牛顿运动定律运用中的临界问题
第15讲 牛顿运动定律中临界问题(解析版)

第15讲牛顿运动定律中的临界问题11、临界问题物体由某种物理状态转变为另种物理状态时,所要经历的种特殊的转折状态,称为临界状态.这种从种状态变成另种状态的分界点就是临界点,此时的条件就是临界条件。
2、临界问题的标志(1)题目中出现“恰好”“刚好”等关键词句,明显表明此过程即为临界点。
(2)题目中出现“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态。
(3)题目中出现“最大”最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点。
4、处理临界问题的方法(1)极限法如果在题目中出现“最大”、“最小”、“刚好”等关键词时,一般隐含着临界问题。
处理这类问题时,常常把物理问题或过程推向极端,从而得到临界状态及临界条件,以达到快速求解问题的目的。
(2)假设法有些物理过程没有出现明显的临界问题的线索,但在变化过程中可能出现临界状态,也可能不会出现临界状态。
解答此类问题,一般用假设法,即假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,即可得出结论。
(3)数学方法将物理过程转化为数学表达式,然后根据数学中求极值的方法,求出临界条件。
涉及三角函数、二次函数、不等式等数学知识。
5、临界问题解决步骤:(1)依据题中提示语言判定临界问题及分类;(2)确定临界状态下临界条件;(3)按照牛二定律做题步骤解决问题:①明确研究对象②受力分析③正交分解④分析各坐标系运动状态列方程:若为平衡状态列平衡方程;若为非平衡状态列牛顿第二定律。
一、利用极值法求解临界问题[例1]如图所示,质量为m=1kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=2kg,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F,要使物体m相对斜面静止,试确定推力F的取值范围。
【答案】推力F的取值范围为14.25N≤F≤33.53N.【解析】(1)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块受力如下图所示,取加速度的方向为x轴正方向:对物块分析,在水平方向有F N sinθ﹣μF N cosθ=ma1,竖直方向有F N cosθ+μF N sinθ﹣mg=0,对整体有F1=(M+m)a1,代入数值得,F1=14.35N.(2)设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块受力分析,在水平方向有F N sinθ+μF N cosθ=ma2,竖直方向有F N cosθ﹣μF N sinθ﹣mg=0,对整体有F2=(M+m)a2,代入数值得,F2=33.53N综上所述可知推力F的取值范围为:14.25N≤F≤33.53N.答:推力F的取值范围为14.25N≤F≤33.53N.二、利用假设法求解临界问题[例2]一物块在粗糙斜面上,在平行斜面向上的外力F作用下斜面和物块始终处于静止状态,当按图甲所示规律变化时.物体与斜面间的摩擦力大小变化规律可能是图乙中的()A. B. C. D.【答案】D【解析】设t=0时刻F=F0,则F与t的关系式为F=F0-kt,k是图线斜率的大小.A、D若t=0时刻物体受到的静摩擦力方向沿斜面向上,由平衡条件得:摩擦力F f=mgsinα-F=mgsinα-(F0-kt)=kt+(mgsinα-F0),若mgsinα=F0,则有F f=kt,当F=0时,F f=mgsinα,保持不变.则A错误,D正确;B、C若t=0时刻物体受到的静摩擦力方向沿斜面向下,由平衡条件得知,摩擦力F f=F-mgsinα,当F减小时,摩擦力先减小,减小到零后,摩擦力反向增大,故BC错误;故选D.三、利用数学方法求解临界问题[例3]如图所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m。
牛顿运动定律的综合应用——动力学图像、连接体及临界极值问题-高考物理复习

A.当拉力0<F<12 N时,A静止不动 B.当拉力F>12 N时,A相对B滑动
图6 C.当拉力F=16 N时,B受到A的摩擦力等于12 N D.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止
目录
研透核心考点
