超短激光脉冲——锁模技术概要
激光被动锁模技术的原理及应用

激光被动锁模技术的原理及应用简介激光锁模技术是一种通过调整光源和谐振腔的特性来实现锁定光波的模式的技术。
激光被动锁模技术是在被动元件的作用下实现激光锁模的一种技术。
本文将介绍激光被动锁模技术的原理及其在激光器、光通信和光谱分析等领域的应用。
激光被动锁模技术的原理激光被动锁模技术的原理基于被动元件对激光光波的调制和过滤作用。
主要包括以下几个方面:1.调制:激光光源产生的光波经过被动元件的调制,改变其频率、相位等特性。
常用的被动元件包括光纤、薄膜滤波器等。
2.过滤:被动元件对激光光波进行频率选择性过滤,将其锁定在特定的模式上。
通过选择合适的滤波器参数,可以实现特定波长的锁模。
3.反馈:被动元件对锁定的光波提供反馈,使其保持稳定的模式。
这种反馈机制可以通过调整被动元件的参数来实现。
激光被动锁模技术的应用1. 激光器激光被动锁模技术可以应用于激光器的波长选择和模式控制上。
•波长选择:利用被动元件的频率选择性过滤作用,可以实现激光器在特定波长范围内的选择性发射。
这对于光通信、光谱分析等领域具有重要意义。
•模式控制:被动元件可以锁定激光器的输出模式,使其保持稳定的单模态输出。
这在一些精密测量、光学仪器等领域中非常有用。
2. 光通信激光被动锁模技术在光通信中的应用也非常广泛。
•波长分割多路复用:通过锁定激光器的特定波长模式,可以实现波分复用技术,将多个信号同时传输在同一光纤上,提高光纤的利用率。
•光路限制:激光器在特定波长模式下传输光信号,可以减少光子的传输丢失,提高光信号的传输距离和质量。
3. 光谱分析激光被动锁模技术在光谱分析领域也有重要应用。
•高分辨率谱分析:被动元件可以锁定光源的单模态输出,使得光谱分析具有高分辨率和高稳定性,提高分析的准确性。
•光子计数:通过锁定光波的模式,可以实现对光子的精确计数,为光谱分析提供精确的数据。
总结激光被动锁模技术通过被动元件的调制、过滤和反馈作用,实现对激光光波的锁定和稳定输出。
超短光脉冲的概念、产生和应用

腔 内纵模间隔为 =
二 , ^厶
, =30M z如果激活 0 H ;
介质是一种钛宝石晶体 , 则它 的 △ v=6 H , 0T z纵模
^
数 则为 ~ :
O l g
:2 0, ×15按照 r ・ v 。 △ 的条件 , 脉冲
‘
类型为 s h 形 , e 2 则可以得 到 5f 的超短光脉冲. c s 但 是, 在没有调制器的时候 , 腔内的纵模由于介质的色 散和模间的竞争 , 就不可能形成周期的超短光脉冲. 差 为零或者恒定值 , 这样各模之间相干叠加, 形成超 短脉冲序列 , 则脉冲的强度与参与振荡的模数 的平 方成正比, 与每个模 的振幅成正比( ,=N A , 20 N是 模式数 , 。 A 是每个模 的振幅)脉冲的时间宽度与每 .
超短光脉冲的出现使人类在原子和电子的层面上观
( = ÷ J 见采 锁 的 式 获 r 瓦 = ・ , 用 模 方 是 可
得超短脉冲的有效途径 . 32 锁模技术的发展和锁模的种类 . 自 10 从 9 年激光出现后 , 6 科学工作者就开始寻
察到这一运动过程 . 在高强度 的超短光脉冲作用下 ,
物质会出现各种奇特的现象 , 使气态 、 态、 液 固态物
质在瞬间变成等离子体 , 这种等离子体可以辐射出
不同波长的激光 . 高功率超短脉冲激光 与电子束碰
撞可以产生软 x射线飞秒激光 , 射线激光 , l 3 正负电
子对. 利用飞秒激光能够有效地加速电子 , 使加速器 的规模缩小至原来的千分之一 .
3 超 短光 脉 冲 的产 生及控 制方 法
3 1 利用锁 模 的方 法 可 以产 生 超短 光脉 冲 .
介绍 .
