不定积分解法总结

合集下载

关于不定积分计算的总结

关于不定积分计算的总结

关于不定积分计算的总结不定积分是微积分中的一个重要概念,主要用于求函数的原函数。

在计算不定积分时,需要掌握一些基本的积分公式和技巧,以及一些应用不定积分的方法。

下面是关于不定积分计算的一些总结。

一、基本不定积分公式:1. 常数函数:∫kdx=kx+C,其中k为常数,C为任意常数。

2. 幂函数:∫x^ndx=x^(n+1)/(n+1)+C,其中n≠-1,C为任意常数。

3.正弦和余弦函数:∫sinxdx=-cosx+C∫cosxdx=sinx+C∫sec^2xdx=tanx+C∫csc^2xdx=-cotx+C∫secxdxtanxdx=secx+C∫cscxcotxdx=-cscx+C。

4.指数和对数函数:∫e^xdx=e^x+C∫a^xdx=(a^x)/(lna)+C∫(1/x)dx=ln,x,+C。

5.反三角函数:∫1/(√(1-x^2))dx=sin^(-1)(x)+C∫1/(1+x^2)dx=tan^(-1)(x)+C。

二、通用技巧:1. 常数倍和求和:∫(kf(x)+g(x))dx=k∫f(x)dx+∫g(x)dx∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx。

2. 反函数:如果F'(x)=f(x),则∫f(x)dx=F(x)+C。

3. 分部积分法:∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx。

分部积分法适用于由两个函数的乘积构成的积分。

4. 代换法:设x=g(t)或t=h(x),则dx=g'(t)dt或dx=(1/h'(x))dt。

代换法适用于需要进行变量代换的积分。

5. 三角函数的平方:∫sin^2xdx=(1/2)(x-sin(x)cos(x))+C∫cos^2xdx=(1/2)(x+sin(x)cos(x))+C。

6.分数分解:对于有理函数,可以使用部分分数分解的方法将其化简为简单的分式相加。

7.特殊函数的特殊方法:对于特定的函数形式,可以使用特殊的方法进行不定积分的计算,如有理函数的积分可以使用多项式的除法。

一道不定积分的几种解法

一道不定积分的几种解法

一道不定积分的几种解法不定积分是微积分中的一个重要概念,表示对函数进行反求导的过程。

一般来说,不定积分有多种解法,下面将介绍一些常用的不定积分解法。

第一种解法:基本初等函数法。

基本初等函数是指常见的数学函数,如多项式函数、指数函数、对数函数、三角函数等。

对于很多函数,我们可以通过找到该函数的原函数来求解不定积分。

对于函数f(x)=x^2,我们知道它是一个二次函数,它的原函数是F(x)=(1/3)x^3+C,其中C是常数。

不定积分∫x^2dx=(1/3)x^3+C。

第二种解法:换元法。

换元法在解决某些复杂的不定积分问题时非常有效。

其基本思想是通过变量代换,将原函数转化为一个更容易求解的形式。

对于函数f(x)=e^x,我们可以通过变量代换u=e^x,使得du=e^xdx,从而将原函数转化为∫du= u + C = e^x+C。

分部积分法是求解一些乘积函数的不定积分的常用方法。

其基本公式为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx,其中u(x)和v(x)都是可导函数。

这个公式可以通过对等式两边进行求导验证。

对于函数f(x)=x*sin(x),我们可以将其分解为u(x)=x和v'(x)=sin(x),然后利用分部积分公式求解。

具体步骤如下:∫x*sin(x)dx = -x*cos(x) + ∫cos(x)dx= -x*cos(x) + sin(x) + C定积分法是通过求解定积分的原函数来求解不定积分的方法。