解析 由于物体 B 放在光滑的水平面上,因此只要拉 力 F 不是零,A、B 将一起加速运动,所以当拉力 0< F<12 N 时,A 不会静止不动,A 错误;若 A、B 能发 生相对滑动,则有 a=μmmBAg=0.2×26×10 m/s2=6 m/s2,对 A、B 整体,由牛顿 第二定律可得发生相对滑动时的拉力为 F=(mA+mB)a=(6+2)×6 N=48 N,超 出了绳子的最大拉力,由此可知,在绳子承受的最大拉力 20 N 范围内,无论拉 力 F 多大,A、B 始终处于相对静止状态,B 错误,D 正确;当拉力 F=16 N 时,对整体,由牛顿第二定律可得 F=(mA+mB)a′,解得 a′=mA+F mB=61+62 m/s2 =2 m/s2,则 B 受到 A 的摩擦力 f=mBa′=2×2 N=4 N,C 错误。
目录
研透核心考点
解析 在相同时间内(b 未触地),a、b 加速度的大小相 等,速度变化量大小相等,D 错误;将 a、b 看成一个 整体,由牛顿第二定律得 F 合=4mg-2mgsin θ= (2m+4m)a,解得 a=g2,故 B 正确;以 b 为研究对象, 设拉力为 T,由牛顿第二定律有 4mg-T=4ma,解得 T=2mg,故 A 错误;由几何关系知,两侧绳子的夹角 为 60°,则绳子对定滑轮的力为 F=2Tcos 30°=2 3mg, 故 C 正确。
目录
研透核心考点
3.连接体问题的分析 整体法、隔离法的交替运用,若连接体内各物体具有相同的加速度,且要求 物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合 适的研究对象,应用牛顿第二定律求出作用力。即“先整体求加速度,后隔 离求内力”。
高2024届-物理-练习-临界问题(答案)

牛顿运动定律(3)——临界问题一、分离类临界问题【例1】.如图所示,细线的一端固定于倾角为45˚的光滑斜面A 的顶端P 处,细线的另一端拴一质量为m 的小球。
当斜面至少以加速度a =___g______ 向左运动时,小球对的压力等于零,当斜面以a=2g 的加速度向左运动时,线中拉力T =____5mg ____。
【变式1】如图所示,在光滑水平面上放着紧靠在一起的AB 两物体,B 的质量是A 的2倍,B 受到向右的恒力F B =2N ,A 受到的水平力F A =(9-2t )N ,(t 的单位是s)。
从t =0开始计时,则( ABD )A .A 物体在3s 末时刻的加速度是初始时刻的511倍;B .t >4s 后,B 物体做匀加速直线运动;C .t =4.5s 时,A 物体的速度为零;D .t >4.5s 后,AB 的加速度方向相反。
【例2】.一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示。
现让木板由静止开始以加速度a (a <g ) 匀加速向下移动,求经过多长时间木板开始与物体分离。
答案:t =2m (g —a )ka【变式2】. 一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2)解析:设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有kx 1=(M +m )g ①kx 2-mg =ma ②x 1-x 2=12at 2 ③ 由①式得x 1=(M +m )g k=0.15 m , ④ 由②③④式得a =6 m/s 2F 小=(M +m )a =72 N ,F 大=M (g +a )=168 N.二、相对滑动类临界问题【例3】.如图所示,在光滑水平面上有一辆小车A,其质量为m A=2.0 kg,小车上放一个物体B,其质量为m B=1.0 kg.如图甲所示,给B一个水平推力F,当F增大到稍大于3.0 N时,A、B开始相对滑动.如果撤去F,对A施加一水平推力F′,如图乙所示.要使A、B不相对滑动,则F′的最大值F max为(C)A.2.0 N B.3.0 N C.6.0 N D.9.0 N解析:选C.根据题图甲所示,设A,B间的静摩擦力达到最大值F fmax时,系统的加速度为a.根据牛顿第二定律,对A、B整体有F=(m A+m B)a,对A有F fmax=m A a,代入数据解得F fmax=2.0 N.根据题图乙所示情况,设A、B刚开始滑动时系统的加速度为a′,根据牛顿第二定律得:以B为研究对象有F fmax=m B a′以A、B整体为研究对象,有F max=(m A+m B)a′代入数据解得F max=6.0 N.故C正确.【变式3】. (多选)如图甲所示,物块A与木板B叠放在粗糙水平面上,其中A的质量为m,B的质量为2m,且B足够长,A与B、B与地面间的动摩擦因数均为μ。
牛顿运动定律应用--------临界问题

a 牛顿运动定律应用--------临界问题1. 临界状态:在物体的运动状态变化的过程中,相关的一些物理量也随之发生变化。
当物体的运动变化到某个特定状态时,有关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态。
