高中数学各章节
(完整版)高中数学各章节内容

第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用【必修二】第一章空间几何体1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型【必修四】第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换【必修五】第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2-1第一章常用逻辑用语1-1命题及其关系1-2充分条件与必要条件1-3简单的逻辑联结词1-4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2-1曲线与方程2-2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线探究与发现2-4抛物线探究与发现阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章空间向量与立体几何3-1空间向量及其运算阅读与思考向量概念的推广与应用3-2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1-1变化率与导数1-2导数的计算1-3导数在研究函数中的应用1-4生活中的优化问题举例1-5定积分的概念1-6微积分基本定理1-7定积分的简单应用小结复习参考题第二章推理与证明2-1合情推理与演绎推理2-2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入3-1数系的扩充和复数的概念3-2复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1-1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1-2排列与组合探究与发现组合数的两个性质1-3二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2-1离散型随机变量及其分布列2-2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2-3离散型随机变量的均值与方差2-4正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3-1回归分析的基本思想及其初步应用3-2独立性检验的基本思想及其初步应用实习作业小结复习参考题。
高中数学试题及答案各章节

高中数学试题及答案各章节一、选择题1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 已知集合A={1,2,3},集合B={2,3,4},那么A∩B等于:A. {1}B. {2,3}C. {4}D. {1,2,3}答案:B3. 计算下列极限:\(\lim_{x \to 0} \frac{\sin x}{x}\)A. 1B. 0C. \(\frac{1}{2}\)D. \(\infty\)答案:A二、填空题4. 已知函数f(x) = 2x + 3,求f(-1)的值。
答案:15. 求圆的方程,圆心为(2,3),半径为4。
答案:(x-2)^2 + (y-3)^2 = 166. 计算定积分 \(\int_{0}^{1} x^2 dx\)。
答案:\(\frac{1}{3}\)三、解答题7. 已知等差数列的前三项为2,5,8,求该数列的第10项。
答案:238. 解方程:\(x^2 - 5x + 6 = 0\)。
答案:x = 2 或 x = 39. 证明:\(\sqrt{2}\) 是无理数。
答案:略四、应用题10. 一个工厂生产两种产品A和B,产品A的利润为每单位10元,产品B的利润为每单位15元。
工厂每月生产能力为100单位。
如果生产产品A的单位成本为5元,产品B的单位成本为10元,且工厂每月的总成本不超过1000元,求工厂每月的最大利润。
答案:略五、证明题11. 证明:对于任意正整数n,\(1^3 + 2^3 + ... + n^3 =\frac{n^2(n+1)^2}{4}\)。
答案:略六、综合题12. 已知函数f(x) = \(\frac{1}{x}\),求函数在区间[1,2]上的定积分,并讨论其几何意义。
答案:略。
高中数学详细目录章节

高中数学目录数学必修1第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6函数模型及其应用数学必修2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离数学必修3第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归方程第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学必修4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式 数学必修5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修1-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用选修1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修2-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用选修2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义选修2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。
重点高中数学各章节内容

重点高中数学各章节内容————————————————————————————————作者:————————————————————————————————日期:第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用【必修二】第一章空间几何体1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型【必修四】第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换【必修五】第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2-1第一章常用逻辑用语1-1命题及其关系1-2充分条件与必要条件1-3简单的逻辑联结词1-4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2-1曲线与方程2-2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线探究与发现2-4抛物线探究与发现阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章空间向量与立体几何3-1空间向量及其运算阅读与思考向量概念的推广与应用3-2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1-1变化率与导数1-2导数的计算1-3导数在研究函数中的应用1-4生活中的优化问题举例1-5定积分的概念1-6微积分基本定理1-7定积分的简单应用小结复习参考题第二章推理与证明2-1合情推理与演绎推理2-2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入3-1数系的扩充和复数的概念3-2复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1-1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1-2排列与组合探究与发现组合数的两个性质1-3二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2-1离散型随机变量及其分布列2-2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2-3离散型随机变量的均值与方差2-4正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3-1回归分析的基本思想及其初步应用3-2独立性检验的基本思想及其初步应用实习作业小结复习参考题。
高中数学分章节全部知识点(含拓展内容)全面细致总结(必修必备版)

第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集∅【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(20)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:yxo(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2⇔②x 1≤x 2<k ⇔③x 1<k <x 2⇔af (k )<0④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q=②02x a->,则()M f p =xxx(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q =②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学知识章节分布

