。此时SIFT特征向量已经去除了尺度变化、旋转等几何变形因素的影响,再继续将特征向量的长度归一化,则可以进一步去除光照变化的影响。 当两幅图像的SIFT特征向量生成后,下一步我们采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。取图像1中的某个关键点,并找出其与图像2中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点。降低这个比例阈值,SIFT匹配点数目会减少,但更加稳定。为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,用比较最近邻距离与次近邻距离的方法,距离比率ratio小于某个阈值的认为是正确匹配。因为对于错误匹配,由于特征空间的高维性,相似的距离可能有大量其他的错误匹配,从而它的ratio值比较高。推荐ratio的阈值为0.8。

相关文档
最新文档