2. 关键词语:在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件3. 极限分析法用极限分析法,将问题推到极端状态或极端条件下进行分析,问题有时会顿时变得明朗而简单了物理解题中的极端假设分析法分为三种类型:定性分析、定量分析和综合分析.(1)定性分析:利用极端假设法进行定性分析,可使问题迅速得到解答.(2)定量计算:在物理解题,特别是解答选择题时,采用极端假设分析法,选择适当的极限值——最大值、最小值、零值、无限大值以及临界值等代人备选答案,会使解题收到意想不到的简化效果.(3)综合分析:将定性分析与定量分析有机结合起来,灵活地运用物理知识和数学知识。
4.常见种类(1)存在静摩擦力作用的临界问题。
“刚好不发生相对滑动”是摩擦力发生突变(由静摩擦力突变为滑动摩擦力)的临界状态,由此求得的最大静摩擦力是解题的突破口,同时注意研究对象的选择。
例题1. 如图所示,两物体m 1 和m 2 静止在光滑的水平面上,用外力拉m 1 ,两物体一起往右加速。
当这个外力为F 1 时,两物体刚要相对滑动。
换成用外力来拉m 2 ,要想把m 2 刚好从m 1 下面拉出来,问这时的外力F 2 的大小是多少?例题2. 如图一倾角为θ的斜面固定在水平地面上,一质量为m 的小物体静止在上面,它与斜面的动摩擦因数为μ,现在用一个外力F 沿斜面往上拉小物体,没有拉动,求F 的取值范围。
拓展:用水平外力F 往右推,没推动,求F 的取值范围。
例题3. 如图,斜面和地面都光滑,斜面倾角为θ,质量M ,物体质量为m ,用外力F 推着两物体一起向左匀加速运动,两物体无相对滑动,求F 和两物体的加速度a 。
牛顿第二定律临界问题

高中物理教案学案第三章 牛顿运动定律第五课时 牛顿定律应用中的临界和极值问题1、知识回顾: ⑴如图所示,水平放置的长木板AB 上静置一个小物块,小物块与木板之间的动摩擦因数μ恒定。
现将木板绕其A 端沿逆时针方向缓慢旋转,下列图线中能最好地描述小物块沿长木板滑下的加速度a 和长木板与水平面间夹角θ的关系的是( B )。
⑵质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上,已知t =0时质点的速度为零。
在图示t 1、t 2、t 3和t 4各时刻中,质点的速度最大的是:( B ).A .t lB .t 2C .t 3D .t 42、典型例题分析:【例1】传送带是一种常用的运输工具,它被广泛地应用于矿山、码头、货场等生产实际中,在车站、机场等交通场所它也发挥着巨大的作用。
如图所示为车站使用的水平传送带装置模型,绷紧的传送带水平部分AB 的长度L =5m ,并以V 传=2m /s 的速度向右传动。
现将一个可视为质点的旅行包轻轻地无初速地放在传送带的A 端,已知旅行包与皮带之间的动摩擦因数μ=0.2。
求:⑴旅行包在传送带上从A 端运动到B 端所用的时间;⑵若要旅行包在传送带上从A 端运动到B 端所用的时间最短,则传动的速度大小应满足什么条件(g =10m /s 2)【解析】⑴由于旅行包的初速为零,在开始阶段,旅行包速度小于传送带的速度,故旅行包相对于传送带向左运动,其受到的滑动摩擦力向右,此滑动摩擦力使旅行包产生加速度,旅行包向右做初速度为零的匀加速运动(如图所示)。
但旅行包是否是匀加速运动到B 端,却要看旅行包从A 端运动到B 端过程中是否一直受到滑动摩擦力作用。
判断依据是这一 fV 传过程中若旅行包一直做匀加速运动,其到达B 端的速度V B 是否大于皮带传动的速度V 传:①V B ≤V 传,则旅行包一直做匀加速运动;②若V B >V 传,则旅行包先做匀加速直线运动后做匀速运动。
根据牛顿第二定律可得: f =ma ,N -mg =0。
临界问题

2
1 1+µ 2
F
而Amax = 1+µ , 与此相对应的角为
2
θ=90 0 -arcsin
1 1+µ 2
≈ 21.8 0
F 1+µ 2 所以加速度的最大值为 :a max = − µg ≈ 6.8m / s 2 M 平距离为: 此时木块离定滑轮的水 平距离为: s = h cot θ ≈ 25cm
运动到某一极端位置 物体刚好滑出(滑不出) 物体刚好滑出(滑不出)小车 两个物体距离最近(远) 两个物体距离最近( 动与静的分界点 刚好不上(下)滑;保持物体 刚好不上( 静止在斜面上的最小水平推 力;拉动物体的最小力 关于绳的临界问题 绳刚好被拉直 绳刚好被拉断
刚好运动到某一点(“最高点”)到达该点时速度为零 刚好运动到某一点( 最高点”
Fm
故系统的加速度 a=F/(M+m)=2.5 m/s2 小结:存在静摩擦的连接系统,当系统外力大 小结:存在静摩擦的连接系统, 擦力时, 于最大静摩 擦力时,物体间不一定有相对滑 动。 相对滑动与相对静止的临界条件是: 相对滑动与相对静止的临界条件是: 静摩擦力达最大值