定积分是不定积分的一个特例,它表示在两个给定的区间上对函数进行求和的过程。

对于一些具有特殊性质的函数,我们可以通过求解定积分的原函数来获得不定积分的解。

对于函数f(x)=1/x,在区间[1,2]上的定积分是∫1/x dx = ln|x|+C。

级数展开法适用于一些特殊的函数,通过将函数展开成级数的形式,再对每一项进行不定积分,最后将级数求和得到不定积分的解。

不定积分方法总结

不定积分方法总结

不定积分方法总结不定积分是微积分中的一项重要内容,是求解函数的原函数的过程,常用于解决各种数学问题。

在求解不定积分时,我们需要掌握一些常见的积分方法,其中包括基本积分法、分部积分法、换元积分法、三角函数积分法等。

下面将对这些积分方法进行总结。

首先是基本积分法。

基本积分法是指直接利用函数的初等函数性质来求解积分的方法,如多项式、指数函数、对数函数、三角函数和反三角函数等。

对于多项式,我们可以根据基本积分的性质直接求积分,例如多项式函数f(x)=ax^n的积分就是F(x)=(a/(n+1))x^(n+1)+C,其中C为常数。

对于指数函数和对数函数,我们可以利用其函数关系的导数性质来求解积分。

对于三角函数和反三角函数,我们可以利用其函数关系的导数性质和三角恒等式来求解积分。

其次是分部积分法。

分部积分法是指将被积函数写成两个函数乘积的形式,然后利用积分的性质将积分式转化为另一个可求解的积分式的方法。

一般分部积分法的基本公式为∫f(x)g'(x)dx = f(x)g(x) - ∫g(x)f'(x)dx其中f(x)和g(x)为可导函数。

分部积分法主要适用于含有乘积项的积分式,特别是可以将积分式转化为简单函数求解的情况。

第三是换元积分法。

换元积分法是指通过代换变量的方法将被积函数转化为一个变量替换后的函数,然后再进行积分的方法。

换元积分法可以将原始积分式转化为一个更容易求解的积分式。

其一般形式为∫f(g(x))g'(x)dx = ∫f(u)du,其中u=g(x)。

在使用换元积分法时,我们需要根据被积函数的特点选择适当的变量进行代换,从而使被积函数变得更简单。

最后是三角函数积分法。

三角函数积分法是指通过一系列的三角函数性质和三角函数的代换将被积函数转化为三角函数的积分函数,然后再进行积分的方法。

常见的三角函数积分公式包括sin^m(x)cos^n(x)dx、sin(mx)cos(nx)dx、tan^m(x)sec^n(x)dx等。

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总不定积分是求解函数的原函数的过程,在数学领域中具有广泛的应用。

下面是一些不定积分的求解方法和技巧的小汇总。

1.基本积分法则:基本积分法则是不定积分中最基本的方法。

它是指通过学习和掌握常见函数的不定积分,从而求解更复杂的函数的不定积分。

常见的函数和它们的积分表达式如下:- 幂函数:∫x^n dx = (1/(n+1))x^(n+1) + C- 正弦函数:∫sin(x) dx = -cos(x) + C- 余弦函数:∫cos(x) dx = sin(x) + C- 指数函数:∫e^x dx = e^x + C2.分部积分法:分部积分法是用于求解两个函数的乘积的不定积分。

它利用了积分的乘法法则,将乘积的积分转化为两个函数的不定积分的组合形式。

分部积分法的公式如下:∫u dv = uv - ∫v du具体步骤是选择一个函数作为u,选择另一个函数的导函数作为dv,利用公式求出v和du,然后代入公式进行计算。

3.替换法(换元积分法):替换法是通过进行变量替换来简化求解不定积分的过程。

对于一些复杂的函数形式,通过合理的变量替换,可以将其转化为较为简单的形式,从而便于求解。

常见的变量替换有以下几种:- 代数替换:将一个复杂的代数表达式进行替换,使其转化为一个简单的形式。

例如,将∫(x^2 + 1)^2 dx 替换为∫u^2 du,其中u = x^2 + 1- 三角替换:将一个复杂的三角函数表达式进行替换,使其转化为一个简单的形式。

例如,将∫(sinx + cosx)^2 dx 替换为∫(1 + sin(2x)) dx,其中2x = u。

- 指数替换:将一个复杂的指数函数表达式进行替换,使其转化为一个简单的形式。

例如,将∫e^(x^2) dx 替换为∫(1/2) e^u du,其中u = x^24.三角函数的积分:对于三角函数的积分,有一些常用的积分公式,可以帮助简化求解的过程。

