模拟电路 第五章讲解
模拟电路5.习题解答

A u
第五章 放大电路的频率响应
5.4
已知某放大电路的幅频特性如图P5.4所示。试问:
(1)该电路的耦合方式;
(2)该电路由几级放大电路组成; (3)当f=104Hz时,附加相移为多少? 当f=105Hz时,附加相移以约为多少?
解: (1)直接耦合; (2)三级; (3)当f=104Hz时, φ’=-135o; 当f=105Hz时, φ ’=-270o 。
第五章 放大电路的频率响应
第五章 放大电路的频率响应
习题解答
第五章 放大电路的频率响应
5.2已知某放大电路的波特图如图P5.2所示,试写出AU的表达式。 解:设电路为基本共射放大电路, 其频率特性表达式如下:
32 (1
10 f )(1 j 5 ) jf 10 3.2j f 或Au f f (1 j )(1 j 5 ) 10 10
1 16 Hz 2 π Rs C s 1 1 1.1MHz ' ' 2 π(Rs ∥ RG )C GS 2 πRs C GS 12 .4 ( j
' ' C GS C GS (1 g m RL )C GD 72 pF
fH
f ) 16 A us f f (1 j )(1 j ) 6 16 1.1 10
(2)波特图如右图
第五章 放大电路的频率响应
5.14 电路如图P5.14所示,已知Cgs=Cgd=5pF, C1=C2=Cs=10μ F, gm=5mS,试求fH、、fL各约为多少,并写出Aus Ri ' ' ( g m RL ) g m RL 12 .4 Rs Ri
第五章 放大电路的频率响应
模拟电路第五章知识点总结

第五章 放大电路反馈原理与稳定化基础一、反馈放大器的基本概念 1.反馈极性与反馈形式负反馈:与输入叠加后输入幅值降低。
正反馈:与输入叠加后输入幅值升高。
主反馈:从多级电路的末级向输入级的输入回路的反馈。
局部反馈:多级电路中主反馈之外的反馈环路。
直流反馈:电路中直流电压或直流电流的反馈。
交流反馈:交流或动态信号的反馈。
2.理想反馈方块图和基本反馈方程式表征放大电路的输出量X o 、输入量X i (或X s )和反馈量X f 之间关系的示意图统称方块图。
理想方块图是指:①信号只沿箭头方向传输,即信号从输入端到输出端只通过基本放大电路,而不通过反馈网络;②信号从输出端反馈到输入端只通过反馈网络而不通过基本放大电路。
基本反馈方程式:()()()()1()()o f i X s A s A s X s A s B s ==+3.环路增益和反馈深度开环增益()A s 与反馈系数()B s 的乘积称为环路增益:()()()T s A s B s = 反馈深度:()1()1()()=+=+F s T s A s B s4.负反馈放大器的分类电压并联负反馈:iRF电流串联负反馈:RL 电压串联负反馈:v R LR电流并联负反馈:i LR二、负反馈对放大器性能的影响 1.闭环增益的稳定性闭环增益稳定性比开环增益稳定性提高到(1AB +)倍2.输入电阻串联负反馈能使闭环输入电阻if R 增加到开环输入电阻i R 的1AB +倍; 并联负反馈能使闭环输入电阻R if 减小到开环输入电阻R i 的11AB+。
(或者说减小1AB +倍,注意说法区别)3.输出电阻电压负反馈使闭环输出电阻of R 降低到其开环输出电阻o R 的11so A B+;(或者说减小1AB +倍,注意说法区别)电流负反馈能使闭环(从末级晶体管的输出电极向反馈放大电路看入的等效)输出电阻R of 增大到(1)ss A B +倍。
4.信号源内阻对负反馈放大器性能的影响信号源内阻越小,串联负反馈效果越好;if fs f s ifR A A R R =+信号源内阻越大,并联负反馈效果越好。
模电第5章课件PPT学习教案

VT1
VT2
R2 uI2
第12页/共53页
动态分析:
(1)信号输入方式
共模输入电压 uIc 差模输入电压 uId
第13页/共53页
第14页/共53页
第15页/共53页
共模电压放大倍数:
Ac
Δ uo Δ uIc
Ac 愈小愈好, 而Ad 愈大愈好 +
uIc ~
+VCC
Rb
Rc
+ uo
Rc Rb
R
+VCC Rb2
ICQ1
ICQ2
1 2
ICQ3
R
U U V I R CQ1
CQ2
CC
CQ1
(对地)
C
IBQ1
IBQ2
ICQ1
1
(对地)
UBQ1 UBQ2 IBQ1R
VT1
图
VT3
Re
R
VT2
Rb1
VEE
恒流源式差分放大电路
第24页/共53页
3. 动态分析 由于恒流三极管相当于一个阻值很大的长尾电阻 ,它的作用也是引入一个共模负反馈,对差模电压放 大倍数没有影响,所以与长尾式交流通路相同。
IB1 +
UBE1
IC2
IB2 U+BE2 VT2
IC2
I C1
I REF
2IB
I REF
2
IC2
图
所以
1
IC2
I R EF 1
2
当满足 >> 2 时,则
IC2
I R EF
VCC
UB E1 R
第5页/共53页
二、比例电流源
模拟电子技术第五章场效应管及其放大电路