必修一 第二章基本初等函数
第三章函数的应用
第一章空间几何体
必修二 第二章点、直线、平面之间的位置关系
第三章直线与方程 第四章圆与方程
第一章算法初步
必修三 第二章统计
第三章概率 第一章三角函数
必修四第二章平面向量
第三章三角恒等变换 第一章解三角形
必修四第二章平面向量平面22向..23量平的面基向本量定的理线及性坐运标算表示
第三章三角恒等变换
2.4 平面向量的数量积
2.5 平面向量应用举例
第一章解三角形应用111举...123 例正实弦习定作理业和余弦定理
必修五 第二章数列等差22数..23列等的差前数项列和 n
第三章导数及其应用
3.1 不等关系与不等式
33..23
3.4
一元二次不等式及其解法 一元二次不等式(组)与简单的线性规划问题
基本不等式:ab
1.1 命题及其关系
111...234
a+b 2
充分条件与必要条件 简单的逻辑连接词 全称量词与存在量词
2.3 抛物线
第一章导数及其应用
( 理) 选修2-2第二章推理与证明
第三章数系的扩充与复数的引入
第一章计数原理
( 理) 选修2-3第二章随机变量及其分布
第三章统计案例
选修几4-1何证明选讲
选修坐4-4标系与参数方程
选修不4-5等式选讲
第一讲相似三角形的判定及有关性质 第二讲直线与圆的位置关系 第三讲圆锥曲线性质的探讨
第三章不等式
高中数学章节目录

高中数学章节目录一、集合与函数概念1.1 集合的基本概念1.1.1 集合的定义1.1.2 集合的表示方法1.1.3 集合之间的关系与运算1.2 函数的概念1.2.1 函数的定义1.2.2 函数的表示方法1.2.3 函数的性质1.3 函数的图象与变换1.3.1 函数图象的绘制1.3.2 函数的变换二、基本初等函数2.1 一次函数与二次函数2.1.1 一次函数的性质2.1.2 二次函数的性质2.2 幂函数与指数函数2.2.1 幂函数的性质2.2.2 指数函数的性质2.3 对数函数2.3.1 对数函数的定义2.3.2 对数函数的性质三、方程和不等式3.1 方程的解法3.1.1 一元一次方程的解法3.1.2 一元二次方程的解法3.1.3 分式方程与无理方程的解法3.2 不等式的解法3.2.1 一元一次不等式的解法3.2.2 一元二次不等式的解法3.2.3 绝对值不等式的解法四、三角函数4.1 三角函数的基本概念4.1.1 角的度量与弧度制4.1.2 三角函数的定义4.2 三角函数的性质4.2.1 三角函数的周期性4.2.2 三角函数的奇偶性4.2.3 三角函数的单调性4.3 三角函数的图象与变换4.3.1 三角函数的图象绘制4.3.2 三角函数的变换五、数列和数学归纳法5.1 数列的基本概念5.1.1 数列的定义5.1.2 数列的性质5.2 等差数列与等比数列5.2.1 等差数列的性质5.2.2 等比数列的性质5.3 数学归纳法5.3.1 数学归纳法的原理5.3.2 数学归纳法的应用六、立体几何初步6.1 空间几何的基本概念6.1.1 空间点、线、面的关系6.1.2 空间几何的基本术语6.2 空间中的平行与垂直6.2.1 平行线与平行平面6.2.2 垂直线与垂直平面6.3 空间几何的基本性质6.3.1 空间几何的公理与定理6.3.2 空间几何的应用七、平面解析几何7.1 平面直角坐标系7.1.1 平面直角坐标系的建立7.1.2 点的坐标表示7.2 直线与圆7.2.1 直线的方程7.2.2 圆的方程7.3 圆锥曲线7.3.1 椭圆的性质与方程7.3.2 双曲线的性质与方程7.3.3 抛物线的性质与方程八、概率与统计初步8.1 概率的基本概念8.1.1 随机事件与概率8.1.2 概率的性质与计算8.2 概率的分布与期望8.2.1 离散型随机变量的分布8.2.2 连续型随机变量的分布8.2.3 随机变量的期望与方差8.3 统计初步8.3.1 数据的收集与整理8.3.2 数据的描述与分析8.3.3 统计推断与预测以上即为高中数学的主要章节目录,涵盖了集合与函数、基本初等函数、方程和不等式、三角函数、数列和数学归纳法、立体几何初步、平面解析几何以及概率与统计初步等多个方面,旨在为学生提供全面而系统的数学知识体系。
高中数学详细目录章节