调Q技术与锁模技术

)
当 N Nt 时,腔内光子数达到其最大值 m
m
1 2
(Ni
Nt
Nt
ln
Nt Ni
)
在 Nt 附近做级数展开,可得
2.峰值功率Pm
m
Nt 4
( Ni Nt
1)2
当腔内光子数达到最大值m 时,输出的巨脉冲功率也达到其最
大值 Pm ,即
Pm hm0
0 为输出镜单位时间内光能量的衰减率。
设输出镜透过率为T,腔长为L,光在腔内的运动速度为v,可得
7.1 调Q技术 7.1.1 调Q的基本理论 一. 脉冲固体激光器的输出的驰豫振荡
将普通脉冲固体激光器输出的脉冲,用示波器进行观察、记 录,发现其波形并非一个平滑的光脉冲,而是由许多振幅、脉宽 和间隔作随机变化的尖峰脉冲组成的。
如图 (a)所示。每个尖峰的宽度约为0.1~1μs,间隔为数微秒, 脉冲序列的长度大致与闪光灯泵浦持续时间相等。图(b)所示 为观察到的红宝石激光器输出的尖峰。这种现象称为激光器弛 豫振荡。
2
Ni /Nt
1
1.0
0.9
0.8 0.7 0.6
(Ni N f ) / Ni
0.5
0.4
0 0.1 0.2 0.3 0.4 0.5 0.6
N f / Ni
5.调Q脉冲的时间特性 下面再讨论一下调Q脉冲的脉宽和波形问题
1 2
(
Ni
N
Nt
ln
N Ni
)
由dN 2 N
d
Nt
d dt Nt dN
(3)谐振腔的Q值改变要快(最好是突变),一般应与谐振腔
建立激光振荡的时间相比拟。
四、调Q激光器的两种储能方式
3.6.2 超短脉冲的测量

相关测量法
应用较广,间接测量。利用相关函数的测试,-测出的相关函数 曲线不是脉冲的实际宽度,要通过换算,才能得到脉宽的近似值。 (1)相关函数-2阶强度相关函数为 E 2 (t ) E 2 (t ) I (t ) I (t ) G 2 ( ) 2 4
I (t ) E (t )
2W2 K [1 2G (2) ( )]
2W2 E 4 (t )dt E 4 (t )dt――背景光 而
当移动全反棱镜时,则第二束光到达倍频晶体的时间在改变, S ( ) 在变 G( ) 1 3
22
频率分辨光学开关法
(Frog, frequency-resolved optical gating)
自参考光谱相位相干电场重 构法
(Spider, spectral phase interferometry for direct electricfield reconstruction)
E2 (t ) E t cos t 2
E2 (t ) K[E1 (t ) E2 (t )]2
光电探测器接收到的不是瞬时光强,而是积分强度。
S ( ) [ E2 (t )]2 dt
K [ E1 (t ) E2 (t )]4 dt
m 1 E(t ) Ac cos(ct m cos mt ) m Ac m Ac Ac cos ct cos[(c m )t ] cos[(c m )t ] 2 2 被动锁模:在腔中加染料(上能级寿命< 2L / c)
涨落理论: ①线性放大阶段 染料 增益未饱和 -频谱宽-窄 ②非线性吸收 强脉冲使染料饱和 ③非线性放大 锁模激光器的设计 1.标准具效应。 2.调制器的位置和尺寸。3.失谐 脉宽的测量 1.直接测量-条纹照相机 2.相关测量-- 强度相关测量(二阶相关函数) ①双光子荧光法 ②二次谐波法
锁模

主动锁模与被动锁模的比较
2.相同点 调制器和燃料盒都紧靠全反镜。 主动锁模和被动锁模都具有标准具效应。 经过调制器和燃料盒后各纵模之间相
1、不同点 主动锁模使用调制器对光波的振幅和相位 进行调制;被动锁模是自身辐射和燃料盒 进行周期性调制。 主动锁模运用电光和声光效应进行锁模; 被动锁模运用燃料的可饱和吸收效应进行 锁模。 主动锁模和被动锁模的物理过程不同。 被动锁模比主动锁模更容易失谐。
被动锁模