①在漏极特性(tèxìng)上,对应某一vDS,作一垂直线; ②该垂线与各漏极特性(tèxìng)相交得到一组交点; ③由各交点所对应的vGS 和iD值可画出对应的转移特性(tèxìng)。
第十一页,共54页。
第十二页,共54页。
注意:通过判断VDS是否大 于VGS-VT,来确定 (quèdìng)管子工作在饱和区 还是可变电阻区。 当VGS<VT,管子截止。
例题: 电路如图所示,设Rg1=60kΩ,Rg2=40kΩ,Rd=15kΩ,
VDD=5V,VT=1V,Kn=0.2mA/V2。试计算电路的静态漏极电流 (diànliú)IDQ和漏源电压VDSQ。
例题: 电路如图所示,由电流(diànliú)源提供偏置(可由其
它MOS管构成)。设NMOS管的参数为Kn=160μA/V2, VT=1V, VDD=VSS=5V,IDQ=0.25mA, VDQ=2.5V。试求电路参数。
静态(jìngtài)时,vI=0,VG =0,ID = I
vGS VT
12
vGS VT , vDS vGS VT
第十六页,共54页。
5.1.4 沟道长度调制(tiáozhì)效应
iD Kn
vGS VT
2
KnVT2
vGS VT
2 1
I DO
vGS VT
2 1
iD Kn vGS VT 2 1 vDS
I
DO
vGS VT
12 1 vDS
1. 输出特性
iD f vDS |vGS 常数
vGD= vGS-vDS=VT
可变电阻区(resistive region) —— 饱和区
模拟电路第五章

CGRAM的地址
功能:设置用户自定义CGRAM的地址,对用户自定义CGRAM访问 时,要先设定CGRAM的地址,地址范畴0~63。
(8)显示缓冲区DDRAM地址设置命令 格式:
RS 0 R/W 0 D7 1 D6 D5 D4 D3 D2 D1 D0
MOV A,#11000101B ;写入显示缓冲区起始地址为第2行第6列。 ACALL WC51R MOV A,“B” ;第2行第6列显示字母“B”。 ACALL WC51DDR MOV A,“Y” ;第2行第7列显示字母“Y”。 ACALL WC51DDR MOV A,“E” ;第2行第8列显示字母“E”。 ACALL WC51DDR LOOP:AJMP LOOP ;初始化子程序 INIT:MOV A,#00000001H ;清屏 ACALL WC51R MOV A,#00111000B ;使用8位数据,显示两行,使用5*7的字型。 LCALL WC51R MOV A,#00001110B ;显示器开,光标开,字符不闪烁。 LCALL WC51R MOV A,#00000110B ;字符不动,光标自动右移一格。 LCALL WC51R RET
2. 字符型液晶显示模块RT-1602C的内部结构
液晶显示模块RT-C1602C的内部结构可以分成三部分:LCD 控制器、LCD驱动器、LCD显示器。 控制器采用HD44780,驱动器采用HD44100。 HD44780是集控制器,驱动器于一体,专用于字符显示控制驱动 集成电路,是字符型液晶显示控制器的代表电路。 HD44100是作扩展显示字符位的。
汇编语言程序: RS BIT P2.0 RW BIT P2.1 E BIT P2.7 ORG 00H AJMP START ORG 50H ;主程序 START:MOV SP,#50H ACALL INIT MOV A,#10000000B ;写入显示缓冲区起始地址为第1行第1列。 ACALL WC51R MOV A,“G” ;第1行第1列显示字母“G”。 ACALL WC51DDR MOV A,“O” ;第1行第2列显示字母“O”。 ACALL WC51DDR MOV A,“O” ;第1行第3列显示字母“O”。 ACALL WC51DDR MOV A,“D” ;第1行第4列显示字母“D”。 ACALL WC51DDR
模拟电路场效应管及其基本放大电路