常见的三角函数积分公式如下:- ∫sin(ax) dx = - 1/a cos(ax) + C- ∫cos(ax) dx = 1/a sin(ax) + C- ∫tan(ax) dx = (-1/a) ln,cos(ax), + C- ∫cot(ax) dx = (1/a) ln,sin(ax), + C5.偏微分法:当被积函数可以表示为两个变量的偏导数之和时,可以使用偏微分法进行求解。

不定积分的解法汇总

不定积分的解法汇总

不定积分的解法汇总不定积分是微积分中的一个重要概念,在实际应用中经常需要求解不定积分。

下面将汇总一些常见的不定积分的解法。

1. 一些基本的不定积分:- 常数函数的不定积分:∫c dx = cx + C,其中c为常数,C为常数。

- 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n为实数,C为常数。

- 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数。

- 正弦函数的不定积分:∫sin(x) dx = -cos(x) + C,其中C为常数。

- 余弦函数的不定积分:∫cos(x) dx = sin(x) + C,其中C为常数。

2. 基本积分法则:- 线性性质:∫(af(x) + bg(x)) dx = a∫f(x) dx + b∫g(x) dx,其中a和b为常数。

- 乘法性质:∫f(x)g'(x) dx = f(x)g(x) - ∫f'(x)g(x) dx,其中f(x)和g(x)为可微函数。

- 分部积分法:∫u dv = uv - ∫v du,其中u和v为可微函数。

4. 一些常见的特殊积分:- ∫(ax + b)^n dx = (ax + b)^(n+1)/(a(n+1)) + C,其中n为实数。

- ∫e^(ax)sin(bx) dx = (e^(ax))(asinx - bcosx)/(a^2 + b^2) + C。

- ∫e^(ax)cos(bx) dx = (e^(ax))(acosx + bsinx)/(a^2 + b^2) + C。

还有一些特殊的函数积分,比如有理函数、反三角函数和反双曲函数的不定积分,需要根据具体的情况使用不同的方法进行求解。

需要注意的是,不定积分的解法并不唯一,同一个函数可能可以使用不同的方法进行求解,有时还需要进行换元积分或部分分式分解等技巧。

有些函数可能不存在原函数,即无法求得其不定积分。

不定积分是一个复杂而多变的问题,需要根据具体的函数和积分形式选择不同的解法。

不定积分的解法汇总

不定积分的解法汇总

不定积分的解法汇总不定积分是微积分的重要概念之一,也是求解函数的反导函数的方法。

不定积分有许多不同的解法,下面将对一些常见的方法进行汇总和介绍。

一、幂函数的不定积分法:幂函数是指形如x^a的函数,其中a为常数。

对于幂函数的不定积分,可以根据幂函数的形式和大小分为以下几种情况:1. 如果a不等于-1,则不定积分为x^(a+1)/(a+1) + C,其中C为常数。

2. 如果a等于-1,则不定积分为ln|x| + C,其中C为常数。

此时,需要注意被积函数在x=0处不可导。

四、代换法:代换法也是求解不定积分的常用方法之一。

代换法的基本思路是通过进行变量代换,将原有的被积函数转化为一个容易求解的形式。

常用的代换方法有:1. 反三角函数代换法:当被积函数中含有三角函数的平方和根号时,可以尝试进行反三角函数代换。

当被积函数中含有根号(1-x^2)时,可以尝试进行代换x=sin(t)。

通过对x和t进行代换和变换,将原有的积分转化为一个更简单的形式进行求解。

2. 指函数代换法:当被积函数中含有指数函数的形式时,可以尝试进行指函数代换。

当被积函数中含有e^(x^2)时,可以进行代换x=t^2,从而将原有的积分转化为一个更容易求解的形式。

3. 三角函数代换法:当被积函数中含有三角函数的乘积或和差时,可以尝试进行三角函数代换。

当被积函数中含有sin(x)cos(x)时,可以进行代换t=sin(x)或t=cos(x),从而将原有的积分转化为一个更简单的形式进行求解。

五、分部积分法:分部积分法是求解不定积分的常用方法之一。

分部积分法的基本思路是通过对积分中的一个函数进行求导,而对另一个函数进行积分,从而将原有的积分转化为两个函数的乘积形式进行求解。

分部积分法的公式为:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx,其中u(x)和v(x)是可导函数。