非线性吸收阶段 特点: 强脉冲使染料饱和,弱脉冲不能使染料 饱和-实现非线性吸收。
结果:实现相位固定
被动锁模
非线性放大阶段(主要压缩脉宽阶段) 特点: 染料饱和,增益饱和-非线性放大
结果: 对于激活介质来说,介质增益饱和,强脉 冲通过放大介质时,前沿中心部位放大的多, 脉冲后沿可能放大的少,经过几次放大过程- 前后沿变陡-脉冲变窄。弱脉冲进一步受到抑 制,最后腔中剩下一个脉冲振荡。
主动锁模与被动锁模
主动锁模 被动锁模
主要内容
主动锁模与被动锁模的比较
一、主动锁模
1、主动锁模是在自由运转的激光器中加入调 制器,调制光波的振幅和相位进行锁模。
主动锁模结构示意图
主动锁模
2、调制器的作用 调制光波,产生边频 3、根据调制方法可分为两类: 振幅调制 相位调制
二、被动锁模
1、在激光器中放一个装有机燃料的燃料盒, 依靠有机燃料的饱和吸收过程对光波进行 锁模。
被动锁模
2、物理过程: 线性放大阶段 非线性吸收阶段 非线性放大阶段
被动锁模
线性放大阶段
特点:初始阶段,有机染料未饱和-非线性 吸收光波场-自发辐射的荧光-G> 时,产 生激光,在激光介质中线性放大-增益未饱和。
-锁模激光器综述

东北石油大学课程设计2013年3 月8 日东北石油大学课程设计任务书课程光电子技术基础课程设计题目锁模激光器的设计专业电子科学与技术姓名学号04主要内容、基本要求、主要参考资料等1、主要内容:设计一锁模激光器,说明所设计的锁模激光器的基本原理、给出所设计的锁模激光器的结构、所使用的材料。
2、基本要求:说明该锁模激光器的性能参数,撰写报告。
3、主要参考资料:[1]江涛,激光与光电子学进展,北京,电子工业出版社,2000年(8) 40-43[2]贾正根,半导体报,北京,电子工业出版社,2000年6月第37卷(3)45-47[3]周炳琨等,激光原理,第5版,北京,国防工业出版社,2004年8月[4]马养武等,光电子学,第2版,杭州,浙江大学出版社,2003年3月完成期限2013.3.4 ~2013.3.8指导教师专业负责人2013年3 月4 日目录第1章概述 (4)第2章锁模激光器的原理 (2)2.1 锁模的基本原理 (4)2.1.1锁模脉冲的特征 (4)第3章锁模方式 (8)3.1 主动锁模 (8)3.1.1损耗内调制锁模 (8)3.1.2相位内调制锁模 (9)3.1.3主动锁模激光器的结构 (9)3.2 被动锁模 (10)第4章锁模光纤激光器设计 (13)4.1 锁模光纤激光器基本结构 (13)4.2 锁模光纤激光器设计 (13)结论 (11)参考文献 (12)第1章概述锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。
使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。
实现锁模的方法有很多种,但一般可以分成两大类:即主动锁模和被动锁模。
主动锁模指的是通过由外部向激光器提供调制信号的途径来周期性地改变激光器的增益或损耗从而达到锁模目的;而被动锁模则是利用材料的非线性吸收或非线性相变的特性来产生激光超短脉冲。
目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lens mode locking)技术是一种独特的被动锁模方法。
从锁模到cpa放大——飞秒光纤激光器原理
从锁模到cpa放大——飞秒光纤激光器原理从锁模到CPA放大——飞秒光纤激光器原理飞秒光纤激光器是一种重要的激光器,它具有超短脉冲宽度和高峰值功率的特点,被广泛应用于科学研究、材料加工、医学和通信等领域。
在飞秒光纤激光器的研究和发展过程中,锁模和CPA放大是两个重要的步骤。
本文将从锁模到CPA放大的原理来介绍飞秒光纤激光器的工作机制。
我们来看一下锁模的概念。
在激光器中,由于光的传播和反射等因素的影响,激光往往会出现空间模式的变化,即横模和纵模的变化。