高中数学目录数学必修1第1章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集第2章函数概念与基本初等函数Ⅰ2.1 函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2 指数函数分数指数幂指数函数2.3 对数函数对数对数函数2.4 幂函数2.5 函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6 函数模型及其应用数学必修2第3章立体几何初步3.1 空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2 点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1 直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2 圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3 空间直角坐标系空间直角坐标系空间两点间的距离数学必修3第5章算法初步5.1 算法的意义5.2 流程图5.3 基本算法语句5.4 算法案例第6章统计6.1 抽样方法6.2 总体分布的估计6.3 总体特征数的估计6.4 线性回归方程第7章概率7.1随机事件及其概率7.2 古典概型7.3 几何概型7.4 互斥事件及其发生的概率数学必修4第8章三角函数8.1 任意角、弧度8.2 任意角的三角函数8.3 三角函数的图象和性质第9章平面向量9.1 向量的概念及表示9.2 向量的线性运算9.3 向量的坐标表示9.4 向量的数量积9.5 向量的应用第10章三角恒等变换10.1 两角和与差的三角函数10.2 二倍角的三角函数10.3 几个三角恒等式数学必修5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修 1-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用选修 1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修 2-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用选修 2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义选修 2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学目录此文为人教必修版新教材高中数学目录
必修一
第一章
1.1集合与集合的表示方法
1.1.1集合的概念
1.1.2集合的表示方法
第二章
2.1函数
2.1.1函数
2.1.2函数的表示方法
2.1.3函数的单调性
2.1.4函数的奇偶性
2.1.5用计算机作函数图像〔选学〕
2.2一次函数和二次函数
2.2.1一次函数的性质与图像
2.2.2二次函数的性质与图像
2.3函数的应用〔1〕
2.4函数与方程
2.4.1函数的零点
2.4.2求函数零点近似解的一种计算方法----二分法
第三章根本初等函数〔1〕3.1指数与指数函数
3.1.1实数指数幕及其运算
3.1.2指数函数
3.2对数与对数函数
3.2.1对数及其运算
3.2.2对数函数
3.2.3指数函数与对数函数的关系3.3黑函数
3.4函数的应用〔2 〕
必修二
第一章立体几何初步
1.1空间几何体
1.1.1构成空间几何体的根本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球
1.1.4投影与直观图
1.1.5三视图
1.1.6棱柱棱锥棱台和球的外表积1.1.7柱锥台和球的体积
1.2点线面之间的位置关系
1.2.1平面的根本性质与推论
1.2.2空间中的平行关系
1.2.3空间中的垂直关系
第二章平面解析几何初步
2.1平面直角坐标系中的根本公式2.1.1数轴上的根本公式
2.1.2平面直角坐标系中的根本公式2.2直线的方程
2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式
2.2.3两条直线的位置关系
2.2.4点到直线的距离
2.3圆的方程
2.3.1圆的标准方程
2.3.2圆的一般方程
2.3.3直线与圆的位置关系
2.3.4圆与圆的位置关系
2.4空间直角坐标系
2.4.1空间直角坐标系
2.4.2空间两点距离公式
必修三
第一章算法初步
1.1算法与程序框图
1.1.1算法的概念
1.1.2程序框图
1.1.3算法的三种根本逻辑结构和框图表示1.2根本算法语句
1.2.1赋值输入输出语句
1.2.2条件语句
1.2.3循环语句
1.3中国古代数学中的算法案例
第二章统计
2.1随机抽样
2.1.1简单的随机抽样
2.1.2系统抽样
2.1.3分层抽样
2.1.4数据的收集
2.2用样本估计总体
2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性
2.3.1变量间的相互关系
2.3.2两个变量的线性相关
第三章概率
3.1事件与概率
3.1.1随机现象
3.1.2事件与根本领件空间
3.1.3频率与概率
3.1.4概率的加法公式
3.2古典概型
3.2.1古典概型
3.2.2概率的一般加法公式〔选学〕3.3随机数的含义与应用
3.3.1几何概型
3.3.2随机数的含义与应用
3.4概率的应用
必修四
第一章根本的初等函数〔2〕1.1任意角的概念与弧度制
1.1.1角的概念的推广
1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数