课 后 练 习
如图所示,质量均为M的两个木块A 在水平力F 如图所示,质量均为M的两个木块A、B在水平力F的 作用下,一起沿光滑的水平面运动, 作用下,一起沿光滑的水平面运动,A与B的接触面 光滑,且与水平面的夹角为60 60° 求使A 光滑,且与水平面的夹角为60°,求使A与B一起运 动时的水平力F的范围。 动时的水平力F的范围。 解:当水平力F为某一值时, 当水平力F为某一值时, 恰好使A AB面向上滑动 面向上滑动, 恰好使A沿AB面向上滑动, 即物体A当水平推力F很小时, ,受力分析如图 即物体A当水平推力F很小时,A与B一起作匀加速 分析: 对地面的压力恰好为零, 分析: 对地面的压力恰好为零 运动,当 = 2M 运动, 对整体: F较大时, ① 对整体: F较大时,B对A的弹力竖直向上的分力 a N 等于A的重力时,地面对A的支持力为零,此后, 等于A的重力时,地面对A的支持力为零,此后, 隔离A 隔离A: NA = 0 ② F 物体A将会相对B滑动。显而易见, 物体A将会相对B滑动。显而易见,本题的临界 o N cos 60 − M为某一值时,恰好使A沿AB° g = 0 ③ ,恰好使A ﹚AB面 水平力F 面 条件就是水平力F为某一值时 60° G F − N ,即物体A对地面的压力恰好为零. sin60o =A对地面的压力恰好为零. a 向上滑动,即物体 M ④ 向上滑动
高中物理-动力学中的临界和极值问题
高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。
高中物理牛顿运动定律的应用_牛顿运动定律的应用之临界极值问题
牛顿运动定律的应用-牛顿运动定律的应用之临界极值问题接触的物体是否会发生分离等等,这类问题就是临界问题。
在应用牛顿运动定律解决临界问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象,此时要采用假设法或极限分析法,看物体以不同的加速度运动时,会有哪些现象发生,尽快找出临界点,求出临界条件。
2. 若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;3. 若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;4. 若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度。
F N=0。
2. 相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。
3. 绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0。
4. 加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。
当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的加速度为零或最大。
题设中若出现“最大”“最小”“刚好”等这类词语时,一般就隐含着临界问题,解决这类问题时,常常是把物理问题(或物理过程)引向极端,进而使临界条件或临界点暴露出来,达到快速解决有关问题的目的。
2. 假设法:有些物理问题在变化过程中可能会出现临界问题,也可能不出现临界问题,解答这类题,一般要用假设法。
假设法是解物理问题的一种重要方法。
用假设法解题,一般依题意从某一假设入手,然后运用物理规律得出结果,再进行适当讨论,从而找出正确答案。
牛顿运动定律运用中的临界问题
图1—1 牛顿运动定律运用中的临界问题在应用牛顿定律解题时常遇到临界问题,它包括:1. 平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;2. 动态物体(a ≠0)的状态即将发生突变而还没有变化的瞬间。
临界状态也可归纳为加速度即将发生突变的状态。
加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。
抓住这些力突变的条件,是我们解题的关键。
对于此类问题的解法一般有以下三种方法:一.极限法在题目中如果出现“最大”、“最小”、“刚好”等关键词时,一般隐藏着临界问题,处理这类问题时,常常把物理问题或过程推向极端,从而将临界状态及临界条件显露出来,达到尽快求解的目的。
例1.如图1—1所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求: (1)物体在水平面上运动时力F 的值; (2)物体在水平面上运动所获得的最大加速度。