锁模是指通过一定的方法将激光束限制在一个特定的模式上,使其具有稳定的传输性能。
在飞秒光纤激光器中,通过控制光纤的几何结构和光纤材料的折射率分布等因素,可以实现锁模效果。
锁模的实现是基于光纤的非线性效应和光纤的色散效应。
首先,光纤的非线性效应可以使光的传播速度与光的强度相关,从而实现对光场的调控。
其次,光纤的色散效应是指光在光纤中传播时,不同频率的光具有不同的相速度,从而产生色散现象。
通过合理设计光纤的非线性系数和色散系数,可以实现对光场的调制和限制。
锁模的实现可以通过相位调制、频率调制和干涉效应等方法来实现。
其中,相位调制是通过改变光场的相位分布来实现锁模效果;频率调制是通过改变光场的频率分布来实现锁模效果;干涉效应是通过光的干涉现象来实现锁模效果。
通过这些方法,可以将激光束限制在一个特定的模式上,使其具有稳定的传输性能。
锁模的实现是飞秒光纤激光器实现高峰值功率的基础。
锁模可以使光场的能量集中在一个小的空间范围内,从而增强光场的强度。
这样,在飞秒光纤激光器的工作中,激光束可以达到极高的峰值功率,从而实现对材料的高精度加工和控制。
接下来,我们来看一下CPA放大的原理。
CPA放大是指通过多次放大和压缩的过程,将飞秒光纤激光器的脉冲宽度压缩到飞秒量级,并提高脉冲的峰值功率。
在这个过程中,涉及到放大器和压缩器两个关键部件。
放大器是用来增强光场的能量的装置。
在飞秒光纤激光器中,常用的放大器是光纤放大器和固体放大器。
激光脉冲原理与调Q原理
激光脉冲原理与调Q原理按照输出激光的时间特性,激光器可以分为连续激光器和脉冲激光器,脉冲激光的脉宽主要是纳秒,微秒和飞秒。
连续激光器连续不断地输出激光,输出功率一般都比较低,适合于要求激光连续工作(激光通信,激光手术等)的场合;以连续光源激励的固体激光器,以连续电激励方式工作的气体激光器及半导体激光器,均属于连续激光器。
脉冲激光器:是指每间隔一定时间才输出一次激光的激光器,一般具有较高的峰值功率,适合于激光打标,切割,测距等应用。
常见的脉冲激光器包括:固体激光器中的钇铝石榴石(YAG)激光器,红宝石激光器,蓝宝石激光器,钕玻璃激光器等,还有氮分子激光器,准分子激光器等。
脉冲激光器的关键参数:平均功率:表征在一个完整的周期内(脉冲周期)能量输出的平均速率峰值功率:表征一个脉冲内(脉宽)输出的能量的速率脉冲周期:从一个脉冲开始到下一个脉冲的开始之间的间隔(和重复频率是倒数关系) (重复频率:每秒内输出的脉冲个数)脉宽:一个脉冲的持续时间(例如,一台激光器每秒内输出一个能量为0.5J的激光脉冲,那么它的平均功率就是0.5W;如果相同一台单脉冲能量为0.5J的激光器的脉宽为1微妙,那么它的峰值功率为500000W)脉冲激光器的分类:1.长脉冲激光器:长脉冲激光也被称为准连续激光器,一般产生毫秒ms量级的脉冲,占空比为10%(比较大);脉冲时间通常为1.5—100ms不等,常用的长脉冲激光包括翠绿宝石激光,半导体激光,Nd:YAG激光,染料激光,红宝石激光,超脉冲CO2激光,铒激光等2.巨脉冲激光器(调Q激光器):在激光腔体内人为的加入损耗,使其大于工作物质的增益,这时抑制激光输出。
但在泵浦源持续不断的激励下,激光上能级的原子数越来越多,得到了较大的粒子数反转,不断积累能量。
在撤除人为加入的损耗情况下,就会在很短的时间内以极快的速度产生脉冲宽度窄,峰值功率高的脉冲激光,通常称为巨脉冲。
调Q:调Q是许多商用激光器产生脉冲激光的主要方式,为研究出真正具有实用价值的激光器,需不断改进其性能,提高效率和功率、压缩脉冲宽度、改变输出频率。
飞秒激光及其应用进展
飞秒激光及其应用进展超短脉冲时代是从1960年代末1970年代初提出激光锁模技术时开始的,短短的20年后,出现了主动锁模,被动锁模,脉冲碰撞锁模(CPM),相加脉冲锁模等,锁模技术可以将脉冲缩短到皮秒是10-12秒甚至飞秒10-15秒。