1.2.1三角函数的定义
1.2.2单位圆与三角函数线
1.2.3同角三角函数的根本关系式
1.2.4诱导公式
1.3三角函数的图像与性质
1.3.1正弦函数的图像与性质
1.3.2余弦函数正切函数的图像与性质
1.3.3三角函数值求角
第二章平面向量
2.1向量的线性运算
2.1.1向量的概念
2.1.2向量的加法
2.1.3向量的减法
2.1.4数乘向量
2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算
2.2.1平面向量根本定理
2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积
2.3.1向量数量积的物理背景与定义
2.3.2向量数量积的运算律
2.3.3向量数量积的坐标运算与度量公式2.4向量的应用
2.4.1向量在几何中的应用
2.4.2向量在物理中的应用
第三章三角恒等变换
3.1和角公式
3.1.1两角和与差的余弦
3.1.2两角和与差的正弦
3.1.3两角和与差的正切
3.2倍角公式和半角公式
3.2.1倍角公式
3.2.2半角的正弦余弦和正切
3.3三角函数的积化和差与和差化积
必修五
第一章解三角形
1.1正弦定理和余弦定理
1.1.1正弦定理
1.1.2余弦定理
1.2应用举例
第二章数列
2.1数列
2.1.1数列
2.1.2数列的递推公式〔选学〕2.2等差数列
2.2.1等差数列
2.2.2等差数列的前n项和
2.3等比数列
2.3.1等比数列
2.3.2等比数列的前n项和
第三章不等式
3.1不等关系与不等式
3.1.1不等关系与不等式
3.1.2不等式性质
3.2均值不等式
3.3一元二次不等式及其解法
3.4不等式的实际应用
3.5二元一次不等式〔组〕与简单的线性规划问题3.5.1二元一次不等式〔组〕所表示的平面区域3.5.2简单线性规划
选修2-1
第一章常用逻辑用语
1.1命题与量词
1.1.1命题
1.1.2量词
1.2根本逻辑联结词
1.2.1且与或
1.2.2非〔否认〕
1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件
1.3.2命题的四种形式
第二章圆锥曲线方程
2.1曲线方程
2.1.1曲线与方程的概念
2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆
2.2.1椭圆的标准方程
2.2.2椭圆的集几何性质
2.3双曲线
2.3.1双曲线的标准方程
2.3.2双曲线的几何性质
2.4抛物线
2.4.1抛物线的标准方程
2.4.2抛物线的几何性质
2.5直线与圆锥曲线
第三章空间向量与几何体
3.1空间向量及其运算
3.1.1空间向量的线性运算
3.1.2空间向量的根本定理
3.1.3两个向量的数量积
3.1.4空间向量的直角坐标运算
3.2空间向量在立体几何中的应用
3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角
3.2.4二面角及其度量
3.2.5距离〔选学〕
选修2-2
第一章导数及其应用
1.1导数
1.1.1函数的平均变化率
1.1.2瞬时速度与导数
1.1.3导数的几何
1.2导数的运算
1.2.1常数函数与黑函数的导数
1.2.2导数公式表及数学软件的应用1.2.3导数的四那么运算法那么
1.3导数的应用
1.3.1利用导数判断函数的单调性
1.3.2利用导数研究函数的极值
1.3.3导数的实际应用
1.4定积分与微积分的根本定理1.4.1曲边梯形面积与定积分1.4.2微积分根本定理
第二章推理与证实
2.1合情推理与演绎推理
2.1.1合情推理
2.1.2演绎推理
2.2直接证实与间接证实
2.2.1综合法与分析法
2.2.2反证法
2.3数学归纳法
2.3.1数学归纳法
2.3.2数学归纳法应用举例
第三章娄嫁的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系
3.1.2复数的概念
3.1.3复数的几何意义
3.2复数的运算
3.2.1复数的加法与减法
3.2.2复数的乘法
3.2.3复数的除法
选修2-3
第一章计数原理
1.1根本计数原理
1.2排列与组合
1.2.1排列
1.2.2组合
1.3二项式定理
1.3.1二项式定理
1.3.2杨辉三角
第二章概率
2.1离散型随机变量及其分布列2.1.1离散型随机变量
2.1.2离散型随机变量的分布列2.1.3超几何分布
2.2条件概率与实践的独立性2.2.1条件概率
2.2.2事件的独立性
2.2.3独立重复试验与二项分布2.3随机变量的数字特征
2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差
2.4正态分布
第三章统计案例
3.1独立性检验
3.2回归分析
选修4-4
第一章坐标系
1.1直角坐标系平面上的伸缩变换
1.1.1直角坐标系
1.1.2平面上的伸缩变换
1.2极坐标系
1.2.1平面上点的极坐标
1.2.2极坐标与直角坐标的关系
1.3曲线的极坐标方程
1.4圆的极坐标方程
1.4.1圆心在极轴上且过极点的圆
1.4.2圆心在点〔a,n/2〕处且过极点的圆1.5柱坐标系和球坐标系
1.5.1柱坐标系
1.5.2球坐标系
第二章参数方程
2.1曲线的参数方程
2.1.1抛射体的运动
2.1.2曲线的参数方程
2.2直线与圆的参数方程2.2.1直线的参数方程
2.2.2圆的参数方程
2.3圆锥曲线的参数方程2.
3.1椭圆的参数方程
2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程
2.4.2圆的渐开线的参数方程。