例2.(和静摩擦力相联系的临界情况)如图,质量为m=1Kg 的物块放在倾角为θ的斜面上,斜面体质量为M=2Kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,力F 应为多大?(设物体与斜面间的最大静摩擦力等于滑动摩擦力,g 取10m/s 2)例3.(和弹力相联系的临界条件)如图2—1所示,质量均为M 的两个木块A 、B 在水平力F 的作用下,一起沿光滑的水平面运动,A 与B 的接触面光滑,且与水平面的夹角为60° ,求使A 与B 一起运动时的水平力F 的范围。
图2—1例4 如图所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A ,槽的半径为R ,且OA 与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m ,木块的质量为M ,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽。
牛顿运动定律中的临界和极值问题
牛顿运动定律中的临界和极值问题牛顿运动定律中的临界和极值问题动力学中的典型临界问题包括接触与脱离的临界条件、相对静止或相对滑动的临界条件、绳子断裂与松弛的临界条件以及速度最大的临界条件。
对于接触与脱离的临界条件,当两物体相接触或脱离时,接触面间弹力FN等于0.对于相对静止或相对滑动的临界条件,当两物体相接触且处于相对静止时,常存在着静摩擦力,此时相对静止或相对滑动的临界条件是静摩擦力达到最大值。
对于绳子断裂与松弛的临界条件,绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力,绳子松弛的临界条件是FT等于0.对于速度最大的临界条件,在变加速运动中,当加速度减小为零时,速度达到最大值。
解决临界极值问题常用方法有极限法、假设法和数学法。
极限法可以把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的。
假设法常用于临界问题存在多种可能时,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时。
数学法则将物理过程转化为数学公式,根据数学表达式解出临界条件。
举例来说,对于接触与脱离类的临界问题,可以考虑以下几个例子:例1:在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动(a<g),试求托盘向下运动多长时间能与物体脱离?例2:竖直固定的轻弹簧,其劲度系数为k=800N/m,上端与质量为3.0kg的物块B相连接。
另一个质量为1.0 ___的物块A放在B上。
先用竖直向下的力F=120N压A,使弹簧被压缩一定量后系统静止,突然撤去力F,A、B共同向上运动一段距离后将分离,分离后A上升最大高度为0.2m,取g=10m/s,求刚撤去F时弹簧的弹性势能?例3:质量均为m的A、B两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg的恒力F向上拉A,当运动距离为h时A与B分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律运用中的临界问题
在应用牛顿定律解题时常遇到临界问题,它包括:平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;动态物体(a≠0)的状态即将发生突变而还没有变化的瞬间。
临界状态也可归纳为加速度即将发生突变的状态。
加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。
抓住这些力突变的条件,是我们解题的关键。
一、和绳子拉力相联系的临界情况
例1. 小车在水平路面上加速向右运动,一质量为m的小球用一条水平线和一条斜线(与竖直方向成30°角)把小球系于车上,求下列情况下,两绳的拉力:
(1)加速度;
(2)加速度。
解析:小车处于平衡态(a=0)对小球受力分析如下图所示。
当加速度a由0逐渐增大的过程中,开始阶段,因m在竖直方向的加速度为0,角不变,不变,那么,加速度增大(即合外力增大),OA绳承受的拉力必减小。
当时,m存在一个加速度,物体所受的合外力是的水平分力。
当时,a增大,(OA绳处于松弛状态),在竖直方向的分量不变,而其水平方向的分量必增加(因合外力增大),角一定增大,设为a。
当时,。
当,有:
(1)
(2)
解得
当,有:。
点评:1. 通过受力分析和对运动过程的分析找到本题中弹力发生突变的临界状态是绳子OA拉力恰好为零;
2. 弹力是被动力,其大小和方向应由物体的状态和物体所受的其他力来确定。
二、和静摩擦力相联系的临界情况
例2. 质量为m=1kg的物体,放在=37°的斜面上如下图所示,物体与斜面的动摩擦因数,要是物体与斜面体一起沿水平方向向左加速运动,则其加速度多大?