分部积分法常用于求解含有指数函数、对数函数、三角函数等的积分。

不定积分解法总结

不定积分解法总结

不定积分解法总结不定积分(即原函数)是微积分中的一个重要概念,它用于求函数的积分。

与定积分不同,不定积分不需要明确的区间范围,因此结果是一个常数加上一个关于变量的函数。

不定积分的解法非常多样化,下面我将总结一些常用的不定积分解法。

1.代数法则代数法则是解决不定积分的最基本的方法之一、根据代数法则,我们可以将一个复杂的函数分解成几个简单的函数的和或者乘积,然后分别对这些简单函数求不定积分。

常用的代数法则包括:- 常数法则:∫c dx = cx + C (其中c是常数,C是任意常数)- 基本运算法则:∫(f(x) ± g(x)) dx = ∫f(x) dx ± ∫g(x) dx2.数量积分法对于形如f(g(x))g'(x)的积分,可以使用数量积分法进行求解。

该方法的基本思想是将f(g(x))g'(x)中的g'(x)看作f(g(x))的导数,然后根据不定积分的定义找到f(g(x))的原函数。

3.换元积分法换元积分法是解决不定积分的重要方法之一,它通过引入一个新的变量来简化积分。

换元积分法的基本思想是将被积函数中的一个变量用另一个变量表示,然后根据链式法则进行求解。

4.分部积分法分部积分法是求解不定积分的常用方法,它将被积函数进行分解,然后将积分号移至其中一个分解函数上。

该方法的基本思想是利用乘积的导数公式来简化积分。

5.偏导数积分法偏导数积分法是解决不定积分的一种特殊方法,适用于一些特殊的函数形式。

该方法的基本思想是将一个多元函数对一个变量的偏导数看作另一个变量的导数,并进行相应的求导运算。

6.牛顿-莱布尼茨公式7.三角换元法三角换元法是解决含有三角函数的不定积分的一种方法。

该方法的基本思想是将三角函数用三角恒等式表示成另一个三角函数,然后利用换元积分法进行求解。

8.分式分解法分式分解法适用于含有分式的不定积分,它将分式分解成几个简单的分式的和或者乘积,然后分别对这些简单的分式进行不定积分求解。

不定积分方法总结

不定积分方法总结
应尽量避免。 对于只含有tanx(或cotx)的分式,必化成
A(a cos x b sin x) B(a cos' x b sin' x) 来做。 a cos x b sin x
sin x cos x 或 cos x sin x
。再用待定系数
简单无理函数的积分

一般用第二类换元法中的那些变换形式。
1 5 2 3 t t t c 5 3 1 (8 4 x 2 3 x 4 ) 1 x 2 c 15

例4


1 dx x ( x 7 2)
解:令 x 1 dx 1 dt 2
t t
1 t 1 x( x7 2) dx 1 7 ( t 2 )dt ( ) 2 t
1 arctan( x 2 ) c 2

例5

1 1 e x dx
1 ex ex ex 1 e x dx (1 1 e x )dx 1 dx d (1 e x ) x ln(1 e x ) c x 1 e
解法一:
1 1 e x dx
2 a ( 1 sin 2 t) a costdt
a
2
cos2 tdt
1 cos 2t a2 a dt 2 2
a2 1dt 2
cos 2tdt
a2 a2 1 t ( sin 2t ) c 2 2 2
sin t cost
x a a2 x2 a x a2 x2 a2
f ( x)dx [ f [ g (t )]g ' (t )dt]
t g 1 ( x )
例1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分解题方法总结摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。

而在实际应用中,很多情况需要使用微分法的逆运算——积分。

不定积分是定积分、二重积分等的基础,学好不定积分十分重要。

然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。

本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。

关键词:不定积分;总结;解题方法不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。

本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。

希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。

文中如有错误之处,望读者批评指正。

1 换元积分法换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。

而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。

1.当出现22x a ±,22a x -形式时,一般使用t a x sin ⋅=,t a x sec ⋅=,t a x tan ⋅=三种代换形式。

C x a x x a dx Ct t t t a x x a dx+++=+++==+⎰⎰⎰222222ln tan sec ln sec tan2.当根号内出现单项式或多项式时一般用t 代去根号。