UGS(off)
信息技术学院
3. 特性
(1)转移特性
在恒流区
uGS 2 iD I DSS (1 ) U GS(off)
漏极饱 和电流
(U GS (off ) uGS 0)
夹断 电压
信息技术学院
(2)输出特性
iD f (uDS ) U GS 常量
IDSS g-s电压 控制d-s的 等效电阻
信息技术学院
P 沟道场效应管 D
P 沟道场效应管是在 P 型 硅棒的两侧做成高掺杂的 N 型区(N+),导电沟道为 P 型, 多数载流子为空穴。 d
P G
N+ 型 沟 道 N+
g
S
s 符号
信息技术学院
2. 工作原理
(1)栅-源电压对导电沟道宽度的控制作用
uDS=0
UGS(off)
沟道最宽 (a)uGS = 0
2)耗尽型MOS管
夹断 电压
信息技术学院
各类场效应管的符号和特性曲线
种类 结型 N 沟 道 符号 D 转移特性 ID /mA IDSS 漏极特性 UGS= 0V
ID
-
G
S D
UGS(off) O
UGS
O + + + ID O
o
UDS
ID
结型
P 沟 道
O UGS(off) UGS
G
IDSS
S D B
iD f (uGS ) U DS 常量
当场效应管工作在恒流区时,由于输出特性曲线可近似为横轴的一组平行 线,所以可用一条转移特性曲线代替恒流区的所有曲线。输出特性曲线的 恒流区中做横轴的垂线,读出垂线与各曲线交点的坐标值,建立uGS,iD坐 标系,连接各点所得的曲线就是转移特性曲线。
模电第五章

关键是根据输入信号求出各极电流、 关键是根据输入信号求出各极电流、电压波形瞬时值
解:静态工作点如下
U BEQ = 0.7V
I CQ = 5mA
I BQ = 100µA
U CEQ = 10V
瞬时值是交流量叠加在直流量之上 1、晶体管发射结上的瞬时电压 、
uBE = UBEQ + ui = 0.7 + 0.025sin ωt(V )
+ uce
−
——输出交流负载线 输出交流负载线
′ uCE −UCEQ = −RL (iC − ICQ )
交流负载线过Q点 ①令iC = ICQ,则uCE = UCEQ,交流负载线过 点 ②斜率为
′ −1 RL 交流负载线比直流负载线陡
图解
′ ③令iC = 0,则 uCE = UCEQ + ICQ RL ,这是与横坐标的交点 ,
第五章 基本放大电路
1 − ′ RL
−
1 RC
Q
Q
UCEQ + ICQ (RC // RL )
第五章 基本放大电路
【结论】: ① 当ui=0时,即为静态。 时 即为静态。 此时u 此时 BE=UBEQ=0.7V, iB=IBQ=100µA,uCE=UCEQ=10V,iC=ICQ=5 mA , , , ② 当ui从零向正方向增大时→iB↑→ iC↑→uCE↓ 当ui从零向负方向减小时→iB↓→ iC↓→uCE↑ 图解法不仅形象地说明了放大器的工作过程, ③ 图解法不仅形象地说明了放大器的工作过程,而且可以求出各极电 流、电压幅值和相位关系。 电压幅值和相位关系。
图解
第五章 基本放大电路
2、画输出回路的交流负载线 、 在动态运用时, 都是在静态电流、 在动态运用时,iC和uCE都是在静态电流、电压的基础上随交流信号 作相应的变化。 作相应的变化。
第五章 电流镜

19
5.4 与差动对结合的电流镜
电流镜与差动对的结合可以将差动输入信号转换为单端输出信号。
M1的小信号电流经过M3镜像到M4中,M4和M2的小信 号电流的矢量和流过输出端的负载使Vout发生变化。这 也是差分运放的一种形式。
大信号分析
当Vin1<<Vin2时,M1,3,4关断,各支路无电流Vout=0。随 着Vin1逐渐增大,I4逐渐变大,I2逐渐变小,Vout处的寄生 电容被充电,电位升高。Vin1=Vin2时,Vout=VF=VDD-VSG3 。Vin1>>Vin2时,M2关断,Vout变为VDD。(Vin=Vin2时, 为什么Vout=VF?) 若Vout<VF,M1流过的电流将大于M2,M3流过的电流将 小于M4,这是互相矛盾的。
CMOS模拟集成电路设计 第五章 电流镜
16
5.3 低压共源共栅电流镜
低压共源共栅电流镜,或者叫“低电压余度消耗”的共源共 栅电流镜。 (b)图比(a)图多消耗了相当于一个 阈值的电压余度。主要是因为M1 的二极管形式连接。因此将拓扑 改造成左下方所示的结构。只要 合理的设置Vb就可以减小电压余 度消耗。 VGS1 ≥ Vb − VTH 2 , Vb − VGS 2 ≥ VGS1 − VTH 1 ⇒ VGS 2 + VGS1 − VTH 1 ≤ Vb ≤ VGS1 + VTH 2
共源共栅电流镜
体效应在两个管子上表现出相同的阈值变化。
CMOS模拟集成电路设计
第五章 电流镜
14
5.2 共源共栅电流镜
例:画出VX和VY与IREF的关系草图。如果IREF作为电流源工作, 其两端的电压不能小于0.5V,则IREF能提供的最大电流值是多少? (不考虑体效应,管子尺寸及工艺参数已知)