解析:当物体恰不向下滑时,受力分析如下图所示,
解得
当物体恰不向上滑时,受力分析如下图所示,
解得因此加速度的取值范围为:。
点评:本题讨论涉及静摩擦力的临界问题的一般方法是:
1. 抓住静摩擦力方向的可能性。
2. 最大静摩擦力是物体即将由相对静止变为相对滑动的临界条件。
本题有两个临界状态,当物体具有斜向上的运动趋势时及当物体具有斜向下的运动趋势时。
三、和滑动摩擦力相联系的临界条件
例3. 如下图所示,传送带与地面的倾角为,从A到B的长度16m,传送带以10m/s的速率逆时
针方向转动,在传送带上端无初速地放一个质量为的物体,它与传送带之间的动摩擦因数为0.5,求物体从A到B所需的时间是多少?()
解析:,物体的初速为零,开始阶段,物体速度小于传送带的速度,物体相对于传送带斜向上运动,其受到的滑动摩擦力斜向下,下滑力和摩擦力的合力使物体产生加速度,物体做初速度为零的匀加速运动。
当物体与传送带速度相等的瞬时,物体与传递带之间的摩擦力为零,但物体在下滑力的作用下仍要加速,物体的速度将大于传送带的速度,物体相对于传送带向斜向下的方向运动,在这一时刻摩擦力方向将发生突变,摩擦力方向由斜向下变为斜向上。
物体的下滑力和所受的摩擦力的合力使物体产生了斜向下的加速度,由于下滑力大于摩擦力,物体仍做匀加速运动。
因,物体的初速为零。
开始阶段,物体相对于传送带斜向上运动,其受到的滑动摩擦力斜向下,下滑力和摩擦力的合力使物体产生加速度,物体做初速度为零的匀加速运动。
根据牛顿第二定律
物体的速度与传送带速度相等需要的时间为
物体下滑的位移为
由于,物体在重力的作用下继续加速,当物体的速度大于传送带的速度时,传送带给物体一斜向上的滑动摩擦力。
根据牛顿第二定律,得
设后一阶段物体滑至底端所用的时间为,由运动学公式得
解得
所以,物体由A到B所用时间为。
点评:1. 从对运动过程的分析中发现本题临界状态是滑动摩擦力方向的突变。
2. 注意和的区别。
四、和弹簧弹力相联系的临界条件
例4. 如下图所示,两块质量分别为和的物块,用劲度系数为的轻弹簧连在一起,放在水平面上,将物块1下压一段距离后释放,它在做简谐运动,在运动过程中,物块2始终没有离开水平面,且对水平面的最小压力为零,则物块l的最大加速度的大小是多大?物块2对水平面的最大压力是多大?
解析:以物块1为研究对象,弹簧对物块1的弹力和物块1的重力的合力是物块1做简谐运动的恢复力。
弹簧弹起的初阶段,弹簧处于被压缩状态,向上的弹力大于重力,物块1向上做变加速运动,加速度逐渐减小,其方向竖直向上。
当弹力等于重力时,物块1的加速度为零,而速度达到最大(平衡位置)。
然后,弹簧处于伸长状态,物块1受到的弹力向下,弹力逐渐增大,加速度逐渐增大,达到最高点时,加速度最大,方向竖直向下。
当物块1下落至最低点时,物块1的加速度也达到最大值,但方向竖直向上。
以物块2为研究对象,根据题设条件可知,当物快1达到最高点时,物块1受到的向下的弹力最大,此时,物块2受到的向上的弹力也最大,使地面对物块2的支持力为零。
当物块1落至最低点时,其加速度与最高点的加速度等值反向,弹簧对物块1的弹力(方向向上)。
此时,弹簧对物块2的弹力也最大,方向竖直向下,因此,物块2对地面的压力达到最大值。
(1)研究物块1上升的过程。
以物块1为研究对象,物块1在最高点处,加速度最大,且方向竖直向下,,最大。
以物块2为研究对象,最大时,
,所以物块1的最大加速度为。
(2)研究物块1下落的过程。
物块1落至最低点处,其受到向上的弹力最大,加速度达到最大值,但方向竖直向上(简谐振动的对称性)。
对物块2受力分析,,根据牛顿第三定律,物块2对地面的压力的
大小为
点评:临界问题的处理办法:
1. 找临界状态
(1)做好受力分析、运动过程分析和状态分析,抓运动过程中的“转折点”。
(2)利用假设法讨论,假设某命题成立,推理或判断物体的状态是否会发生突变。
2. 分析隐含条件
(1)弹力的突变
(2)摩擦力的突变。