Cx x x C t t t tdt t t tdt t x t dx x ++-=++-=--==⎰⎰⎰sin 2cos 2sin 2cos 2)cos cos (2sin 2sin但当根号内出现高次幂时可能保留根号,c x dt t dttt dt t t tdt t t t tx x xdx +-=--=--=--=⎪⎪⎭⎫ ⎝⎛-⋅-⋅=--⎰⎰⎰⎰⎰661212512621212arcsin 6111611111111113.当被积函数只有形式简单的三角函数时考虑使用万能代换法。

使用万能代换2tanxt =,()()()cxdt tdt ttdt tt t dx x++=++=++=+++=+⎰⎰⎰⎰312tan2arctan322/14/3111121221sin 212222对于万能代换法有些同学可能觉得形式和计算麻烦而排斥使用,但是万能代换可以把三角函数直接转变为有理函数形式,其后可以直接参照有理函数的积分法。

这不失为解题的一种好方法。

2 不定积分中三角函数的处理不定积分的计算中三角函数出现的次数较多,然而有些形式类似的题目的解法却大相径庭。

在这里我们有必要对含有三角函数的不定积分的解法进行总结。

除了之前提到的万能代换的方法,我们可以对被积函数进行适当的变形和转换。

因此,我们对被积函数中的三角函数的变形和转换与三角函数的降次进行归纳和总结。

1.分子分母上下同时加、减、乘、除某三角函数。

被积函数⎰+dx xx 22cos sin 1上下同乘x sin 变形为()()()⎰⎰+--=+xx x xd dx x x cos 1cos 1cos cos cos sin 12令x u cos =,则为()()()()()()cx x c x xx duu u u u u udu +-=+-+-+-=--+-+=+--⎰⎰2sec 412tan ln 21cos 1cos 1ln 41cos 121)141141121(1122222.只有三角函数时尽量寻找三角函数之间的关系,注意1cos sin 22=+x x 的使用。

()()c x x x x dxx x dx xx x x dx x x x x +⎪⎪⎭⎫⎝⎛+--=⎥⎦⎤⎢⎣⎡+--=+-+=+⎰⎰⎰82tan ln 221cos sin 21)4/sin(2cos sin 21cos sin 1cos sin 21cos sin cos sin 2ππ 三角函数之间都存在着转换关系。

被积函数的形式越简单可能题目会越难,适当的使用三角函数之间的转换可以使解题的思路变得清晰。

3. 函数的降次 ①形如的cos sin ⎰xdx x n m积分(m ,n 为非负整数)当m 为奇数时,可令x u cos =,于是()⎰⎰⎰----=-=du u ux xd x dx x x n m nm n m 21211cos cos sincos sin ,转化为多项式的积分当n 为奇数时,可令x u sin =,于是()⎰⎰⎰---==du u u x xd x xdx x u mn mnm21211sin cossincos sin,同样转化为多项式的积分。

当m ,n 均为偶数时,可反复利用下列三角公式:,22cos 1cos ,22cos 1sin ,2sin 21cos sin 22xx x x x x x +=-==不断降低被积函数的幂次,直至化为前两种情形之一为止。

② 形如⎰xdx ntan 和⎰xdx n cot 的积分(n 为正整数)令xdx u tan =,则u x arctan =,21ududx +=,从而⎰⎰+=,1tan2du u u xdx nn已转化成有理函数的积分。

类似地,⎰xdx ncot 可通过代换x u cot =转为成有理函数的积分。

③形如⎰xdx nsec 和⎰xdx m csc 的积分(n 为正整数)当n 为偶数时,若令x u tan =,则21,arctan ududx u x +==,于是()()()⎰⎰⎰⎰-+=++=+=du u du uu dxx xdx nnnn122222221111tan 1sec已转化成多项式的积分。