在1980年代中期出现的自锁模技术和非线性啁啾脉冲放大技术,使我们真正进入了超短脉冲的时代。
利用这种技术可以产生一个高密度,高强度和高温高压领域是实验室天体物理在极端条件下,光与物质相互作用的极端物理条件,并提供了一个强大的高亮度X射线产生的重大科学研究手段。
此外,在第二十世纪90年代末,还发现飞秒激光的介质效应产生的长脉冲激光的独特性质有所不同,如区域、热效应小,空间选择性的作用,这些独特的性能,在许多领域有重要的应用价值,如微型光子器件的制造,医药,精细操作,三维度的光存储,纳米生物技术,纳米医学,这些应用已经引起了国内外的广泛关注。
飞秒激光其超短脉冲,超强峰值功率和高聚焦能力,因能够实现超精细和维微加工的特点获得了广泛关注和深入研究,所以飞秒激光技术发展迅速。
一、飞秒激光简介激光曾被人类视为神秘之光并已被广泛使用。
飞秒激光是近年来科学家们通过探究发现的更特殊的激光,简称FS是一种近红外光以脉冲形式运行,很短的时间,是衡量时间的标准尺度的长度。
1飞秒只有1秒的一千万亿分之一,即10-15秒。
飞秒激光有以下三个特点:1、利用飞秒激光获得的脉冲要比利用电子学方法获得的最短脉冲还短几千倍。
2、具有比目前全世界发电总功率还要多出百倍的瞬时功率,可达百万亿瓦。
3、空间区域可以集中到比头发的直径还要小,使周围的核力量的电场强度比其他电子还高几倍。
二、飞秒激光的发展历史飞秒激光的发展可分为四个阶段,目前已经历了前三个阶段正在进入第四个阶段。
60年代中后期的10-9~10-10s第一阶段是飞秒激光的早期阶段,其主要特点是建立锁模的理论和实验研究的各种各样的夹紧方法。
第二阶段是基于各种各样的锁模逐渐趋向于成熟的理论和方法为主要特征的70年代的10-11~10-12s,这个阶段皮秒(10-12)初步应用于化学和物理的领域。
9字腔光纤锁模激光器原理__概述说明以及解释
9字腔光纤锁模激光器原理概述说明以及解释1. 引言1.1 概述本文介绍的是9字腔光纤锁模激光器的原理、工作方式以及其在实验验证与优化方面的应用。
光纤锁模激光器已经成为现代激光技术领域中一个重要的研究课题,具有广泛的应用前景。
其中,9字腔结构是一种常见且有效的布局形式,在锁模激光器研究中被广泛采用。
1.2 文章结构本文将按照以下顺序来展开对9字腔光纤锁模激光器原理的解释和说明:首先,我们将简要介绍光纤锁模激光器基本原理,并详细探讨9字腔结构的特点和组成部分。
接下来,我们将阐述该类型激光器在不同领域中的应用情况。
然后,我们将深入解释该设备的工作原理,包括关键过程如光传输与放大机制、共振腔的特性与工作方式以及锁模效应及其影响因素。
接着,我们将介绍相关实验验证方法和优化措施,并详细阐述实验步骤、设置参数以及结果与分析。
最后,我们将总结主要研究成果,并对未来发展提出展望。
1.3 目的本文的目的是提供读者关于9字腔光纤锁模激光器原理的全面了解。
通过深入探讨其工作机制和特性,我们希望能够为研究人员提供一个清晰、准确的参考,促进对此领域的研究和应用进一步发展。
同时,我们也希望通过实验验证与优化方法的介绍,为相关科研工作者提供有益的指导,从而推动该技术在实际应用中的优化与改进。
2. 9字腔光纤锁模激光器原理:2.1 光纤锁模激光器基本原理:光纤锁模激光器是一种基于光纤放大的激光器,通过在共振腔中引入特定形状的光路径,实现对输出激光的频率和相位进行稳定控制。
该激光器主要由泵浦源、活性介质和反射镜组成。
2.2 9字腔结构介绍:9字腔是一种常用的光纤锁模激光器结构,它由两个反射镜和一个含有掺铒光纤的双环结构组成。
其中一个反射镜是高反射镜,另一个则是半透镜。
这个结构能够提供高品质因子和较窄的线宽。
2.3 锁模激光器的应用领域:锁模激光器具有频率稳定性好、输出功率高、调制带宽宽等优点,被广泛应用于通信、测量、医疗以及科学研究等领域。