类似地,⎰xdx ncsc可通过代换x u cot =转化成有理函数的积分。

当n 为奇数时,利用分部积分法来求即可。

4.当有x 与三角函数相乘或除时一般使用分部积分法。

()cx x x x xdx x x x x xd x xdx x x dx x x xdx x +--=+-=-=-=-⋅=⎰⎰⎰⎰⎰2cos 812sin 41412sin 412sin 41412sin 41412cos 214122cos 1sin 222223有理函数积分法的总结有理函数积分法主要分为两步:1.化有理假分式为有理真分式;2.化有理真分式为部分分式之和。

有理假分式化为有理真分式的方法由我们已经掌握的代数学的方法可得,这里不做讨论。

1.有理真分式化为部分分式之和求解 ①简单的有理真分式的拆分()c x x dxx x x dx xx ++-=⎪⎪⎭⎫⎝⎛+-=+⎰⎰44341ln 41ln 1111②注意分子和分母在形式上的联系()()()()()()cx x c t t dt t tt t dt x t x x dx x x x dx++-=++-=⎪⎪⎭⎫ ⎝⎛+-=+=+=+⎰⎰⎰⎰33ln ln 33ln 3ln 311313337777767此类题目一般还有另外一种题型:()c x x dxx x x dx x x x +++=+++=+++⎰⎰52ln 215222215212222.注意分母(分子)有理化的使用()()C x x x x x x dx++-+=--+=-++⎰⎰232332121321214123212324 特殊题型该类题目一般被积函数形式比较复杂,一般在竞赛中较常出现。

但在平时训练这些题型有助于提高数学的思维逻辑能力。

1.善于利用xe ,因为其求导后不变。

()()()()()()c xexe ct tdt t t xe t xe d xexe dx xe x e x e dx xe x x xxx xx x x x x x++=++=+=+=++=++⎰⎰⎰⎰1ln 1ln 11111111这道题目中首先会注意到xxe ,因为其形式比较复杂。

但是可以发现其求导后为x x xe e +与分母差x e ,另外因为x e 求导后不变,所以容易想到分子分母同乘以x e 。

2.某些题正的不行倒着来c y y ydy ydy y yyy u du u u du uu u u u uddu u u u du u uuu u x dx x x +-==⋅⋅=----=-=-=⎪⎪⎭⎫ ⎝⎛-=⎰⎰⎰⎰⎰⎰⎰⎰tan tan tan sec sec tan sec 11ln 11ln 1ln 111ln 1sin sin sin ln 2222222222 ()()cx x x x xdx x x dxx xx x x x x xd x x x xd +---=+-=+-=+-=-=⎰⎰⎰⎰cot sin ln cot cot sin ln cot sin cos sin cos sin ln cot sin ln cot sin ln cot cot sin 原式2这道题换元的思路比较奇特,一般我们会直接使用x u sin =,然而这样的换元方法是解不出本题的。

我概括此类题的方法为“正的不行倒着来”,当x u sin =这类一般的换元法行不通时尝试下x usin 1=。

这种思路类似于证明题中的反证法。

3.注意复杂部分求导后的导数()()⎰⎰-+=-+dt et t t x t dx x x x x x t22212ln ln 21ln 2ln注意到:()ttttt tt e t t e t y e t t e t t y e t t e t e t y 22333233212121222261--=--=---=()32123-212y y y et t t t-=-+Θ()()()()()cx x e x x ct t e t t dte t t e t dt e t t e t t dt e t t e t e t dt e t t t x tt tt t t tt t+---=+---=---------=-+∴⎰⎰⎰⎰ln ln 3ln ln 2ln ln ln 32ln 21213222261212ln 3322333322本题把被积函数拆为三部分:321,,y y y ,1y 的分子为分母的导数,2y 的值为1,3y 的分子为分母因式分解后的一部分。

此类题目出现的次数不多,一般在竞赛中出现。

4.对于⎰=/++)0(),(2a dx c bx ax x R 型积分,考虑ac b 42-=∆的符号来确定取不同的变换。

如果0>∆,设方程02=++c bx ax 两个实根为βα,,令()∂-=++x t c bx ax 2,可使上述积分有理化。

如果0<∆,则方程02=++c bx ax 没有实根,令t x a c bx ax ±=++2,可使上述积分有理化。

此中情况下,还可以设c xt c bx ax ±=++2,至于采用哪种替换,具体问题具体分析。

相关文档
最新文档